Supporting Information

Ethynylene-Linked Donor-Acceptor Alternating Copolymers

Wade A. Braunecker,,$^{*, \dagger}$ Stefan D. Oosterhout, ${ }^{\dagger}$ Zbyslaw R. Owczarczyk, ${ }^{\dagger}$ Ross E. Larsen, ${ }^{\dagger}$ Bryon W. Larson, ${ }^{\dagger}$ David S. Ginley, ${ }^{\dagger}$ Olga V. Boltalina, ${ }^{\dagger}$ Steven H. Strauss, ${ }^{*}$ Nikos Kopidakis, ${ }^{\dagger}$ and Dana C. Olson ${ }^{\dagger}$
${ }^{\dagger}$ National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401
${ }^{\dagger}$ Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Email: Wade.Braunecker@nrel.gov

Table of Contents

I. Geometric Structures S3
II. Absorbance Spectra S4
III. Synthetic Procedures
Thienoisoindoledione S5
Diketopyrrolopyrrole S8
Benzodithiophene S9
Fluorene S10
Pyromellitic diimide S12
Isothianapthene S13
Thienopyrroledione S15
Thienopyrazine S15
$\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2}$ S16
Stille Coupling Polymerization S17
Sonogashira Coupling Polymerization S17
IV. ${ }^{1}$ H NMR Spectra of New Monomers and Polymers S18
V. Cyclic Voltammograms S28
VI. Time-Resolved Microwave Conductivity S35
VII. References S36

I. Geometric Structures

Figure S1. Illustration of the twist in P-TID-FLR (top) and planarity of P-TID- \equiv-FLR (middle and bottom).

Figure S2. Illustration of the twist in P-PMDI-FLR (top) and planarity of $P-\mathrm{PMDI}-\equiv-$ FLR (middle and bottom).

II. Absorbance Spectra

Figure S3. Effect of ethynylene linkages on polymer absorbance (normalized) in CHCl_{3} solution.

Figure S4. Normalized absorbance spectrum of polymers in solution $\left(\mathrm{CHCl}_{3}\right)$.

III. Synthetic Procedures

(1)

(2)

(4)

Scheme S1

Compounds 1, 2, and 3a-5a (where $\mathrm{R}=n$-octyl), were synthesized according to a literature procedure. ${ }^{1}$

1-(2-hexyldecyl)-pyrrole-2,5-dione (3b). This compound was synthesized according to a literature procedure ${ }^{2}$ developed for N-alkyl-pyrrole-2,5-dione derivatives in 78% yield as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.62(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~d}$, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.70(\mathrm{brm}, 1 \mathrm{H}), 1.22(\mathrm{br} \mathrm{m}, 24 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.2,134.1,42.3,37.1,32.1,32.0,31.6,30.1,29.8,29.7,29.5,26.4,22.8$, 14.3.

6-(2-hexyldecyl)-thieno[3,4-f]isoindole-5-7-dione (4b). This compound was synthesized according to a modified literature procedure. ${ }^{1}$ Dialdehyde (2) (0.70 g, 5.0 mmol) and maleimide ($\mathbf{3 b}$) ($1.6 \mathrm{~g}, 5.0 \mathrm{mmol}$) were dissolved in 50 mL anhydrous methylene chloride and stirred in an ice bath. To this cooled solution, a 10 mL solution of methylene chloride containing ~ 0.1 eq. DBU $(75 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ and 1.5 eq. tri- n -
butylphosphine ($1.87 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added dropwise. The reaction was stirred for 1 hr at r.t., after which it was concentrated in vacuo and the residue was purified via flash chromatography in hexane:ethyl acetate (4:1). After removing the solvent, the red solid was recrystallized twice from methanol to give $1.7 \mathrm{~g}(80 \%)$ of yellow crystals ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.90(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 1.23$ (br m, 24H), $0.83(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,138.6,126.3$, $123.0,119.7,42.9,37.1,32.1,32.0,32.8,31.8,30.2,29.9,29.7,29.5,26.5,22.9,14.3$.

