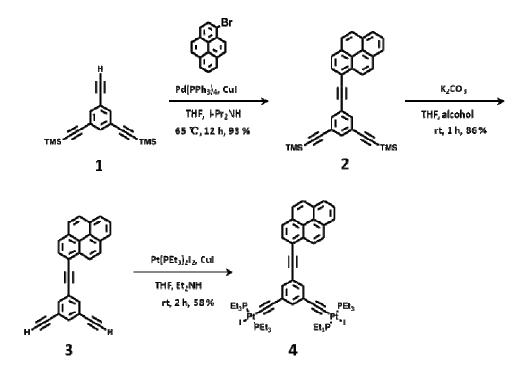
Supporting Information for

Construction of Supramolecular Pyrene-Modified Metallocycles via Coordination- Driven Self-Assembly and Their Spectroscopic Behavior

Nai-Wei Wu, † Jing Zhang, † Cirendeji, ‡ Qing Han, † Li-Jun Chen, † Lin Xu* †

and Hai-Bo Yang*^{\dagger}

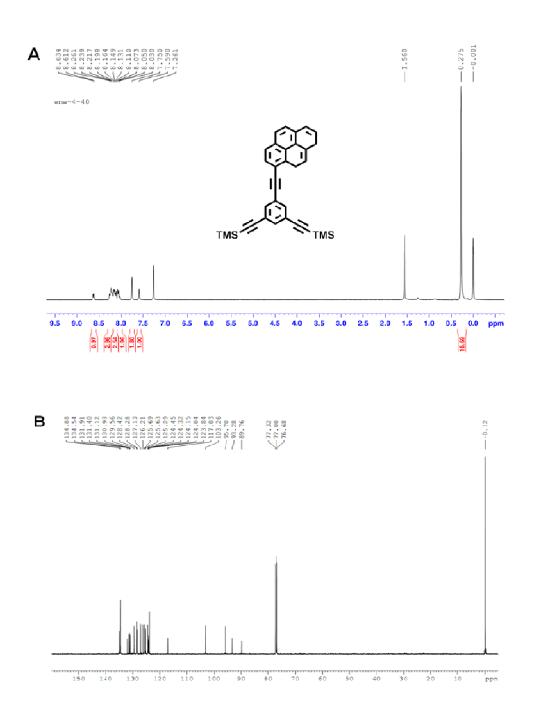

[†]Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.
[‡]Department of Public Teaching, Tibet Agricultural and Animal Husbandry College, 8 Xueyuan Road, Linzhi, Tibet 860000, P.R. China.

E-mail: lxu@chem.ecnu.edu.cn, hbyang@chem.ecnu.edu.cn

Table of Contents

1. Synthesis of compounds 2 , 3 , and 4	2
2. ¹ H, ¹³ C NMR and ³¹ P NMR Spectra of 2-6	4
3. ¹ H, ³¹ P NMR and Mass Spectra of Metallocycles 8a-b and 10a-b	10
4. Spectroscopic Behavior of 5, 6, 8a-b, and 10a-b	15

1. Synthesis of compounds 2, 3, and 4



Scheme S1. Synthesis of compounds 2, 3 and 4

Synthesis of Compound 2. Under an atmosphere of nitrogen, a mixed solvent of 15 mL THF and 15 mL i-Pr₂NH was added to a mixture of compound 1 (520 mg, 1.76 mmol), 1-bromopyrene (993 mg, 3.52 mmol), Pd(PPh₃)₄ (101 mg, 0.088 mmol) and CuI (17 mg, 0.088 mmol) in a 100 mL Schlenk flask. The mixture was stirred at 65 °C for 12 hours. After then insoluble materials were filtrated and the solvent was removed by evaporation on a rotary evaporator. The residue was purified by column chromatography on silica gel with petroleum ether/dichloromethane (v/v, 8/1) as eluent afforded the light yellow powder of **2** with a yield of 93%: Rf = 0.60 (petroleum ether/dichloromethane, v/v, 8/1). Mp: 187 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.63 (d, J = 9.2 Hz, 1H), 8.26-8.03 (m, 8H), 7.75 (s, 2H), 7.59 (s, 1H), 0.28 (s, 18H). ¹³C NMR (CDCl₃, 100 MHz): δ 134.88, 134.54, 131.91, 131.40, 131.12, 130.93, 129.56, 128.42, 128.28, 127.13, 126.21, 125.69, 125.63, 125.29, 124.45, 124.32, 124.15, 124.04, 123.84, 117.03, 103.26, 95.78, 93.28, 89.76, -0.12. MS (EI): m/z (%) = 494 (M⁺, 7.50). HRMS calcd for C₃₄H₃₀Si₂: 494.1886, found: 494.1881.

