Supporting Information

Soft-chemical Synthetic Route to Superparamagnetic FeAs@C Core-Shell Nanoparticles Exhibiting High T_B

Prachi Desai,^{a,‡} Kai Song,^b, Jakub Koza,^a Rasika Nimkar^c, Manashi Nath^{a,‡,*}

^a Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409.

^b Materials Research Centre, Missouri University of Science and Technology, Rolla, MO 65409.

^cDepartment of Chemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409.

KEYWORDS: FeAs Nanoparticles, Superparamagnetic Nanoparticles, Triphenylarsine, pnictide superconductors, LiFeAs

Figure S1: PXRD pattern of nanoparticles synthesized at 250°C.

Figure S2: Histogram of nanoparticles sizes including the shell

Figure S3: Line scan across individual nanoparticles collected after 45min of the reaction showing the enhanced concentration of As near the edges.

Figure S4: (A), (B), The isothermal magnetization curves at 77 K, 350 K respectively showing the anhysteretic nature of these FeAs@C nanoparticle ensembles.

Figure S5: Mossbauer spectra of FeAs@C nanoparticle ensemble collected at 90 K.