1,3-Dibromo-6-(2-hexyldecyl)-thieno[3,4-f]isoindole-5-7-dione (5b). This compound was synthesized according to a modified literature procedure. ${ }^{1}$ NBS (0.90 g , 5.0 mmols) was added to a stirred solution of compound (4b) (1.04 g, 2.43 mmols$)$ in a mixture of 25 mL of chloroform and 25 mL of acetic acid. The mixture was stirred at r.t. overnight, and then stirred at $60^{\circ} \mathrm{C}$ for 2 hrs . The mixture was quenched with water, the organic layer was separated, and the water layer was extracted $3 \times$ with 10 mL of chloroform. The combined chloroform extracts were washed with a sodium bicarbonate solution. After drying over MgSO_{4}, the solvent was evaporated, and the residue was purified via flash chromatography using methylene chloride:hexane (1:3) as the eluent to afford $0.93 \mathrm{~g}(65 \%)$ of a bright yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~s}, 2 \mathrm{H})$, $3.62(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.90(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{br} \mathrm{m}, 24 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.2,138.1,127.5,118.6,110.1,42.9,37.1,32.1,32.0,31.8,30.2$, 29.9, 29.7, 29.5, 26.5, 22.9, 14.3.

6-(2-hexyldecyl)-1,3-bis((trimethylsilyl)ethynyl)-thieno[3,4-f]isoindole-5,7-

dione (6). To a flask containing 5b $(0.200 \mathrm{~g}, 0.342 \mathrm{mmol})$, pre-complexed $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(12.1 \mathrm{mg}, 0.017 \mathrm{mmol})$, and $\mathrm{CuI}(3.3 \mathrm{mg}, 0.017 \mathrm{mmol})$ that had been evacuated and refilled with nitrogen 3 x was added an oxygen free (nitrogen purged) mixture of THF (2 $\mathrm{mL})$ and diisopropylamine $(1 \mathrm{~mL})$. To this solution was added nitrogen purged ethynyltrimethylsilane ($122 \mu \mathrm{~L}, 0.855 \mathrm{mmol}$). The solution was heated at $40{ }^{\circ} \mathrm{C}$ overnight, afterwhich the solvents were removed by evaporation. The residue was purified via column chromatography using methylene chloride:hexane (1:2) as the eluent to afford $0.195 \mathrm{~g}(92 \%)$ of a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~s}, 2 \mathrm{H})$, $3.61(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.90(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{br} \mathrm{m}, 24 \mathrm{H}), 0.83(\mathrm{t}, 6 \mathrm{H}), 0.31(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,140.8,127.5,120.6,119.1,108.1,94.9,43.0$, $37.1,32.1,32.0,31.8,30.1,29.8,29.7,29.5,26.5,22.9,14.3,0.0$.

1,3-diethynyl-6-(2-hexyldecyl)-thieno[3,4-f]isoindole-5,7-dione (7). To a flask containing $6(0.195 \mathrm{~g}, 0.315 \mathrm{mmol})$ and 300 mg of KF was added 5 mL of nitrogenpurged THF and 3 mL of nitrogen-purged $\mathrm{H}_{2} \mathrm{O}$. The biphasic system was stirred rapidly for 20 min , after which the product was extracted with methylene chloride. The residue was purified via column chromatography using methylene chloride:hexane (1:2) as the eluent to afford $0.108 \mathrm{~g}(72 \%)$ of a yellow-green solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.20(\mathrm{~s}, 2 \mathrm{H}), 3.86,(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.90(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{br} \mathrm{m}, 24 \mathrm{H})$, $0.83(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 167.8,141.3,128.0,119.6,118.8,89.1$, $74.7,43.1,37.1,32.1,32.0,31.8,30.1,29.9,29.7,29.5,26.5,22.9,14.3$.

