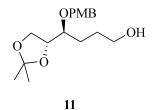
Supporting Information for

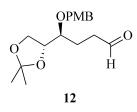
Synthesis of the C1-C21 Domain of Azaspiracid-3

Zhigao Zhang, Yue Ding, Jianyan Xu, Yong Chen, and Craig J. Forsyth^{*}

Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210 <u>forsyth@chemistry.ohio-state.edu</u>

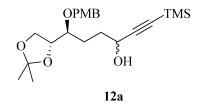

Contents

General Methods Experimental Procedures and Characterization Data Literature References ¹H NMR and ¹³C NMR Spectra for all New Compounds


General Methods:

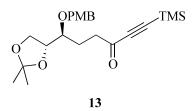
Unless otherwise noted, all reactions were carried out under an argon atmosphere in over-dried glassware using standard syringe, cannula, and septa techniques. Dichloromethane, tetrahydrofuran, diethyl ether, toluene, and dimethylformamide were purified with a Pure Solv MD-6 solvent purification system. Triethylamine, diisopropylethylamine, acetonitrile, methanol were distilled from calcium hydride under nitrogen. All other solvents were used as received.

Analytical thin layer chromatography (TLC) was performed using 0.25 mm Silicycle silica gel 60 F_{254} plates. Solvents for chromatography are listed as volume: volume ratios. Optical rotations were measured on a Perkin-Elmer polarimeter. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DPX 400 spectrometer, operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts are reported in ppm on the δ scale relative to residual CHCl₃ (δ = 7.28 for ¹H NMR and δ = 77.2 for ¹³C NMR) as an internal reference. The coupling constant values (*J*) are in Hertz (Hz). The following abbreviations have been used for signal multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. ESI mass spectra were measured on a Bruker MicroOTOF instrument.

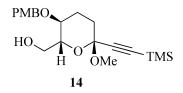


(S)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-((4-methoxybenzyl)oxy)butan-1-ol (11). To a solution of 8¹ (10.8 g, 37 mmol) in THF (200 mL) at 0 °C was added dropwise BH₃ (37.0 mL, 1.0 M in THF, 37 mmol). After 2 h at rt, the reaction mixture was cooled to 0 $^{\circ}$ C. Water (4.0 mL), 3 M aqueous NaOH (13.2 mL) and 30% aqueous H₂O₂ (8.7 mL) were added sequentially. The mixture was stirred for 2 h at rt then diluted with water (200 mL). The pH was adjusted to 6-7 with 10% aqueous HCl. The aqueous phase was extracted with diethyl ether (3 x 200 mL) and the combined organic phase was washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to provide alcohol 11 (7.94 g, 26 mmol, 70%) as a colorless oil: $R_f = 0.33$ (hexanes-ethyl acetate, 1:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.26 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz), 4.59 (q_{AB}, $\Delta v = 16$ Hz, $J_{AB} = 11$ Hz, 2H), 4.12 (q, J = 6.2 Hz, 1H), 4.06 (dd, J = 6.4 Hz, 1.6 Hz, 1H), 3.88 (dd, J = 6.4 Hz, 1.5 Hz, 1H), 3.82 (s, 3H), 3.64 (m, 2H), 3.57 (td, J = 6.0 Hz, 3.2 Hz, 1H), 1.72 (m, 3H), 1.63 (m, 3H), 1.44 (s, 3H), 1.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.3, 130.3, 129.5, 113.8, 109.1, 78.58, 77.5, 72.3, 66.6, 62.9, 55.3, 28.1, 27.4, 26.6, 25.23; IR (neat): 3436, 2935, 1612, 1513, 1454, 1370, 1301, 1248, 1069 cm⁻¹; $[\alpha]_D^{25} + 17.1$ (c 1.56, CHCl₃); HRMS-ESI(m/z) calculated for $[M+Na]^+$ 333.1673, found 333.1687.

(S)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-((4-methoxybenzyl)oxy)butanal (12). To a solution of oxalyl chloride (2.3 mL, 26 mmol) in CH_2Cl_2 (100 mL) at -78 °C was added dropwise DMSO (3.6 mL, 52 mmol). After 20 min at -78 °C, a solution of 11 (4.0

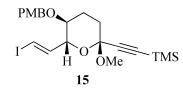

g, 13 mmol) in CH₂Cl₂ (30 mL) was added, then the solution was warmed to -60 °C. After 1 h at -60 °C, *i*-Pr₂NEt (13.5 mL, 77.4 mmol) was added. The mixture was stirred for 10 min at – 60 °C and 10 min at 0 °C. Cold 1 M aqueous HCl solution (48 mL) was added. The organic phase was mixed with pH 7 aqueous buffer. The aqueous phase was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic phases were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to provide aldehyde **12** (3.92 g, 12.7 mmol, 99%) as a colorless oil: R_f = 0.8 (hexanes-ethyl acetate, 1:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 9.75 (t, *J* = 1.44 Hz, 1H), 7.26 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 4.54 (q_{AB}, $\Delta v = 19$ Hz, $J_{AB} = 11.1$ Hz, 2H), 4.08 (m, 2H), 3.86 (m, 1H), 3.82 (s, 3H), 3.54 (m, 1H), 2.55 (t, *J* = 7.2 Hz, 2H), 2.01 (m, 1H), 1.85 (m, 1H), 1.42 (s, 3H), 1.36 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): 202.1, 159.4, 130.1, 129.6, 113.9, 109.2, 77.7, 72.2, 66.6, 55.3, 39.3, 26.6, 25.2, 23.3; IR (neat): 2984.3, 2930.1, 2883.6, 1721.5, 1613.0, 1512.3, 1307.7, 1248.7, 1070.7, 1032.0, 846.0; $[\alpha]_D^{25} + 8.14$ (*c* 1.5, CHCl₃); HRMS-ESI(m/z) calculated for [M+Na]⁺: 331.1516, found 331.1521.

(3R/S,6*S*)-6-((*R*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-((4-methoxybenzyl)oxy)-1-(trimethylsilyl)hex-1-yn-3-ol (12a).


To a solution of trimethylsilylacetylene (6.22 mL, 43.8 mmol) in THF (130 mL) at -78 °C was added dropwise a solution of *n*-BuLi (15.7 mL, 2.5 M in THF, 40 mmol). After 30 min at -78 °C, a solution of **12** (4.5 g, 15 mmol) in THF (16 mL) was added slowly. The solution was allowed to stir for 1 h before saturated aqueous NH₄Cl was added. The aqueous phase was extracted with diethyl ether (3 x 80 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 4:1, v/v) to provide **12a** (5.0 g, 13 mmol, 87%) as a colorless oil:

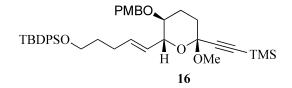
 $R_f = 0.43$ (hexanes-ethyl acetate, 3:1 v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.29 (m, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 4.57 (m, 2H), 4.40 (q, 1H), 4.08 (m, 2H), 3.88 (m, 1H), 3.82 (s, 3H), 3.57 (m, 1H), 1.90 (m, 5H), 1.43 (d, 3H), 1.36 (d, 3H), 0.19 (d, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.33, 159.27, 130.30, 130.06, 129.66, 129.51, 113.84, 113.82, 109.12, 109.09, 106.76, 106.61, 89.52, 89.42, 78.35, 78.32, 77.29, 71.99, 71.85, 66.86, 66.62, 62.70, 62.55, 55.23, 32.87, 32.44, 26.66, 26.60, 26.23, 25.66, 25.28, 25.26, -0.12, -0.15; IR (neat): 3441.4(broad), 2937.9, 1613.6, 1514.0, 1249.4, 1073.8, 843.5; HRMS-ESI(m/z) calculated for [M+Na]⁺: 429.2068, found 429.2060.