Synthesis of Compound 3. Compound **2** (812 mg, 1.64 mmol) was dissolved in a mixture of 45 mL THF and 25 mL methanol. K₂CO₃ (452 mg, 3.24 mmol) was added and the solution was stirred at room temperature for 1 hour. Insoluble materials were filtrated and the solvent was removed by evaporation on a rotary evaporator. Column chromatography with petroleum ether/dichloromethane (v/v, 4/1) as eluent afforded the yellow solid of compound **3** with a yield of 86%: Rf = 0.56 (petroleum ether/dichloromethane, v/v, 4/1). Mp: 186 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.62 (d, J = 9.2 Hz, 1H), 8.26-7.81 (m, 8H), 7.62 (s, 2H), 7.61 (s, 1H), 3.16 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 135.14, 135.08, 132.02, 131.56, 131.18, 130.98, 129.66, 128.56, 128.41, 127.19, 126.30, 125.79, 125.73, 125.28, 124.51, 124.41, 124.34, 124.22, 122.99, 116.89, 92.97, 90.12, 81.85, 78.62. MS (EI): m/z (%) = 350 (M⁺, 9.89). HRMS calcd for C₂₈H₁₄: 350.1096, found: 350.1094.

Synthesis of Compound 4. To a solution of CuI (12 mg, 0.063 mmol) and Pt(PEt₃)₂I₂ (1.56 g, 2.28 mmol) in a mixed solvent of 20 mL THF and 20 mL Et₂NH was added dropwise a solution of compound **5** (220 mg, 0.628 mmol) in THF (20 mL) under an atmosphere of nitrogen. The mixture was then stirred at room temperature for 2 hours. The solvent was removed in vacuo and the residue was purified via column chromatography with petroleum ether/dichloromethane (v/v, 2/1) as eluent afforded the light yellow solid of **5** with a yield of 58%: R*f* = 0.51 (petroleum ether/dichloromethane, v/v, 1/1). ¹H NMR (CDCl₃, 400 MHz): δ 8.68-8.65 (d, *J* = 9.2 Hz, 1H), 8.25-8.02 (m, 8H), 7.42 (s, 2H), 7.22 (s, 1H), 2.29-2.23 (m, 24H), 1.24-1.16 (m, 36H). ¹³C NMR (CDCl₃, 100 MHz): 132.86, 131.63, 130.99, 130.94, 130.71, 130.43, 129.30, 128.03, 127.94, 126.96, 126.05, 125.38, 125.14, 124.30, 124.17, 123.98, 123.09, 117.42, 99.17, 94.80, 90.82, 88.18, 16.50, 8.16. ³¹P NMR (CDCl₃, 161.9 MHz): δ 8.58 (s, *J*_{Pt-P} = 2320.0 Hz) MALDI HRMS: m/z calced for C₅₂H₇₂I₂P₄Pt₂, ([M + H]⁺) 1465.20, found: 1465.27.

