SUPPLEMENTARY METHODS

The gut microbiota ellagic acid-derived metabolite urolithin A , and its sulfate conjugate, are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP).

Antonio González-Sarrías ${ }^{\dagger}$, Verónica Miguel ${ }^{\ddagger}$, Gracia Merino ${ }^{\ddagger}$, Ricardo Lucas ${ }^{\#}$,
Juan C. Morales ${ }^{\#}$, Francisco Tomás-Barberán ${ }^{\dagger}$, Ana I. Álvarez ${ }^{\ddagger}$, Juan C. Espín ${ }^{\dagger *}$

Experimental procedure for the synthesis of Uro-A glucuronide and Uro-A sulfate.

Abstract

3-O-(tert-butyl-dimethylsilyl)-8-hydroxy-(6H-(dibenzo [b,d]pyran-6-one)] and 8-O-(tert-butyl-dimethylsily)-3-hydroxy-(6H-(dibenzo[b,d]pyran-6-one)] (1,2). (Numbers of compounds are indicated in Figure 2 of the manuscript)

To a solution of urolithin A ($400 \mathrm{mg}, 0.964 \mathrm{mmol}$) in DMF (anhydrous, 4 mL) cooled in an icewater bath under argon were added sequentially TBDMSOTf ($443 \mu \mathrm{~L}, 1.92 \mathrm{mmol}, 1.10$ equiv) and $\mathrm{i}-\operatorname{Pr}^{2} \mathrm{NEt}\left(411 \mu \mathrm{~L}, 2.36 \mathrm{mmol}, 1.35\right.$ equiv). The mixture was allowed to stir for 30 min at 0° C, and TLC (hexane: ethyl acetate $3: 1$) at that point indicated that the reaction was complete. The pale yellow reaction mixture was diluted with EtOAc (50 mL), introduced into a separatory funnel, washed with water ($2 \times 25 \mathrm{~mL}$) and brine (25 mL), and finally the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and concentration in vacuo afforded the crude that was purified by flash column chromatography (hexane:ethyl acetate, from 10:1 to 3:1) to provide a regioisomeric mixture of $\mathbf{1}$ and $\mathbf{2}$ (ratio ~ $1: 1,320 \mathrm{mg}, 54 \%$) as an oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , CDCl_{3}) δ_{H} : 7.69-7.53 (m, 6H, Harom), $7.17(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7$ and 8.7 Hz , Harom), $7.08(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=2.4$ and 8.7 Hz , Harom), $6.79(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, Harom), $6.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4$ and 8.7 Hz ,

Harom), 6.62-6.60 (m, 2H, Harom), 0.80, $0.79\left(2 \mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{x} 2\right), 0.04,0.03(2 \mathrm{~s}, 12 \mathrm{H},-$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{x} 2\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: \quad 162.2,162.1(\mathrm{C}=\mathrm{O}), 157.5,156.9,156.1,155.4$, $151.5,151.1,129.2,128.5,128.3,124.2,123.4,123.2,122.9,122.8,121.0,120.9,119.6,119.6$, $117.6,114.9,113.3,111.2,108.5,104.0,25.6,18.3,18.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right),-4.4\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$. HRMS (ES^{+}) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 343.1366, Found: 343.1356.

8-Hydroxy-3-O-(methyl-2,3,4-tri-O-acetyl- β-D-glucopyranosyluronate)- (6H-(dibenzo[b,d] pyran-6-one)] and 3-hydroxy-8- O-(methyl-2,3,4-tri-O-acetyl- β-D-glucopyranosyluronate)-(6H-(dibenzo[b,d]pyran-6-one)] (4,5).