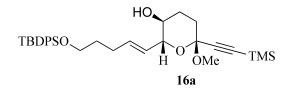
(S)-6-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-((4-methoxybenzyl)oxy)-1-(trimethylsilyl)hex-1-yn-3-one (13).


To a solution of **12a** (4.5 g, 11 mmol) in CH₂Cl₂ (100 mL) and DMSO (20 mL) at 0 °C were sequentially added Et₃N (9.2 mL, 67 mmol) and SO₃·Py (7.6g, 48 mmol). After 2 h at 0 °C, saturated aqueous NH₄Cl (100 mL) was added. The aqueous phase was extracted with diethyl ether (3 x 80 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to provide ketone **13** (3.7 g, 9.2 mmol, 83%) as colorless oil: $R_f = 0.57$ (hexanes-ethyl acetate, 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.27 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 4.53 (s, 2H), 4.07 (m, 2H), 3.85 (m, 1H), 3.82 (s, 3H), 3.53 (m, 1H), 2.71 (m, 2H), 2.06 (m, 1H), 1.87 (m, 1H), 1.43 (s, 3H), 1.36 (s, 3H), 0.26 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 187.3, 159.3, 130.3, 129.5, 113.9, 109.2, 102.0, 97.8, 77.6, 72.2, 66.7, 55.3, 40.5, 26.6, 25.3, 24.8, -0.8; IR(neat): 2957.5, 2945.6, 2899.2, 1676.8, 1612.3, 1513.8, 1250.7, 1072.8, 847.1, 761.5; $[\alpha]_D^{25} + 9.56$ (*c* 0.5, CHCl₃); HRMS (ESI+) calculated for $[M+Na]^+$: 427.1911, found 427.1903.

((2R,3S,6R)-6-Methoxy-3-((4-methoxybenzyl)oxy)-6-

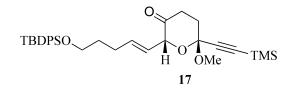
((trimethylsilyl)ethynyl)tetrahydro-2H-pyran-2-yl)methanol (14).


To a solution of **13** (3.58 g, 8.86 mmol) in methanol (30 mL) was added TsOH·H₂O (0.17 g, 0.89 mmol). After 2 h, diethyl ether and saturated aqueous NaHCO₃ were added. The aqueous phase was extracted with diethyl ether (3 x 50 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 8:1, v/v) to provide alcohol **14** (2.2 g, 5.8 mmol, 65%) as a colorless oil: $R_f = 0.37$ (hexanes-ethyl acetate, 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.26 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 4.43 (q_{AB}, $\Delta v = 64$ Hz, $J_{AB} = 11.2$ Hz, 2H), 3.82 (s, 3H), 3.75 (m, 2H), 3.57 (m, 1H), 3.44 (td, *J* = 10.0 Hz, 4.4 Hz, 1H), 3.38 (s, 3H), 3.10 (m, 3H), 1.91 (m, 2H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.3, 130.1, 129.3, 113.9, 101.9, 94.1, 89.0, 73.2, 72.5, 70.3, 62.7, 55.2, 50.4, 35.6, 24.3, -0.27; IR (neat): 3502(broad), 2957, 2899, 1612, 1513, 1250, 1152, 1089, 1040, 846, 760; $[\alpha]_D^{25} + 6.84$ (*c* 2.1, CHCl₃); HRMS-ESI(m/z) calculated for [M+Na]⁺: 401.1755, found 401.1763.

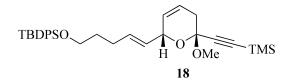

(((2*R*,5*S*,6*R*)-6-((*E*)-2-Iodovinyl)-2-methoxy-5-((4-methoxybenzyl)oxy)tetrahydro-2*H*-pyran-2-yl)ethynyl)trimethylsilane (15).

To a solution of **14** (1.0 g, 2.7 mmol) in CH_2Cl_2 (30mL) and DMSO (6 mL) at 0 °C were sequentially added *i*-Pr₂NEt (2.78 mL, 15.9 mmol) and SO₃·Py (1.8 g, 11.4 mmol). After 5 min at 0 °C, cold 1 M aqueous HCl (10 mL) was added. The separated organic phase was neutralized with pH 7 aqueous buffer. The aqueous phase was extracted with CH_2Cl_2 (3 x 30 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography

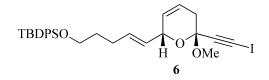
(hexanes-ethyl acetate, 4:1, v/v) to provide the aldehyde ((2R,3S,6R)-6-methoxy-3-((4methoxybenzyl)oxy)-6-((trimethylsilyl)ethynyl)tetrahydro-2*H*-pyran-2-yl)methanal as a colorless oil (0.99 g, 2.6 mmol, 96%). A solution of the aldehyde (0.99 g, 2.6 mmol) and CHI₃ (1.56 g, 3.96 mmol) in 1,4-dioxane (4 mL) was added dropwise via cannula to a 0 ^oC stirred suspension of powdered anhydrous CrCl₂ (1.95 g, 15.9 mmol) in THF (24 mL). The mixture was allowed to warm to rt over 3 h. After stirring for an additional 9 h, saturated aqueous NaHCO₃ was added. The separated aqueous phase was extracted with diethyl ether (3 x 30 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 40:1, v/v) to provide vinyl iodide 15 (0.8 g, 2 mmol, 75%) as a colorless oil: $R_f = 0.60$ (hexanes-ethyl acetate, 5:1, v/v); ¹H NMR $(CDCl_3, 400 \text{ MHz})$: δ 7.25 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.65 (dd, J =14.8 Hz, 6.4 Hz, 1H), 6.51 (dd, J = 14.8 Hz, 1.2 Hz, 1H), 4.53 (q_{AB} , $\Delta v = 54$ Hz, $J_{AB} =$ 11.3 Hz, 2H), 3.91 (ddd, J = 6.2 Hz, 3.3 Hz, 1.1 Hz, 1H), 3.83 (s, 3H), 3.36 (s, 3H), 3.21 (td, J = 10 Hz, 4.4 Hz, 1H), 2.11 (m, 1H), 1.91 (m, 3H), 0.20 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): 8 159.3, 143.2, 130.1, 129.4, 113.9, 101.7, 94.1, 89.1, 79.8, 75.2, 75.1, 70.8, 55.3, 50.5, 35.5, 24.8, -0.03; IR (neat): 2955, 1513, 1249, 1085, 1043, 944, 859, 844, 760; $[\alpha]_D^{25} + 6.57$ (c 1.6, CHCl₃); HRMS-ESI(m/z) calculated for $[M+Na]^+$: 523.0772, found 523.0765.