2. ¹H NMR, ¹³C NMR and ³¹P NMR Spectra of 2-6

Figure S1. 1 H (A) and 13 C (B) NMR spectra of 2 in CDCl₃

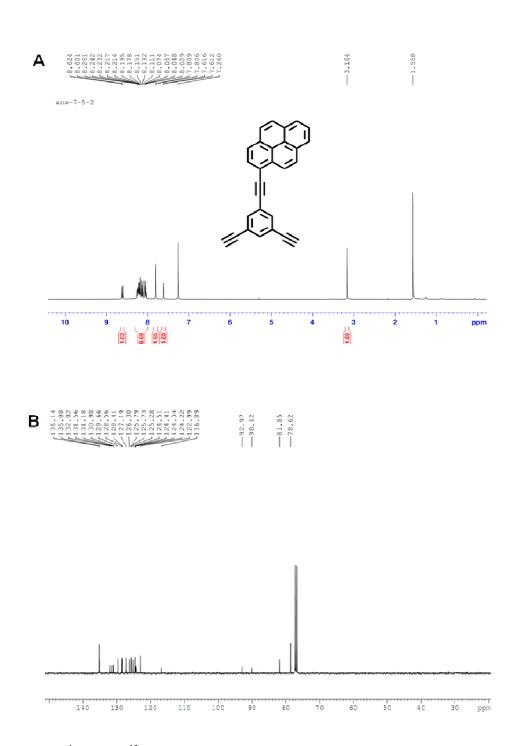
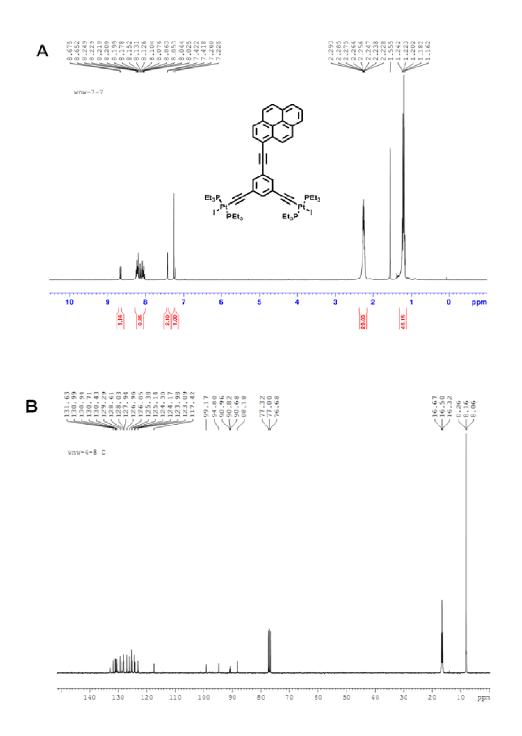



Figure S2. 1 H (A) and 13 C (B) NMR spectra of **3** in CDCl₃

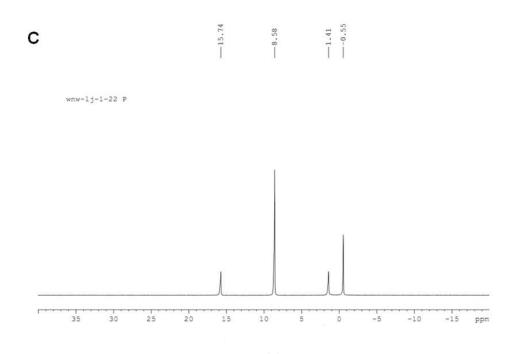
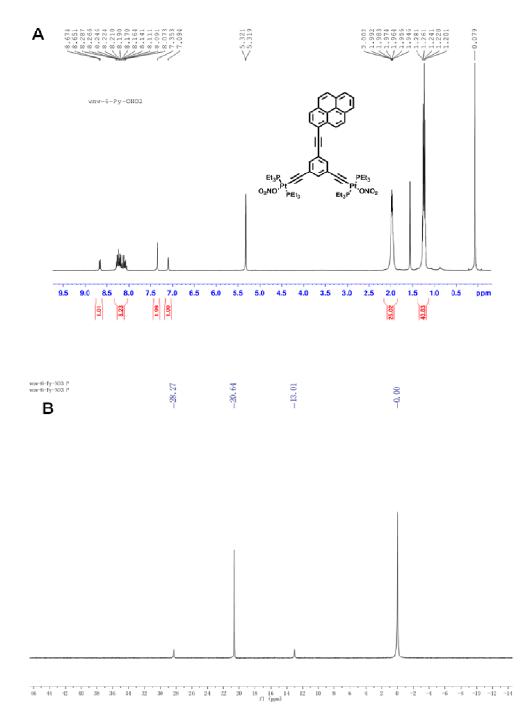