$\mathrm{BF}_{3} . \mathrm{OEt}_{2}(13 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ was added to a solution of trichloroacetimidate $\mathbf{3}(450 \mathrm{mg}, 0.943$ mmol) and the regioisomer mixture of 3-O-(tert-butyl-dimethylsilyl)-8-hydroxy-(6 H -(dibenzo [b,d]pyran-6-one)] and 8-O-(tert-butyl-dimethylsilyl)-3-hydroxy-(6H-(dibenzo[b,d]pyran-6one)] $\mathbf{8}$ and $9(320 \mathrm{mg}, 0.93 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 1 h , TLC showed a complete consumption of the starting material. The reaction was quenched with NEt_{3} and concentrated in vacuo. The resulting residue was purified by flash column chromatography (hexane: ethyl acetate, from $3: 1$ to $2: 3$) to provide a regioisomeric mixture of $\mathbf{4}$ and 5 (ratio ~ $1: 1,503 \mathrm{mg}, 83 \%)$ as a glassy solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.87-7.75(\mathrm{~m}, 5 \mathrm{H}$, Harom), $7.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$, Harom $), 7.39,7.24(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.5$ and 8.5 Hz , Harom $), 6.93$ (m, 2H, Harom), 6.78 (m, 2H, Harom), 5.41-5.25 (m, 8H, H-1, H-2, H-3, H-4, H-1', H-2', H-3', H-4'), $4.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-5), 4.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-5$ '), 3.71, $3.69(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{xCH}_{3} \mathrm{O}\right), 2.08-1.99\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 0.98,0.97\left(2 \mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{x} 2\right), 0.23,0.20(2 \mathrm{~s}, 12 \mathrm{H}$, $\left.-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{x} 2\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 170.0,169.9,169.3,169.2,166.8,166.7,160.9$, $160.8,157.4,157.2,155.9,155.8,151.6,151.2,130.7,128.2,125.5,123.3,123.1,123.0,121.5$, $121.1,119.7,117.5,115.7,114.1,113.6,111.5,108.4,104.9,98.5,98.4,72.5,72.4,71.7,71.1$, $71.0,70.9,69.0,68.9,60.3,53.0,52.9,25.5,20.9,20.5,20.4,18.2,18.1,14.1$. HRMS (ES $^{+}$) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{13} \mathrm{NaSi}\left(\mathrm{M}^{+}\right)$681.1979, Found: 681.1991.

3-O-(β-D-glucopyranosyluronic acid)-8-hydroxy-(6H-(dibenzo [b,d]pyran-6-one)] and 8-O(β-D-glucopyranosyluronic)-3-hydroxy-(6H-(dibenzo[b,d]pyran-6-one)].

A regioisomeric mixture of $\mathbf{1 1}$ and $12(75 \mathrm{mg}, 0.114 \mathrm{mmol}), \mathrm{KF}(13 \mathrm{mg}, 0.229 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(32 \mathrm{mg}, 0.229 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 5: 1(6 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 18 h and then the solvent was then removed under vacuo. The crude was purified by RP-C18 $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{OH}\right.$, from 100:0 to 50:50). Fractions containing the desired product were concentrated and freeze-dried affording a regioisomeric mixture of glucuronide conjugates (ratio $\sim 1: 1,30 \mathrm{mg}, 65 \%$) as a yellowish solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta_{\mathrm{H}}: 7.17-7.08(\mathrm{~m}, 5 \mathrm{H}$, Harom $), 7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$, Harom), $6.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$, Harom), 6.71 (s, 1H, Harom), $6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}$, Harom), 6.42 (s, 1H, Harom), 6.35 (d, $1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}$, Harom), 5.97 ($\mathrm{s}, 1 \mathrm{H}$, Harom), 5.02 (d, 2H, H-1, H1'), 3.91 (t, 2H, J = $9.5 \mathrm{~Hz}, \mathrm{H}-$ 3, H-3'), 3.68-3.57 (m, 6H, H-2, H-4, H-2', H-4', H-5, H-5'). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta_{\mathrm{C}}: ~ 175.5,162.1,162.0,156.9,156.7,149.2,148.8,129.1,126.0,123.6,122.8,122.5,118.2$, $\left.117.7,113.5,112.9,112.7,111.7,108.8,103.2,102.2,99.6,76.2,75.2,72.7,71.8 . \mathrm{MS}^{(E S I}\right)$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{10}\left(\mathrm{M}^{-}\right) 403.3$, Found: 403.1.

3-O-(Tert-butyl-dimethylsilyl)-8-sulfate-(6H-(dibenzo[b,d]pyran-6-one)] and 8-O-(tert-butyl-dimethylsilyl)-3-sulfate-(6H-(dibenzo[b,d]pyran-6-one)] (6,7).