Scheme S2

Compounds 8-10, where $\mathrm{R}=$ 2-hexyldecyl, were synthesized according to a literature procedure. ${ }^{3}$

2,5-bis(2-hexyldecyl)-3,6-bis(5-((trimethylsilyl)ethynyl)thiophen-2-

yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (11). To a flask containing 10 (0.445 g , $0.490 \mathrm{mmol})$, pre-complexed $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(18 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{CuI}(4.7 \mathrm{mg}$, 0.025 mmol) that had been evacuated and refilled with nitrogen 3 x was added an oxygen free (nitrogen purged) mixture of THF (3 mL) and diisopropylamine (2 mL). To this solution was added nitrogen purged ethynyltrimethylsilane ($172 \mu \mathrm{~L}, 1.23 \mathrm{mmol}$). The solution was heated at $35{ }^{\circ} \mathrm{C}$ for 3 hrs , afterwhich the solvents were removed by evaporation. The residue was purified via column chromatography using ethyl acetate:hexane (1:10) as the eluent to afford $0.360 \mathrm{~g}(82 \%)$ of a deep purple solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.75$ (d, 2H), 7.26 (d, 2H), 3.90, (d, 4H), 1.86 (br, 2H), 1.23 (br m, 48H), $0.82(\mathrm{t}, 12 \mathrm{H}), 0.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.6,139.8$,
$135.5,133.8,130.7,128.6,109.1,104.3,97.0,46.6,37.9,32.1,32.0,31.4,30.2,29.9$, 29.7, 29.5, 26.4, 22.9, 14.3, 0.0.

3,6-bis(5-ethynylthiophen-2-yl)-2,5-bis(2-hexyldecyl)pyrrolo[3,4-c]pyrrole-

$\mathbf{1 , 4 (\mathbf { 2 H } , \mathbf { 5 H })}$-dione (12). To a flask containing $11(0.360 \mathrm{~g}, 0.382 \mathrm{mmol})$ and 300 mg of KF was added 10 mL of nitrogen-purged THF and 3 mL of nitrogen-purged $\mathrm{H}_{2} \mathrm{O}$. The biphasic system was stirred rapidly overnight at r.t., after which the product was extracted with methylene chloride. The residue was purified via column chromatography using ethyl acetate:hexane (1:10) as the eluent to afford $0.228 \mathrm{~g}(75 \%)$ of a deep purple solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.75(\mathrm{~d}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 2 \mathrm{H}), 3.90,(\mathrm{~d}, 4 \mathrm{H}), 1.86(\mathrm{br}, 2 \mathrm{H})$, $1.23(\mathrm{br} \mathrm{m}, 48 \mathrm{H}), 0.82(\mathrm{t}, 12 \mathrm{H}), 0.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.5$, $139.6,135.2,134.0,130.7,127.0,109.0,85.4,76.3,46.6,37.9,32.1,32.0,31.4,30.2$, 29.9, 29.7, 29.5, 26.4, 22.9, 14.3.

Scheme S3

Compounds 13, ${ }^{4} \mathbf{1 4},{ }^{4} \mathbf{1 5},{ }^{1}$ and $\mathbf{1 6}^{1}$ were synthesized according to literature procedures.

2,6-Diiodo-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene (17). This procedure is based on a modified literature procedure for an analgous 2,6-diiodo-4,8bis(alkoxy)benzodithiophene compound. ${ }^{5}$ Anhydrous nitrogen-purged THF (15 mL) was added to compound $15(0.221 \mathrm{~g}, 0.5 \mathrm{mmol})$, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice bath. 2.5 eq. of $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ THF solution, 0.5 mL) was added dropwise. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , was removed from the ice bath for 30 min while stirring, and was then recooled to $-78{ }^{\circ} \mathrm{C} .1,2$-diiodoethane ($0.366 \mathrm{~g}, 1.3 \mathrm{mmol}$) was added in one portion. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for one more hr before it was allowed to warm to r.t. Water (30 mL) was added to quench the reaction, and the product was extracted with methylene chloride $(30 \mathrm{~mL})$. The methylene chloride solution was dried over NaSO_{4}, after which the solvent was distilled off. The residue was purified via column chromatography using methylene chloride:hexane (3:10) as the eluent to afford $0.320 \mathrm{~g}(93 \%)$ of a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}$, $4 \mathrm{H}), 1.90-1.35(\mathrm{~m}, 18 \mathrm{H}), 0.99(\mathrm{t}, 6 \mathrm{H}), 0.94(\mathrm{t}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $142.1,134.1,132.4,130.4,78.4,76.5,40.8,30.6,29.4,24.0,23.3,14.4,11.5$.