tert-Butyl(((*E*)-5-((2*R*,3*S*,6*R*)-6-methoxy-3-((4-methoxybenzyl)oxy)-6-((trimethylsilyl)ethynyl)tetrahydro-2*H*-pyran-2-yl)pent-4-en-1-yl)oxy)diphenylsilane (16). To a solution of 3-(*O*-*tert*-butyldimehtylsilyl)oxy-propene (720 mg, 2.4 mmol) in THF (13 mL) at 0 °C was slowly added a solution of 9-BBN (6.4 mL, 0.5 M in THF, 3.2 mmol). The solution was slowly warmed to rt then stirred at rt for 2 h. To this solution was added a solution of 3 M aqueous K_3PO_4 (1.06 mL, 1.2 mmol) in DMF (1.1 mL). After stirring for 30 min at rt, the mixture was added to a mixture of vinyl iodide (600 mg, 1.2 mmol) and PdCl₂(dppf)·CH₂Cl₂ (98 mg, 0.12 mmol) via cannula. After 5 min diethyl ether (10 mL) and H₂O (10 mL) were added. The separated aqueous phase was extracted with diethyl ether (3 x 10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 40:1, v/v) to provide **16** (760 mg, 1.16 mmol, 95%) as a colorless oil: $R_f = 0.62$ (hexanes-ethyl acetate, 5:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, J = 7.8 Hz, 1.6 Hz, 4H), 7.42 (m, 6H), 7.22 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.85 (dt, J = 15.4 Hz, 6.8 Hz, 1H), 5.52 (dd, J = 15.2 Hz, 7.6 Hz, 1H), 4.50 (q_{AB}, $\Delta v = 25$ Hz, $J_{AB} = 11.3$ Hz, 2H), 3.88 (t, J = 8.1 Hz, 1H), 3.79 (s, 3H), 3.71 (t, J = 6.3 Hz, 2H), 3.38 (s, 3H), 3.20 (td, J = 9.5 Hz, 4.5 Hz, 1H), 2.22 (q, J = 6.4 Hz, 2H), 2.10 (m, 1H), 1.97 (m, 2H), 1.87 (m, 1H), 1.71 (m, 2H), 1.08 (s, 9H), 0.20 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.1, 135.6, 134.9, 134.0, 130.5, 129.5, 129.3, 127.9, 127.6, 113.7, 102.3, 94.0, 88.5, 75.7, 74.6, 70.9, 63.5, 55.2, 50.4, 35.9, 31.9, 28.9, 26.9, 25.1, 19.2, -0.2; IR (neat): 2933.1, 2856.8, 1612.0, 1513.0, 1249.5, 1109.9, 844.2, 702.5; $[\alpha]_D^{25} + 4.32$ (*c* 1.6, CHCl₃); HRMS-ESI(m/z) calculated for $[M+Na]^+$: 693.3402, found 693.3434.

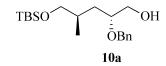
(2*R*,3*S*,6*R*)-2-((*E*)-5-((*tert*-Butyldiphenylsilyl)oxy)pent-1-en-1-yl)-6-methoxy-6-((trimethylsilyl)ethynyl)tetrahydro-2*H*-pyran-3-ol (16a).


To a stirred, rt mixture of **16** (406 mg, 0.60 mmol) in CH₂Cl₂ (10 mL), pH 7 aqueous buffer (1 mL), and *tert*-butanol (0.5 mL) was added DDQ (412 mg, 1.8 mmol). After 10 min, diethyl ether (10 mL) and saturated aqueous NaHCO₃ (15 mL) were added. The separated aqueous phase was extracted with diethyl ether (3 x 15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to provide **16a** (299 mg, 0.54 mmol, 90%) as a colorless oil: $R_f = 0.62$ (hexanes-ethyl acetate, 3:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, *J* = 7.7 Hz, 1.6 Hz, 4H), 7.42 (m, 6H), 5.87 (dt, *J* = 15.4 Hz, 6.6 Hz, 1H), 5.50 (dd, *J* = 15.6 Hz, 8.4 Hz, 1H), 3.71 (m, 1H), 3.40 (m, 4H), 2.23 (q, *J* = 6.8 Hz 2H), 2.12 (m, 1H), 2.06 (td, *J* = 13)

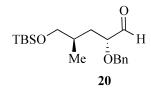
Hz, 4.3 Hz, 1H), 1.94 (m, 1H), 1.85 (m, 1H), 1.70 (m, 2H), 1.54 (d, J = 3.0 Hz, 1H), 1.07 (s, 9H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 137.2, 135.6, 134.0, 129.6, 127.6, 127.2, 102.1, 94.1, 88.8, 76.7, 68.6, 63.2, 50.5, 35.9, 31.7, 28.8, 26.9, 26.8, 19.2, -0.2; IR (neat): 3420.1 (broad), 3070.8, 2933.8, 2858.0, 1428.2, 1251.1, 1111.3, 1049.6, 944.6, 860.0, 702.1; $[\alpha]_D^{25}$ + 5.48 (*c* 1.07, CHCl₃); HRMS-ESI(m/z) calculated for [M+Na]⁺: 573.2852, found 573.2827.


(2*R*,6*R*)-2-((*E*)-5-((*tert*-Butyldiphenylsilyl)oxy)pent-1-en-1-yl)-6-methoxy-6-((trimethylsilyl)ethynyl)dihydro-2*H*-pyran-3(4*H*)-one (17).

To a stirred solution of 16a (410 mg, 0.75 mmol) in CH₂Cl₂ (6 mL) and DMSO (2 mL) at 0 °C were sequentially added *i*-Pr₂NEt (0.77 mL, 4.5 mmol) and SO₃·Py (510 mg, 3.2 mmol). After 10 min at 0 °C, an aqueous 1 M solution of HCl (3 mL) was added. The organic phase was separated and neutralized with pH 7 aqueous buffer. The separated aqueous phase was extracted with CH_2Cl_2 (3 x 10 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 15:1, v/v) to provide 17 (400 mg, 0.72 mmol, 96%) as a colorless oil: $R_f = 0.72$ (hexanes-ethyl acetate, 5:1, v/v); ¹H NMR (CDCl₃, 500 MHz): δ 7.69 (dd, J = 7.7 Hz, 1.4 Hz, 4H), 7.42 (m, 6H), 5.78 (dt, J = 12.3 Hz, 5.3 Hz, 1H), 5.56 (dd, J = 12.4 Hz, 5.4 Hz, 1H), 4.44 (d, J = 6.9 Hz, 1H), 3.69 (t, J = 6.3 Hz, 2H), 3.49 (s, 3H), 2.59 (m, 3H), 2.31 (m, 1H), 2.23 (q, J = 5.6 Hz, 2H), 1.71 (m, 2H), 1.07 (s, 9H), 0.23 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 207.6, 136.7, 135.5, 134.0, 129.5, 127.6, 122.8, 101.0, 94.8, 90.0, 77.1, 63.2, 51.4, 35.6, 33.7, 31.6, 28.8, 26.8, 19.2, -0.3; IR (neat): 3048.1, 2957.1, 2856.7, 1733.7, 1471.8, 1427.7, 1250.9, 1110.8, 1048.2, 932.3, 844.4, 702.5; $\left[\alpha\right]_{D}^{25}$ + 10.8 (c 0.59, CHCl₃); HRMS-ESI(m/z) calculated for $[M+Na]^+$: 571.2666, found 571.2670.

