Supporting Information for

Development and Scale-Up of an Optimized Route to the Pyridazin-3-one Histamine H3 Receptor Antagonist CEP-32215

Yi Wang,[†] Katrin Przyuski,[†] Renee C. Roemmele*,[†] Robert L. Hudkins,[‡] and Roger P. Bakale,[†]

†Worldwide Process Research & Development, Teva Pharmaceuticals,

383 Phoenixville Pike, Malvern, PA 19355.

[‡]Discovery Research, Teva Pharmaceuticals., 145 Brandywine Parkway, West Chester, PA

Email: Renee.Roemmele@tevapharm.com

Catalyst Screening For Suzuki Coupling of Boronic Acid 24 and Acid Chloride 21

Entry	Catalyst	Base	Solvent (vol)	Temp	Time	24	25
				(°C)	(h)	(A%)	(A%)
1	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Toluene (10)	80	2.5	10	48
2	Pd(PPh ₃) ₂ Cl ₂ /PPh ₃	Cs ₂ CO ₃	Toluene (10)	80	2.5	29	29
3	Pd(o-Tol) ₃ P) ₂ Cl ₂	Cs ₂ CO ₃	Toluene (10)	80	2.5	0	35
4	Pd(dppf) ₂ Cl ₂	Cs ₂ CO ₃	Toluene (10)	80	2.5	51	13
5	Pd(OAc) ₂ /BINAP	Cs ₂ CO ₃	Toluene (10)	80	2.5	37	23
6	Pd(PPh ₃) ₂ Cl ₂	K ₃ PO ₄	Toluene (10)	80	2.5	77	6
7	Pd(PPh ₃) ₂ Cl ₂	KOAC	Toluene (10)	80	2.5	30	22
8	Pd(PPh ₃) ₂ Cl ₂	K ₂ CO ₃	Toluene (10)	80	2.5	78	None
9	Pd(PPh ₃) ₂ Cl ₂	Et ₃ N	Toluene (10)	80	2.5	100	None
10	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Dioxane (10)	80	2	2	26
11	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	2-Me-THF (10)	80	2	4	28
12	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	MIBK (10)	80	2	28	14
13	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	80	2	0	53
14	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	60	2	0	61
15	Pd(PPh ₃) ₂ Cl ₂	K ₂ CO ₃	Tol/H ₂ O (10/1)	60	2	3	51
16	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	0	60
17	Pd(PPh ₃) ₄	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	0	53
18	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	2	60
19	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	25	1	2	53
20^{2}	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	0	69
21 ³	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	0	83
224	Pd(PPh ₃) ₂ Cl ₂	Cs ₂ CO ₃	Tol/H ₂ O (10/1)	45	1	4	84

¹ Unless specified, the reaction has been carried out with 0.15 mmol of boronic acid (**6**), 1.1 equiv. of acid chloride (**10**), 1.5 equiv. of base, and 4 mol% catalyst in a sealed tube. ² The reaction was carried out at 2 mmol scale, the catalyst loading was 2 mol%. ³ The reaction was carried out at 0.3 mmol scale, the catalyst loading was 1 mol%. ⁴ The reaction was carried out at 0.3 mmol scale, the catalyst loading was 0.5 mol%.