Scheme S4

Compounds 18-20, where $\mathrm{R}=$ 2-ethylhexyl, were all synthesized using a literature procedure ${ }^{6}$ for derivatives where $\mathrm{R}=n$-octyl.

9,9-bis(2-ethylhexyl)-2,7-diiodo-9H-fluorene (18). Compound 18 was isolated in 77% yield as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{t}, 2 \mathrm{H}), 7.63(\mathrm{~d}$, $2 H), 7.39(\mathrm{~d}, 2 \mathrm{H}), 1.90(\mathrm{~d}, 4 \mathrm{H}), 0.95-0.65(\mathrm{~m}, 22 \mathrm{H}), 0.53(\mathrm{t}, 6 \mathrm{H}), 0.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 152.5,140.1,136.1,133.6,121.6,92.6,55.4,44.4,34.9,33.9,28.3$, 27.4, 23.0, 14.4, 10.6.

(9,9-bis(2-ethylhexyl)-9H-fluorene-2,7-diyl)bis(ethyne-2,1-

diyl)bis(trimethylsilane) (19). Compound 19 was isolated in 91% yield as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~d}, 4 \mathrm{H}), 0.95-0.65$ $(\mathrm{m}, 22 \mathrm{H}), 0.50(\mathrm{~m}, 8 \mathrm{H}), 0.25(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.8,140.8$, $131.0,127.4,121.4,119.7,106.0,94.0,54.8,44.5,34.7,33.3,27.9,27.0,22.7,14.1,10.3$, 0.0 .

9,9-bis(2-ethylhexyl)-2,7-diethynyl-9H-fluorene (20). Compound 20 was isolated in 95% yield as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, 2 \mathrm{H})$, $7.47(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 1.95(\mathrm{~d}, 4 \mathrm{H}), 0.95-0.65(\mathrm{~m}, 22 \mathrm{H}), 0.50(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 151.1,141.3,131.4,128.0,120.6,120.1,84.7,77.3,55.1,44.6$, $34.9,33.7,28.2,27.2,22.9,14.2,10.5$.

(21)

(22)

(23)

Scheme S5

Compounds 21 and $\mathbf{2 2}$ were synthesized according to a literature procedure. ${ }^{7}$

2,5-Dibromo-3,6-bis(2-hexyldecylcarbamoyl)terephthalic acid (23). A solution of 3,6-Dibromobenzene-1,2,4,5-tetracarboxylic acid (22) (3.00 g, 7.28 mmol) was prepared in anhydrous THF (50 mL) under nitrogen. A separate solution of dicyclohexylcarbodiimide (DCC) ($3.60 \mathrm{~g}, 17.5 \mathrm{mmol}$) was prepared in anhydrous THF (30 mL) under nitrogen. The DCC solution was added slowly to the former solution, resulting in the formation of a precipitate. The solution was refluxed for 2 hrs under nitrogen, after which it was cooled to r.t. and the precipitate quickly filtered off on the benchtop. The solution was put back under nitrogen, and 2-ethylhexylamine (2.44 mL , 14.9 mmol) was added dropwise (the reaction was very exothermic). This solution was stirred overnight at r.t., afterwhich a small amount of precipitate was again filtered off. The solvent was removed with a rotary evaporator and the residue was dried at $60{ }^{\circ} \mathrm{C}$ overnight under vacuum. The yield was nearly quantitative. This product was used in the next step without further purification or characterization.

4,8-Dibromo-2,6-bis(2-hexyldecyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-

tetraone (24). The residue of $23(1.00 \mathrm{~g}, 1.58 \mathrm{mmol})$ was dissolved in 10 mL of
anhydrous DMF under nitrogen. Thionyl chloride ($0.575 \mathrm{~mL}, 7.9 \mathrm{~mL}$) was added slowly. The reaction needed to stir 18 hrs at r.t. before it was complete. After this time, 20 mL of ethyl acetate was added in one portion and 20 mL of water and was added dropwise to quench the reaction. The reaction was stirred vigorously for 30 min . The organic layer was washed twice more with water before the ethyl acetate was removed on a rotarty evaporator. The brown color of the material was removed by washing several times with hexane to leave a yellow powder. This powder was twice recrystallized from 4:1 hexane:ethyl acetate to give a highly pure ($>99 \%$) material by 1H NMR. The following NMR signals agree very well with literature values for this compound. ${ }^{8}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.62(\mathrm{~d}, 4 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.4(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0,136.3,114.3,43.1,38.4,30.7,28.7,24.1,23.1,14.2,10.6$.