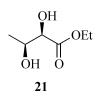

tert-Butyl(((*E*)-5-((2*R*,6*R*)-6-methoxy-6-((trimethylsilyl)ethynyl)-5,6-dihydro-2*H*-pyran-2-yl)pent-4-en-1-yl)oxy)diphenylsilane (18).

To a stirred solution of 17 (420 mg, 0.76 mmol) in THF (8 mL) at -78 °C was sequentially added Comins' reagent (450 mg, 1.14 mmol) and KHMDS (2.3 mL, 0.5 M in THF, 1.14 mmol). After 10 min at -78 °C, pH 7 aqueous buffer (8 mL) was added. The separated aqueous phase was extracted with diethyl ether (3 x 15 mL). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes + 0.3% Et₃N, v/v) to provide the vinyl triflate (477 mg, 0.70 mmol, 92%) as a pale yellow oil. To a stirred rt solution of the vinyl triflate (477 mg, 0.70 mmol) in THF (7 mL) was added LiCl (294 mg, 7 mmol) and *n*Bu₃SnH (0.55 mL, 2.1 mmol). To the mixture was slowly added Pd(PPh₃)₄ (81 mg, 0.07 mmol). After stirring for 10 min at rt, saturated aqueous NaHCO₃ (8 mL) was added. The separated aqueous phase was extracted with diethyl ether (3 x 10 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 200:1, v/v) to provide 18 (289 mg, 0.54 mmol, 77%) as a colorless oil: $R_f = 0.58$ (hexanes-ethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, J = 7.7 Hz, 1.5 Hz, 4H), 7.42 (m, 6H), 5.73 (m, 2H), 5.62 (dt, J = 10.5 Hz, 1.3 Hz, 1H), 5.48 (dd, J = 15.3 Hz, 7.8 Hz, 1H), 4.50 (s-broad, 1H), 3.69 (t, J = 6.3 Hz, 2H), 3.52 (s, 3H), 2.72 (m, 1H), 2.34 (m, 1H), 2.18 (q, J = 7 Hz, 2H), 1.69 (m, 2H), 1.07 (s, 9H), 0.21 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 135.6, 134.0, 133.9, 129.5, 128.6, 127.6, 127.5, 120.1, 102.2, 94.0, 89.2, 71.0, 63.3, 51.3, 36.1, 31.7, 28.6, 26.9, 19.2, -0.2; IR (neat): 3042.9, 2956.4, 1659.9, 1471.7, 1250.3, 1182.5, 1110.8, 1016.6, 863.5, 701.9, 613.4; $[\alpha]_D^{25} + 3.5$ (c 1.5, CHCl₃); HRMS-ESI(m/z) calculated for $[M+Na]^+$: 555.2727, found 555.2726.


tert-Butyl(((*E*)-5-((2*R*,6*R*)-6-(iodoethynyl)-6-methoxy-5,6-dihydro-2*H*-pyran-2yl)pent-4-en-1-yl)oxy)diphenylsilane (6).

To a stirred solution of **18** (87 mg, 0.16 mmol) in DMF (1.5 mL) at rt was added NIS (47 mg, 0.21 mmol) and AgOTf (36.1 mg, 0.16 mmol). Diethyl ether (3 mL) and saturated aqueous Na₂S₂O₃ (3 mL) were added. The aqueous phase was extracted with diethyl ether (3 x 5 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanesethyl acetate, 40:1, v/v) to provide **6** (79 mg, 0.13 mmol, 82%) as a colorless oil: R_f = 0.42 (hexanesethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.69 (dd, *J* = 7.7 Hz, 1.5 Hz, 4H), 7.42 (m, 6H), 5.73 (m, 2H), 5.62 (dt, *J* = 10.4 Hz, 1.2 Hz, 1H), 5.48 (dd, *J* = 15 Hz, 7.8 Hz, 1H), 4.49 (s-broad, 1H), 3.69 (t, *J* = 6.3 Hz, 2H), 3.52 (s, 3H), 2.72 (m, 1H), 2.39 (m, 1H), 2.18 (q, *J* = 7.2 Hz, 2H), 1.70 (m, 2H), 1.07 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 135.6, 134.2, 134.0, 129.5, 128.3, 127.6, 127.5, 120.6, 95.0, 92.6, 71.1, 63.2, 51.6, 36.1, 31.7, 28.6, 26.9, 19.2, 3.8; IR (neat): 3069.7, 3042.9, 2930.9, 2855.5, 2180.9, 1660.0, 1588.9, 1470.6, 1427.2, 1232.0, 1182.4, 1110.2, 1016.2, 1036.6, 967.1, 822.9, 702.2, 505.5; [α]_D²⁵ + 10.4 (*c* 0.85, CHCl₃); HRMS-ESI(m/z) calculated for [M+Na]⁺: 609.1298, found 609.1294.

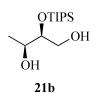
(2R,4R)-2-(Benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-4-methylpentan-1-ol (10a). To a stirred solution of diol² 10 (92 mg, 0.37 mmol) in CH₂Cl₂ (2 mL) at rt was added benzaldehyde dimethoxy acetal (0.13 mL, 0.91 mmol) and PPTS (10 mg, 42 μ mol). The solution was stirred at rt for 2 h before saturated aqueous NaHCO₃ (2 mL) was added. The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 2 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-