Figure S3. 1 H (A) 13 C (B) and 31 P (C) NMR of 4 in CDCl₃

Figure S4. 1 H (A) and 31 P (B) NMR of **5** in CD₂Cl₂

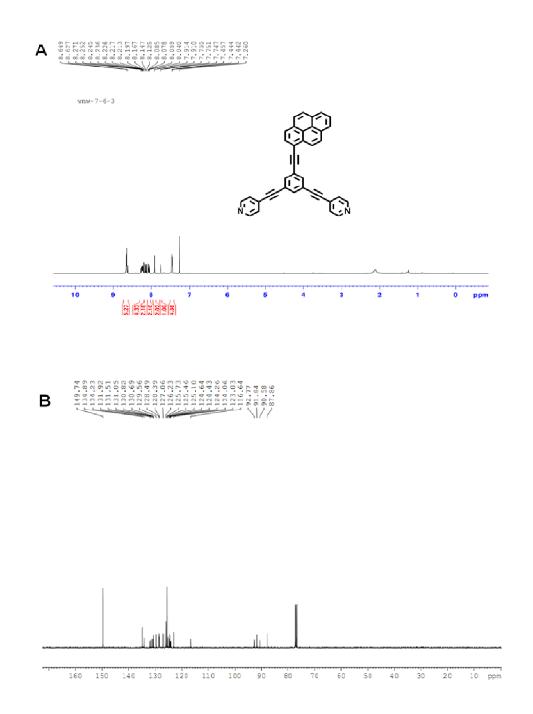
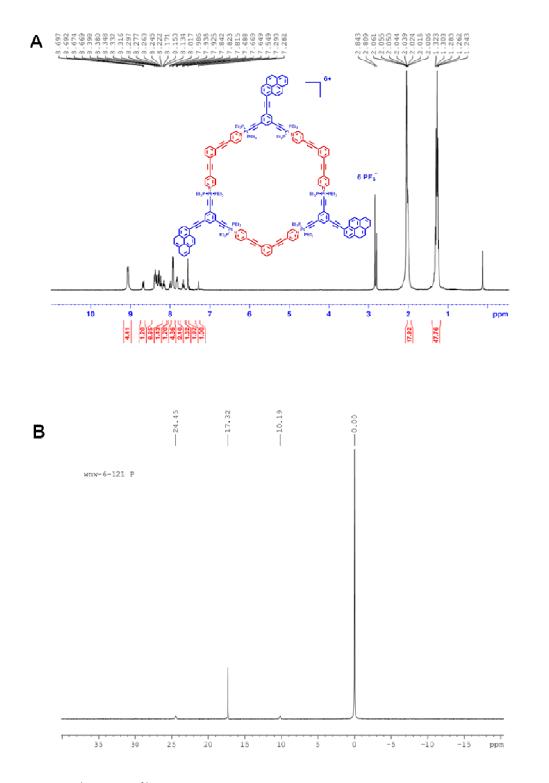