(2)

(25)

P (butyl) ${ }_{3}$

(26)

(27)

Scheme S6

Bis(2-hexyldecyl) maleate (25). Maleic anhydride ($0.60 \mathrm{~g}, 6.1 \mathrm{mmol}$) was added with 2-hexyl-1-decanol ($3.02 \mathrm{~g}, 12.5 \mathrm{mmol}$) to 20 mL of anhydrous toluene. The reaction was heated at $70^{\circ} \mathrm{C}$ overnight, at which point the mono adduct had been formed. Toluene was removed with a rotary evaporator. Dowex 50 x 8 -100 ion exchange resins (0.1 g) were then added, and the reaction was heated at $100{ }^{\circ} \mathrm{C}$ under vacuum for 2 days.

Column chromatography was performed in 10:1 hexane:ethyl acetate. The product had an R_{F} value of approximately 0.75 in this system, the free alcohol an $R_{F} \sim 0.5$, and the mono-adduct an $\mathrm{R}_{\mathrm{F}} \sim 0.05$. The pure product was obtained in $\sim 50 \%$ yield $(1.8 \mathrm{~g})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.22(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, 4 \mathrm{H}), 1.65(\mathrm{br} \mathrm{m}, 2 \mathrm{H})$, $1.25(\mathrm{~m}, 48 \mathrm{H}), 0.87(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 165.4,129.7,68.2,37.2$, $31.9,31.8,31.1,30.0,29.6,29.3,26.6,22.7,14.1$.

Bis(2-hexyldecyl) benzo[c]thiophene-5,6-dicarboxylate (26). This compound was synthesized in an analogous manner to compound 4 in approximately 90% yield as a yellow-orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~d}$, $4 \mathrm{H}), 1.75(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 48 \mathrm{H}), 0.87(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2$, $137.0,127.4,124.9,120.7,68.6,37.6,32.1,31.5,30.2,29.9,29.8,29.6,27.0,26.9,22.9$, 14.3.

Bis(2-hexyldecyl) 1,3-dibromobenzo[c]thiophene-5,6-dicarboxylate (27). This compound was synthesized in an analogous manner to compound 5 in approximately 45% yield as a red oil. It was used immediately for polymerization, as the product did not appear to be oxidatively stable and became discolored at r.t., as has been observed for analogous compounds. ${ }^{9}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~d}, 4 \mathrm{H}), 1.75$ (br m, 2H), $1.25(\mathrm{~m}, 48 \mathrm{H}), 0.87(\mathrm{t}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,136.2$, $129.0,123.8,107.5,69.0,37.6,32.1,31.5,30.2,29.9,29.8,29.6,27.0,26.9,22.9,14.3$.

Scheme S7
Compounds $\mathbf{2 8}{ }^{10}$ and $\mathbf{2 9}^{1}$ were synthesized according to literature procedures.

(30)

(32)

(33)

Scheme S8

Compounds $\mathbf{3 0}^{11}$ and $\mathbf{3 1 - 3 3}{ }^{12}$ were synthesized according to literature procedures.

1,7-Bis-trifluoromethyl[60]fullerene. The compound $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2}$ was synthesized according to literature procedures, ${ }^{13}$ but isolated in high purity by a more efficient single-stage HPLC method not previously described. The crude trifluoromethylfullerene product mixture, along with unreacted C_{60}, was dissolved in a $50 / 50 \mathrm{v} / \mathrm{v}$ mixture of toluene/heptane and then filtered through a $0.45 \mu \mathrm{~m}$ PTFE membrane filter before HPLC separation ($10 \times 250 \mathrm{~mm}$ Cosmosil Buckyprep-M column, $5 \mathrm{~mL} / \mathrm{min}$ flow rate, diode array detection) using the same eluent mixture for the mobile phase. The fraction collected at 11.1 - 12.0 minutes corresponded to $+99 \%$ purity $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2} .{ }^{19} \mathrm{~F}$ NMR ($376.07 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{~F}_{6}$) $\delta-72.3$ (s). APCI-MS (-) obs. 858.95 , calc. 858.62 .