ethyl acetate, 20:1 v/v) to give the benzylidene acetal (125 mg, 0.37 mmol, 99%) as a colorless oil. To a stirred solution of the benzylidene acetal (125 mg, 0.370 mmol) in CH₂Cl₂ (5 mL) at 0 °C was added a solution of DIBAL-H (0.75 mL of 1.0 M solution in PhMe, 0.75 mmol). The solution was warmed to rt over 1 h before a saturated aqueous solution of sodium potassium tartrate (10 mL) and diethyl ether (10 mL) were added. The separated aqueous layer was extracted with diethyl ether (3 x 10 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 7:1, v/v) to give alcohol 10a (88 mg, 0.26 mmol, 70%) as a colorless oil: $R_f = 0.33$ (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.38 (m, 5H), 4.63 (q_{AB}, $\Delta v = 11.4$ Hz, $J_{AB} = 11.3$ Hz, 2H), 3.76 (ddd, J = 8.0 Hz, 6.8 Hz, 3.2 Hz, 1H), 3.68 (m, 1H), 3.56 (dt, J = 11.2 Hz, 5.6 Hz, 1H), 3.46 (d, J = 5.6 Hz, 2H), 1.97 (t, J = 6.0 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz, 5.6 Hz, 1H), 1.82 (m, J = 11.2 Hz, 5.6 Hz,2H), 1.26 (ddd, J = 15.6 Hz, 10.0 Hz, 5.6 Hz, 1H), 0.91-0.93 (m, 13H), 0.06 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 138.5, 128.5, 127.8, 127.7, 77.9, 71.4, 68.4, 64.6, 34.9, 32.3, 25.9, 18.3, 17.2, -5.4; IR (neat): 3420, 2928, 2856, 1255, 1096 cm⁻¹; $[\alpha]_D^{25}$ - 6.2 (c 1.02, CHCl₃); HRMS-ESI (m/z) calculated for [M+ Na⁺]: 361.2175, found: 361.2169.

(2R,4R)-2-(Benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-4-methylpentanal (20).

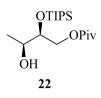
To a stirred solution of alcohol **10a** (75 mg, 0.22 mmol) in CH₂Cl₂ (3 mL) and DMSO (1 mL) at 0 °C were added *i*Pr₂NEt (233 μ L, 1.34 mmol) and SO₃·Py (142 mg, 892 μ mol). The solution was stirred at 0 °C for 5 min before a 0 °C 1 M aqueous solution of HCl (5 mL) was added. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 5 mL). The combined organic phase was washed with pH 7 buffer solution, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 12:1, v/v) to give aldehyde **20** (74 mg, 0.22 mmol, 99%) as a colorless oil.

R_f = 0.43 (hexanes-ethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 9.68 (d, J= 2.0 Hz, 1H), 7.32-7.38 (m, 5H), 4.72 (q_{AB}, Δν = 83 Hz, J_{AB} = 11.3 Hz, 2H), 3.89 (ddd, J = 9.2 Hz, 4.4 Hz, 2.0 Hz, 1H), 3.47 (d, J = 6.0 Hz, 2H), 1.92 (m, 1H), 1.83 (ddd, J = 14.0, 9.6, 4.8 Hz, 1H), 1.41 (ddd, J = 14.0, 8.8, 4.0 Hz, 1H), 0.91 (s, 9H), 0.87 (d, J = 6.8 Hz, 1H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 203.9, 137.4, 128.5, 128.1, 81.7, 72.6, 68.2, 33.4, 31.8, 25.9, 18.3, 16.2, -5.4; IR (neat): 2954, 2928, 1733, 1059 cm⁻¹; [α]_D²⁵ - 56.8 (c 1.05, CHCl₃); HRMS-ESI (*m*/*z*) calculated for [M+MeOH+Na⁺]: 391.2281, found: 391.2278.

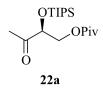

(2R,3S)-Ethyl 2,3-dihydroxybutanoate (21).

To a stirred suspension of AD-mix- α (24 g) in H₂O (80 mL) and *t*-BuOH (80 mL) at rt were added methyl sulfonamide (1.66 g, 17.5 mmol) and ethyl (2*E*)-butenoate (**9**, 2.00 g, 17.5 mmol). After stirring for 12 h, a saturated aqueous solution of Na₂SO₃ (50 mL) and diethyl ether (100 mL) were added. The separated aqueous phase was extracted with diethyl ether (3 x 50 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 2:1, v/v) to give diol **21** (1.86 g, 11.4 mmol, 65%) as a colorless oil: R_f = 0.79 (hexanes-ethyl acetate, 1:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 4.30 (q, *J*=3.2 Hz, 2H), 4.10 (m, 1H), 4.03 (dd, *J*=5.6 Hz, 2.8 Hz, 1H), 3.14 (d, *J*=9.6 Hz, 1H), 2.17 (d, *J*= 8.4 Hz, 1H), 1.33-1.34 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 173.4, 74.3, 68.7, 62.1, 19.7, 14.1; IR (neat): 3417, 2980, 1735, 1144 cm⁻¹; $[\alpha]_D^{25} + 11$ (c 1.8, CHCl₃);³ HRMS-ESI (*m*/*z*) calculated for [M+Na⁺]: 171.0633, found: 171.0630.

(2R,3S)-Ethyl 3-hydroxy-2-((triisopropylsilyl)oxy)butanoate (21a).

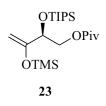

To a stirred rt solution of **21** (1.86 g, 11.4 mmol) in DMF (20 mL) at rt was added imidazole (1.11 g, 16.3 mmol), TIPSCI (3.22 mL, 15.0 mmol) and DMAP (0.15 g, 1.3 mmol). After stirring for 12 h, diethyl ether (100 mL) and water were added. The separated aqueous layer was extracted with diethyl ether (3 x 50 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 4:1, v/v) to give ester **21a** (1.7 g, 5.6 mmol, 44%) as a colorless oil: $R_f = 0.61$ (hexanes-ethyl acetate, 1:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 4.21-4.26 (m, 3H), 3.96 (m, 1H), 2.53 (d, *J* = 7.2 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.25 (d, *J* = 6.0 Hz, 3H), 1.08-1.17 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 172.2, 76.7, 69.9, 61.0, 18.9, 17.9, 14.2, 12.4; IR (neat): 3495, 2943, 2867, 1751, 1151 cm⁻¹; $[\alpha]_D^{25} + 22.2$ (c 1.20, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 327.1968, found: 327.1973.

(2S,3S)-2-((Triisopropylsilyl)oxy)butane-1,3-diol (21b).

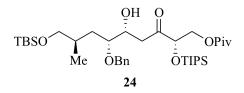

To a stirred solution of **21a** (1.70 g, 5.59 mmol) in CH₂Cl₂ (40 mL) at 0 °C was added DIBAL (24.9 mL of 1.0 M solution in toluene, 24.9 mmol). The solution was warmed to rt over 30 min and saturated sodium potassium tartrate solution (30 mL) was added. The resulting mixture was diluted with diethyl ether (100 mL) and the separated aqueous layer was extracted with diethyl ether (3 x 50 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to give diol **21b** (1.28 g, 4.86 mmol, 87%) as a colorless oil: $R_f = 0.46$ (hexanes-ethyl acetate, 2:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 3.94 (dq, *J* = 10.8 Hz, 6.4 Hz, 1H), 3.75-3.81 (m, 2H), 3.71

(m, 1H), 2.32 (d, J = 5.6 Hz, 1H), 2.10 (m, 1H), 1.26 (d, J = 6.4 Hz, 3H) 1.09-1.17 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 76.0, 68.8, 64.1, 19.1, 18.1, 12.6; IR (neat): 3368, 2942, 2866, 1462, 1086 cm⁻¹; $[\alpha]_D^{25} + 8.3$ (c 1.30, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 285.1862, found: 285.1861.