A regioisomeric mixture of compounds $\mathbf{1}$ and $2(135 \mathrm{mg}, 0.39 \mathrm{mmol})$ was dissolved in acetonitrile and mixed with $\mathrm{SO}_{3} \cdot \mathrm{NMe}_{3}$ as sulfating reagent and NEt_{3} as base. Microwave radiation was applied to the reaction mixture at $100^{\circ} \mathrm{C}$ for 20 min . TLC (ethyl acetate: MeOH , 6:1) showed the formation of a major product and complete consumption of the starting material. Solvents were removed and the crude was purified by sephadex LH-20 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 1: 1\right)$ to afford a regioisomeric mixture of 6 and $7($ ratio $\sim 1: 1,187 \mathrm{mg}, 92 \%)$ as an oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}}: 8.21-8.08(\mathrm{~m}, 5 \mathrm{H}$, Harom), $7.79(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4$ and 8.8 Hz, Harom), 7.69 (d, 1H, J = 2.8 Hz , Harom), 7.42 (dd, $1 \mathrm{H}, \mathrm{J}=2.8$ and 8.8 Hz , Harom),
7.35-7.30 (m, 2 H, Harom), 6.91 (dd, 1H, J = 2.4 and 8.8 Hz , Harom), 6.81 (d, 1H, 1H, J = 2.8 Hz , Harom), 3.26-3.18 (m, 12H, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.05\left(2 \mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ x2), $0.03,0.02\left(2 \mathrm{~s}, 12 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{x} 2\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}}: 162.2,162.1(\mathrm{C}=\mathrm{O})$, $156.3,153.6,150.7,128.8,128.6,128.2,124.0,123.9,123.1,122.9,121.4,121.1,118.8,117.8$, $117.3,114.5,109.3,107.8,24.7,17.7,7.8,-5.8$. ESI-HRMS (ES $)$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{7} \mathrm{SiS}(\mathrm{M}-$ H) 421.0777, Found: 421.0783 .

8-Sulfate-(6H-(dibenzo[b,d]pyran-6-one)] and 3-sulfate-(6H-(dibenzo[b,d]pyran-6-one)]. A regioisomeric mixture of 6 and $7(95 \mathrm{mg}, 0.181 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and KF ($21 \mathrm{mg}, 0.363 \mathrm{mmol}$) then added. The reaction mixture was stirred at room temperature for 18 h and the solvent was then removed under vacuo. The crude was purified by RP-C18 $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{OH}\right.$, from 100:0 to $\left.70: 30\right)$. Fractions containing the desired product were concentrated and freeze-dried affording a regioisomeric mixture of sulfate conjugates (ratio $\sim 1: 1,45 \mathrm{mg}$, 73%) as a yellow solid. $\mathrm{mp}>300^{\circ} \mathrm{C}$. H-NMR ($400 \mathrm{MHz}, \mathrm{d}^{6}$-DMSO) $\delta_{\mathrm{H}}: 7.96$ (d, 2H, J = 8.7 and 9.0 Hz, Harom $), 7.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$, Harom $), 7.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4$ and 8.7 Hz , Harom), $7.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.7 \mathrm{~Hz}$, Harom), $7.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7$ and 9.0 Hz , Harom), 6.98-6.92 (m, 2H, Harom), $6.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.4\right.$ and 8.7 Hz , Harom), 6.51 (d, J = 2.1 Hz , Harom) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}\right) \delta_{\mathrm{C}}: 161.1,159.9(\mathrm{C}=\mathrm{O}), 158.2,154.6,153.2,151.9,150.4,132.9,130.8$, $128.8,126.7,124.9,124.6,123.4,123.3,121.4,120.0,117.4,114.1,113.7,109.8,108.4,103.4$. ESI-HRMS (ES ${ }^{-}$) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{O}_{7} \mathrm{~S}(\mathrm{M}-\mathrm{H})$ 306.9912, Found: 306.9913.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds

[^0]

11, 12

[^0]: $\begin{array}{llllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & p p m\end{array}$