Figure S5. HPLC chromatogram of the crude products after trifluoromethylation of C_{60} showing the collected fraction corresponding to $\mathrm{C}_{60}\left(\mathrm{CF}_{3}\right)_{2}$ denoted by red vertical bars (11.1-12.0 minutes). The flow rate was $5 \mathrm{~mL} / \mathrm{min}$ with $50 / 50 \mathrm{v} / \mathrm{v}$ toluene/heptane mixture as eluent.

Typical Proceedure for Stille Coupling Polymer Synthesis. Compound 5a (100 $\mathrm{mg}, 0.21 \mathrm{mmol})$, compound $16(163 \mathrm{mg}, 0.21 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%)$ and tri($\mathrm{o}-$ tolyl)phosphine ($12 \mathrm{~mol} \%$) were placed in a flask, purged with three nitrogen/vacuum cycles, and subsequently dissolved in 5 mL of dry oxygen free chlorobenzene. The mixture was stirred for 36 h at $110{ }^{\circ} \mathrm{C}$, after which $20 \mu \mathrm{~L}$ of 2-bromothiophene was injected as a capping agent. The reaction was stirred for 2 h at $110^{\circ} \mathrm{C}$ before $20 \mu \mathrm{~L}$ of 2(tributyltin)thiophene was injected to complete the end capping. After an additional 2 h of stirring, a complexing ligand (N, N-diethylphenylazothioformamide) was stirred with the polymer to remove any residual catalyst before being cooled to r.t. and precipitated into methanol (100 mL). The precipitate was purified via Soxhlet extraction with methanol and acetone. Typical yields were around 80%.

Typical Proceedure for Sonogashira Coupling Polymer Synthesis. Compound $20(88 \mathrm{mg}, 0.20 \mathrm{mmol})$, compound $24(119 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 5.2 \mu \mathrm{~mol})$, and $\mathrm{CuI}(2 \mathrm{mg}, 10.5 \mu \mathrm{~mol})$ were mixed placed in a flask, purged with three nitrogen/ vacuum cycles, and subsequently dissolved in anhydrous oxygen free diisopropylamine $(2 \mathrm{~mL})$ and toluene $(4 \mathrm{~mL})$. The solution was stirred for 30 min at r.t. and at $60^{\circ} \mathrm{C}$ for 6 h, after which $20 \mu \mathrm{~L}$ of ethynyltrimethylsilane was injected as a capping agent. After an additional 2 h of stirring, a complexing ligand (N,N-diethylphenylazothioformamide) was stirred with the polymer to remove any residual catalyst before being cooled to r.t. and precipitated into methanol (100 mL). The precipitate was purified via Soxhlet extraction with methanol and acetone. Typical yields were around 80%.

IV. ${ }^{1}$ H NMR Spectra of New Monomers and Polymers.

Figure S6. ${ }^{1}$ H NMR spectrum of 1,3-dibromo-6-(2-hexyldecyl)-thieno[3,4-f]isoindole-5-7-dione (5b).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-diethynyl-6-(2-hexyldecyl)-thieno[3,4-f]isoindole-5,7-dione (7).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 3,6-bis(5-ethynylthiophen-2-yl)-2,5-bis(2-hexyldecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (12).

Figure S9. ${ }^{1}$ H NMR spectrum of 2,6-diiodo-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b'] dithiophene (17).

Figure S10. ${ }^{1}$ H NMR spectrum of 9,9-bis(2-ethylhexyl)-2,7-diethynyl-9H-fluorene (20).

Figure S11. ${ }^{1}$ H NMR spectrum of bis(2-hexyldecyl) 1,3-dibromobenzo[c]thiophene-5,6dicarboxylate (27).

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of P-TID-BDT at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of P-TID- $\equiv-\mathrm{BDT}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of P-DPP-BDT at $50^{\circ} \mathrm{C}$ in CDCl .