(2S,3S)-3-Hydroxy-2-((triisopropylsilyl)oxy)butyl pivalate (22).

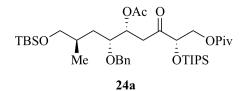

To a stirred solution of **21b** (0.72 g, 2.8 mmol) in CH₂Cl₂ (20 mL) at rt was added pyridine (0.44 mL, 5.4 mmol), pivaloyl chloride (0.34 mL, 2.8 mmol) and DMAP (33 mg, 0.27 mmol). The solution was stirred at rt for 12 h then a saturated aqueous solution of NaHCO₃ (20 mL) was added. The resulting mixture was diluted with diethyl ether (100 mL) and the separated aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to give alcohol **22** (1.28 g, 3.69 mmol, 77%) as a colorless oil: $R_f = 0.60$ (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 4.19 (dd, *J* = 10.6 Hz, 3.6 Hz, 1H), 4.12 (dd, *J* = 10.6 Hz, 6.0 Hz, 1H), 3.82-3.85 (m, 2H), 2.28 (d, *J* = 6.0 Hz, 1H), 1.24 (d, *J* = 6.4 Hz, 3H), 1.22 (s, 9H), 1.10-1.14 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 178.3, 74.5, 68.1, 65.0, 38.8, 27.2, 19.3, 18.1, 18.0, 12.6; IR (neat): 3486, 2944, 2867, 1731, 1161 cm⁻¹; [α]_D²⁵ + 12.1 (c 1.35, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 369.2437, found: 369.2431.

(S)-3-Oxo-2-((triisopropylsilyl)oxy)butyl pivalate (22a).

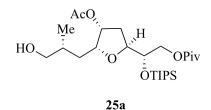

To a stirred solution of **22** (1.05 g, 3.03 mmol) in CH_2Cl_2 (15 mL) and DMSO (8 mL) at 0 °C was added *i*Pr₂NEt (3.16 mL, 18.2 mmol), and SO₃ Py (1.92 g, 12.6 mmol). The

solution was stirred at 0 °C for 20 min before a cold 1 M HCl solution (30 mL) was added. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic phase was washed with pH 7 aqueous buffer then brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 40:1, v/v) to give ketone **22a** (0.98 g, 2.9 mmol, 94%) as a colorless oil: $R_f = 0.71$ (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 4.30-4.33 (m, 2H), 4.22 (dd, *J*=10.6 Hz, 6.0 Hz, 1H), 2.30 (s, 3H), 1.20 (s, 9H), 1.08-1.15 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 210.3, 178.0, 76.9, 68.3, 66.4, 38.7, 27.1, 26.1, 19.3, 18.0, 17.9, 12.2; IR (neat): 2944, 2867, 1735, 1143 cm⁻¹; $[\alpha]_D^{25}$ - 5.9 (c 1.01, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 367.2281, found: 367.2282.

(S)-2-((Triisopropylsilyl)oxy)-3-((trimethylsilyl)oxy)but-3-en-1-yl pivalate (23).

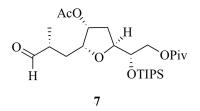

To a stirred solution of **22a** (0.98 g, 2.85 mmol) in CH_2Cl_2 (20 mL) at rt was sequentially added Et₃N (1.2 mL, 8.61 mmol) and TMSOTf (1.04 mL, 5.75 mmol). The solution was stirred at rt for 30 min before saturated aqueous NaHCO₃ (10 mL) was added. The organic phase was separated and washed with saturated NH₄Cl solution (10 mL), pH 7 aqueous buffer (10 mL), and brine (10 mL), then dried over Na₂SO₄, filtered and concentrated. The residue was dissolved in benzene and concentrated to give enol ether **23** (1.17g, 2.85 mmol, 99%) as a yellow oil, which was used without further purification.

(2S,5R,6R,8R)-6-(Benzyloxy)-9-((tert-butyldimethylsilyl)oxy)-5-hydroxy-8-methyl-3oxo-2-((triisopropylsilyl)oxy)nonyl pivalate (24).


To a stirred solution of aldehyde **20** (58 mg, 0.17 mmol) in CH₂Cl₂ (3 mL) at -78 °C was added SnCl₄ (0.1 mL, 0.9 mmol), the solution was stirred at -78 °C for 10 min before a

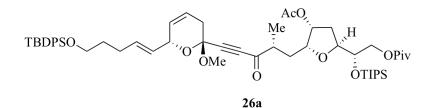
solution of enol ether 23 (218 mg, 524 µmol) in CH₂Cl₂ (2 mL) was added via cannula. The solution was stirred at -78 °C for 25 min before saturated aqueous NaHCO₃ (10 mL) was added. The mixture was diluted with diethyl ether and warmed to rt. The organic phase was separated and the aqueous layer was extracted with diethyl ether (2 x10 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 7: 1, v/v) to give ketone 24 (90 mg, 0.13 mmol, 76%) as a colorless oil: $R_f = 0.25$ (hexanes-ethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.35 (m, 5H), 4.60 (s, 2H), 4.36 (dd, J = 4.8 Hz, 3.2 Hz, 1H), 4.28-4.32 (m, 2H), 4.24 (dd, d, J = 10.8 Hz, 3.2 Hz, 1H), 3.59 (dt, J = 8.8 Hz, 3.6 Hz, 1H), 3.48 (dd, J = 9.6 Hz, 5.6 Hz, 1H), 3.44 (dd, J = 9.6 Hz, 6.0 Hz, 1H), 3.00 (dd, J = 18.4 Hz, 2.4 Hz, 1H), 2.90 (dd, J = 18.4 Hz, 9.2)Hz, 1H), 2.80 (d, J = 4.4 Hz, 1H), 1.86 (sextet, J = 6.8 Hz, 1H), 1.68 (ddd, J = 18.0 Hz, 8.4 Hz, 6.4 Hz, 1H), 1.39 (ddd, J = 18.0 Hz, 8.4 Hz, 4.8 Hz, 1H), 1.19 (s, 9H), 1.05-1.10 (m, 21H) 0.90-0.91 (m, 12H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 212.5, 178.2, 138.5, 128.3, 127.7, 127.6, 78.7, 72.1, 68.6, 67.8, 66.0, 41.2, 38.8, 33.4, 32.4, 27.1, 26.0, 18.4, 17.9, 16.8, 12.2, -5.3, -5.4; IR (neat): 3527, 2955, 1731, 1462, 1143 cm⁻¹; $[\alpha]_D^{25}$ + 13.2 (c 0.95, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 703.4401, found: 703.4402.

(2S,5R,6R,8R)-5-Acetoxy-6-(benzyloxy)-9-((tert-butyldimethylsilyl)oxy)-8-methyl-3oxo-2-((triisopropylsilyl)oxy)nonyl pivalate (24a).