Figure S5. 1 H (A) and 13 C (B) NMR of 6 in CDCl₃

3. ¹H, ³¹P NMR and Mass Spectra of Metallocycles 8a-b and 10a-b

Figure S6. ¹H (A) and ³¹P (B) NMR of **8a** in acetone- d_6

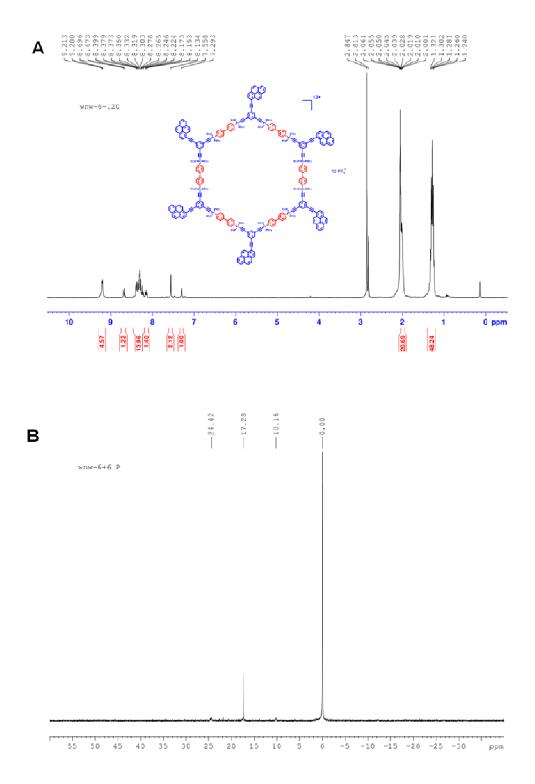


Figure S7. $^{1}\!\mathrm{H}\left(A\right)$ and $^{31}\!\mathrm{P}\left(B\right)$ NMR of $\mathbf{8b}$ in $CD_{2}Cl_{2}$

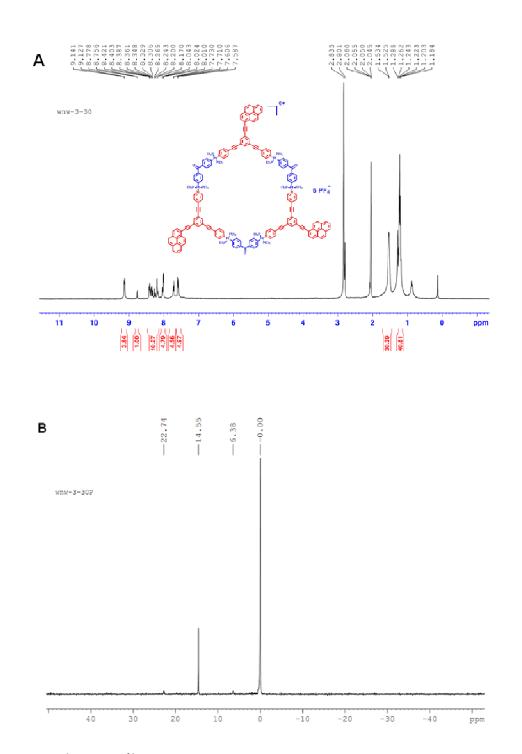


Figure S8. 1 H (A) and 31 P (B) NMR of hexagon 10a in acetone- d_6

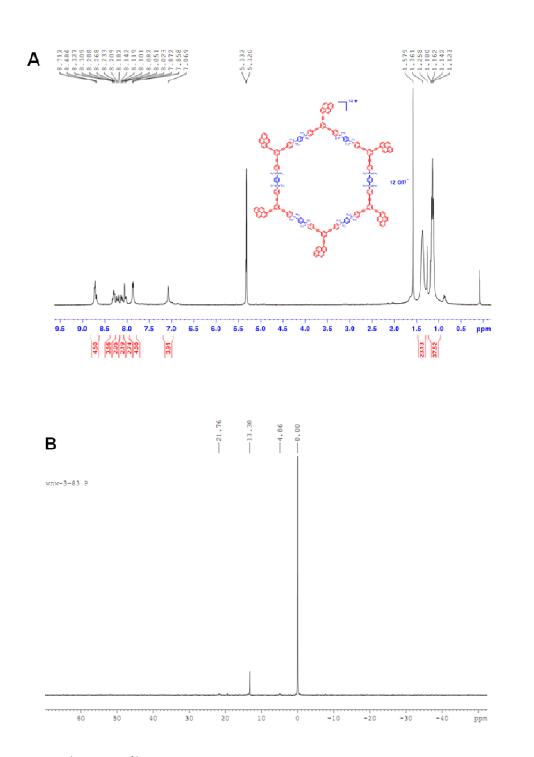


Figure S9. 1 H (A) and 31 P (B) NMR of hexagon 10b in CD₂Cl₂.