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of P-DPP- $=-\mathrm{BDT}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of P-TID- $\equiv-$ FLR at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of P-ITN- $=-$ FLR at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $P-\mathrm{PMDI}-\equiv-\mathrm{FLR}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of P-DPP- $=-\mathrm{FLR}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of P-TPD- $=$-DPP at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of P-PMDI-=-DPP at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of P-TID- $=$-DPP at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of P-ITN- $=-$ DPP at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of P-DPP- $=-\mathrm{DPP}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $P-\mathrm{TP}-\equiv-\mathrm{DPP}$ at $50^{\circ} \mathrm{C}$ in CDCl_{3}.

V. Cyclic Voltammograms.

Figure S26.

Figure S27.

Figure S28.

Figure S29.

Figure S30.

Figure S31.

Figure S32.

Figure S33.

Figure S34.

Figure S35.

Figure S36.

Figure S37.

Figure S38.

Figure S39.

VI. Time-Resolved Microwave Conductivity (TRMC).

Figure S40. The product of the yield for free carrier generation ϕ and the sum of mobilities $\Sigma \mu$ of electrons and holes obtained from the peak photoconductance, as a function of absorbed photon flux. Thin films of polymers excited at the following wavelengths: P-TID-BDT (660 nm), P-DPP-BDT (680 nm), P-DPP- $=-\mathrm{BDT}(680 \mathrm{~nm}$), P-PMDI-=-FLR (480 nm), P-ITN-=-FLR (530 nm), P-TID-=-FLR (540 nm), P-DPP-=FLR (640 nm), P-TPD-=-DPP (680 nm), P-TID-=-DPP (680 nm). Closed symbols = 1:1 polymer: $\mathrm{PC}_{61} \mathrm{BM}$ blends; open symbols $=$ pure polymers.

Figure S41. TRMC transients of thin films of P-DPP-BDT (left) and P-DPP- \equiv-BDT (right) with 50% blends by weight with PCBM. The absorbed photon flux was 10^{13} photons $/ \mathrm{cm}^{2} /$ pulse. Films were photoexcited at 680 nm .

VII. References

(1) Braunecker, W. A.; Owczarczyk, Z. R.; Garcia, A.; Kopidakis, N.; Larsen, R. E.; Hammond, S. R.; Ginley, D. S.; Olson, D. C. Chem. Mater. 2012, 24, 1346.
(2) Reddy, P. Y.; Kondo, S.; Toru, T.; Ueno, Y. J. Org. Chem. 1997, 62, 2652.
(3) Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.; Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Frechet, J. M. J. Adv. Mater. 2011, 23, 5359.
(4) Beimling, P.; Kossmehl, G. Chem. Ber. 1986, 119, 3198.
(5) Mamada, M.; Kumaki, D.; Nishida, J.; Tokito, S.; Yamashita, Y. Acs Appl Mater Inter 2010, 2, 1303.
(6) Maji, M. S.; Pfeifer, T.; Studer, A. Chem. Eur. J. 2010, 16, 5872.
(7) Suh, D. H.; Chung, E. Y.; Hong, Y. T.; Choi, K. Y. Angew. Makromol. Chem. 1998, 254, 33.
(8) Guo, X. G.; Watson, M. D. Macromolecules 2011, 44, 6711.
(9) Douglas, J. D.; Griffini, G.; Holcombe, T. W.; Young, E. P.; Lee, O. P.; Chen, M. S.; Frechet, J. M. J. Macromolecules 2012, 45, 4069.
(10) Zhang, Q. T.; Tour, J. M. J. Am. Chem. Soc. 1997, 119, 9624.
(11) Kenning, D. D.; Mitchell, K. A.; Calhoun, T. R.; Funfar, M. R.; Sattler, D. J.; Rasmussen, S. C. J. Org. Chem. 2002, 67, 9073.
(12) Shahid, M.; Ashraf, R. S.; Klemm, E.; Sensfuss, S. Macromolecules 2006, 39, 7844.
(13) Kuvychko, I. V.; Whitaker, J. B.; Larson, B. W.; Raguindin, R. S.; Suhr, K. J.; Strauss, S. H.; Boltalina, O. V. J. Fluor. Chem. 2011, 132, 679.