To a stirred solution of ketone 24 (90 mg, 0.13 mmol) in CH_2Cl_2 (5 mL) at rt was added sequentially pyridine (54 µL, 0.67 mmol), DMAP (3.2 mg, 26 µmol) and acetyl chloride (38 µL, 0.53 mmol). The solution was stirred at rt for 5 min before saturated aqueous NaHCO₃ (5 mL) was added. The resulting mixture was diluted with diethyl ether (10 mL) and the separated aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to give ketone **24a** (90 mg, 0.13 mmol, 94%) as a colorless oil: $R_f = 0.33$ (hexanes-ethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.30-7.34 (m, 5H), 5.64 (ddd, J = 9.2 Hz, 6.4 Hz, 4.8 Hz, 1H), 4.66 (q_{AB} , $\Delta v = 37$ Hz, $J_{AB} = 11.2$ Hz, 2H), 4.36 (dd, J = 4.8 Hz, 3.6 Hz, 1H), 4.29 (dd, J = 11.2 Hz, 4.8 Hz, 1H), 4.23 (dd, J = 11.2 Hz, 3.6 Hz, 1H), 3.75 (dt, J = 10.0 Hz, 3.6 Hz, 1H), 3.45 (dd, J = 10.0 Hz, 6.0 Hz, 1H), 3.08 (m, 2H), 2.01 (s, 3H), 1.78 (m, 1H), 1.61 (ddd, J = 14.0 Hz, 10.0 Hz, 6.4 Hz, 1H), 1.20 (s, 9H), 1.05-1.11 (m, 21H) 0.91 (s, 9H), 0.78 (d, J = 6.4 Hz, 3H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 208.9, 178.0, 170.0, 138.3, 128.3, 127.8, 127.6, 76.8, 75.3, 71.9, 68.6, 68.4, 66.1, 38.8, 37.7, 33.2, 32.2, 27.1, 26.0, 21.0, 18.3, 17.9, 16.4, 12.2, -5.4; IR (neat): 2954, 1738, 1462, 1238, 1142 cm⁻¹; [α]_D²⁵ + 10.1 (c 1.00, CHCl₃); HRMS-ESI (*m*/*z*) calculated for [M+Na⁺]: 745.4507, found: 745.4513.

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-3-hydroxy-2-methylpropyl)tetrahydrofuran-2yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (25a).

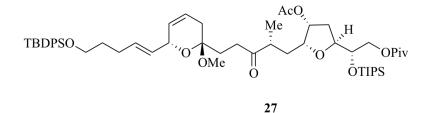
To a stirred solution of ketone **24a** (90 mg, 0.13 mmol) in ethyl acetate (5 mL) at rt was added Pd(OH)₂ on carbon (44 mg, 20%, 62 μ mol). The resulting suspension was degassed and flushed with H₂ three times. The suspension was then stirred at rt for 15 min, filtered through celite and washed with ethyl acetate. The combined organic phase was concentrated and purified by flash chromatography (hexanes-ethyl acetate, 10:1, v/v) to give alcohol **25** (79 mg, 0.013 mmol, 99%) as a colorless oil. This was dissolved in CH₂Cl₂ (5 mL) and cooled to -78 °C. To the stirred solution were sequentially added Et₃SiH (0.15 mL, 1.2 mmol) and SnCl₄ (29 mL, 0.25 mmol). The solution was warmed to -30 °C over 1 h with stirring. Saturated aqueous NaHCO₃ (10 mL) was added. The resulting mixture was warmed to rt, diluted with diethyl ether (10 mL) and the separated aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase


was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 7:1, v/v) to give alcohol **25a** (38 mg, 77 μmol, 60%) as a colorless oil: $R_f = 0.53$ (hexanes-ethyl acetate, 2:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 5.35 (t, *J*=4.0 Hz, 1H), 4.34 (ddd, *J*=9.2 Hz, 6.8 Hz, 3.2 Hz, 1H), 4.23 (dd, *J*=10.8 Hz, 6.0 Hz, 1H), 4.12-4.18 (m, 2H), 3.96 (m, 1H), 3.58 (m, 1H), 3.46 (m, 1H), 2.54 (m, 1H), 2.36 (ddd, *J*=17.6 Hz, 9.2 Hz, 5.2 Hz, 1H), 2.12 (s, 3H), 2.03 (dd, *J*=14.0 Hz, 6.8 Hz, 1H), 1.81 (octet, *J*=6.4 Hz, 1H), 1.61 (ddd, *J*=14.4 Hz, 10.0 Hz, 8.0 Hz, 1H), 1.43 (ddd, *J*=14.4 Hz, 6.4 Hz, 2.0 Hz, 1H), 1.22 (s, 9H), 1.06-1.12 (m, 21H), 0.95 (d, *J*=6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 178.3, 170.6, 80.7, 77.8, 76.3, 72.2, 68.2, 65.4, 38.8, 34.5, 34.3, 34.0, 27.2, 21.1, 18.1, 17.8, 12.7; IR (neat): 3460, 2945, 2867, 1732, 1241, 1137 cm⁻¹; $[\alpha]_D^{25}$ + 10.0 (c 0.84, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 525.3224, found: 525.3220.

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-2-methyl-3-oxopropyl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (7).

To a stirred solution of alcohol **25a** (38 mg, 77 µmol) in CH₂Cl₂ (2 mL) and DMSO (1 mL) at 0 °C was sequentially added *i*Pr₂NEt (0.10 mL, 0.58 mmol) and SO₃·Py (48 mg, 0.30 mmol). The solution was stirred at 0 °C for 5 min before a 0 °C aqueous solution of HCl (1 M, 3 mL) was added. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 3 mL). The combined organic phases were washed with pH = 7 aqueous buffer, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 10:1, v/v) to give aldehyde 7 (38 mg, 76 µmol, 99%) as a colorless oil: $R_f = 0.43$ (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 9.67 (d, 1.6 Hz, 1H), 5.34 (t, *J*=4.0 Hz, 1H), 4.34 (ddd, *J*=10.8 Hz, 6.8 Hz, 4.0 Hz, 1H), 4.17 (d, *J*=5.2 Hz, 2H), 4.12 (dt, *J*=10.0 Hz, 3.6 Hz, 1H), 3.94 (q, *J*=4.8 Hz, 1H), 2.59 (sextet, *J*=6.8 Hz, 1H), 2.33 (ddd, *J*=14.0 Hz, 8.8 Hz, 4.2 Hz, 1H), 2.12 (s, 3H), 2.02-2.09 (m, 2H), 1.40 (ddd, *J*=14.0 Hz, 8.0 Hz, 3.2 Hz, 1H), 1.22 (s, 3H), 2.02-2.09 (m, 2H), 1.40 (ddd, *J*=14.0 Hz, 8.0 Hz, 3.2 Hz, 1H), 1.22 (s, 3H), 2.02-2.09 (m, 2H), 1.40 (ddd, *J*=14.0 Hz, 8.0 Hz, 3.2 Hz, 1H), 1.22 (s, 3H), 2.02-2.09 (m, 2H), 1.40 (ddd, *J*=14.0 Hz, 8.0 Hz, 3.2 Hz, 1H), 1.22 (s, 3H)

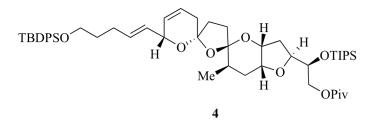
9H), 0.95 (d, J = 6.8 Hz, 3H), 1.08-1.09 (m, 21H); ¹³C NMR (CDCl₃, 100 MHz) δ 204.4, 178.3, 170.5, 78.8, 77.8, 75.7, 72.6, 65.5, 43.9, 38.8, 34.5, 30.2, 27.2, 21.0, 18.1, 13.2, 12.7; IR (neat): 2944, 2867, 2714, 1731, 1237, 1139 cm⁻¹; $[\alpha]_D^{25} + 4.0$ (c 1.01, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 523.3067, found: 523.3068.