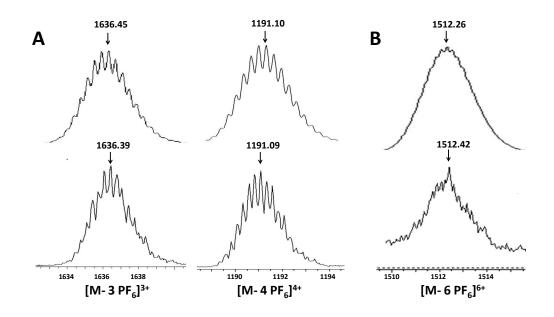
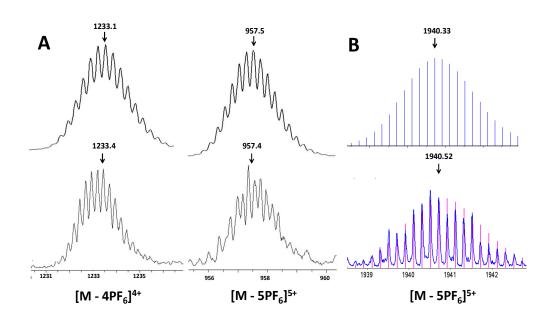



Figure S10. Theoretical (top) and experimental (bottom) CSI-TOF-MS results of 8a (A) and 8b

(B).

Figure S11. Theoretical (top) and experimental (bottom) CSI-TOF-MS results of **10a** (A), and ESI-TOF-MS result of **10b** (B).

4. Spectroscopic Behavior of 5, 6, 8a-b and 10a-b

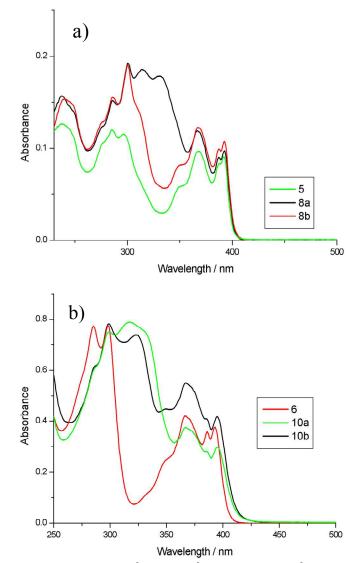


Figure S12. Absorption spectra of 5 (10^{-5} M), 6 (10^{-5} M), 8a (0.33×10^{-5} M), 8b (0.17×10^{-5} M), 10a (0.33×10^{-5} M) and 10b (0.17×10^{-5} M) in CH₂Cl₂.

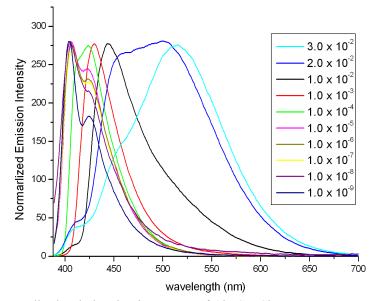


Figure S13. Normalized emission titration spectra of 6 in CH₂Cl₂.

Compound (concentration)/M ⁻¹	Solvent (298K)	$\lambda_{abs}(nm)$	$\epsilon (M cm^{-1})$	$\lambda_{F}(nm)$	ΦF
5 (1.0×10 ⁻⁵)	CH ₂ Cl ₂	392	91000	398	0.87
		367	97000	420	
		285	120000		
8a (0.33×10^{-5})	CH_2Cl_2	393	291000	420	0.030
		367	357000		
		300	576000		
8b (0.17×10 ⁻⁵)	CH ₂ Cl ₂	393	642000	424	0.013
		367	738000		
		300	1140000		
6 (1.0×10 ⁻⁵)	CH ₂ Cl ₂	392	210160	407	0.12
		367	231956		
		285	310714		
10a (0.33×10^{-5})	CH ₂ Cl ₂	392	879078	551	0.009
		367	1078986		
		331	1638720		
		300	1787040		
10b (0.17×10 ⁻⁵)	CH ₂ Cl ₂	392	3490002	548	0.003
		367	4031046		
		299	6416826		

Table S1. Photophysical Data for 5, 8a, 8b, 6, 10a, and 10b

Table S2. Charge Density Data for 5, 8a, 8b, 6, 10a and 10b

	5	8a	8b	6	10a	10b
Charge						
Density	0.086166	0.133250	0.148520	0.101246	0.150779	0.150779
$(C \cdot m^{-2})$						