(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-5-((2R,6R)-6-((E)-5-((tertbutyldiphenylsilyl)oxy)pent-1-en-1-yl)-2-methoxy-3,6-dihydro-2H-pyran-2-yl)-2methyl-3-oxopent-4-yn-1-yl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl

pivalate (26a).

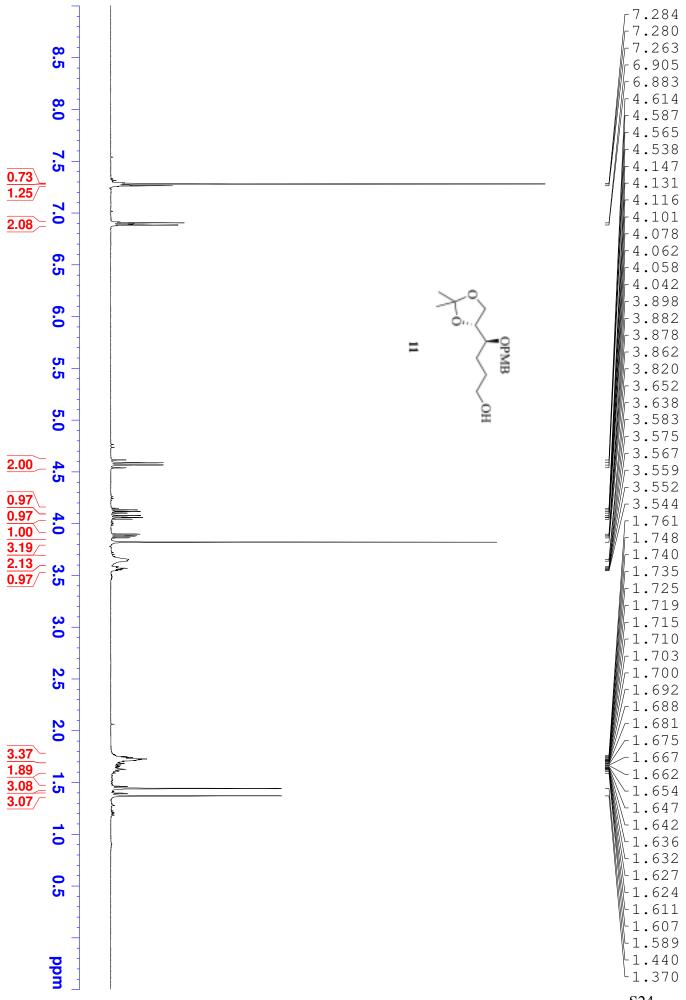
To a mixture of CrCl₂ (42 mg, 0.34 mmol) and NiCl₂ (0.2 mg, 1.5 µmol) at rt was added a solution of aldehyde 7 (38 mg, 76 µmol) and iodide 6 (35 mg, 60 µmol) in THF (3 mL) via cannula. The suspension was stirred at rt for 12 h before diethyl ether (10 mL) and an aqueous solution of 1 M serine saturated with NaHCO₃ (10 mL) were added. The resulting mixture was stirred at rt for 1 h. The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to give alcohol **26** (45 mg, 47 µmol, 78%) as a colorless oil. This was dissolved in CH₂Cl₂ (2 mL) and DMSO (1 mL) at rt, and *i*Pr₂NEt (0.10 mL, 0.58 mmol) and SO₃ Py (48 mg, 0.30 mmol) were added sequentially. The solution was stirred at rt for 5 min before a saturated aqueous solution of NH₄Cl (3 mL) was added. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 3 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 8:1, v/v) to give 26a (35 mg, 36 µmol, 77%) as a colorless oil: $R_f = 0.64$ (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.68 (dd, J = 8.0 Hz, 1.6 Hz, 4H), 7.38-7.46 (m, 6H), 5.70-5.80 (m, 2H), 5.63 (d, J = 10.4 Hz, 1H), 5.47 (dd, J = 15.2 Hz, 7.6 Hz, 1H), 5.34 (t, J = 3.6 Hz, 1H), 4.52 (m,


1H), 4.26 (ddd, J = 11.2 Hz, 7.2 Hz, 4.4 Hz, 1H), 4.17 (d, J = 5.2 Hz, 2H), 4.08 (dt, J = 6.4 Hz, 3.6 Hz, 1H), 3.95 (q, J = 4.8 Hz, 1H), 3.69 (t, J = 6.0 Hz, 2H), 3.54 (s, 3H), 2.83 (sextet, J = 6.8 Hz, 1H), 2.71 (dq, J = 14.0 Hz, 2.0 Hz, 1H), 2.43(dt, J = 14.0 Hz, 3.2 Hz, 1H), 2.32 (ddd, J = 12.8 Hz, 9.2 Hz, 4.2 Hz, 1H), 2.13-2.22 (m, 3H), 2.11 (s, 3H), 2.06 (dd, J = 13.2 Hz, 8.0 Hz, 1H), 1.69 (m, 2H), 1.47 (ddd, J = 14.0 Hz, 8.8, 4.4 Hz, 1H), 1.22-1.24 (m,12H), 1.09-1.12 (m, 21H), 1.07 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 190.4, 178.3, 170.4, 135.6, 134.2, 134.0, 129.5, 128.1, 127.6, 120.3, 94.3, 88.2, 80.9, 78.3, 77.8, 75.6, 72.6, 71.0, 65.5, 63.2, 51.8, 45.4, 38.8, 35.6, 34.5, 31.8, 31.3, 28.6, 27.2, 26.9, 21.0, 19.2, 18.1, 15.3, 12.7; IR (neat): 2939, 2865, 2218, 1738, 1681, 1236, 1137, 1112 cm⁻¹; [α]_D²⁵ + 9.4 (c 0.67, CHCl₃); HRMS-ESI (*m*/*z*) calculated for [M+Na⁺]: 981.5344, found: 981.5338.

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-5-((2S,6R)-6-((E)-5-((tertbutyldiphenylsilyl)oxy)pent-1-en-1-yl)-2-methoxy-3,6-dihydro-2H-pyran-2-yl)-2methyl-3-oxopentyl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (27).

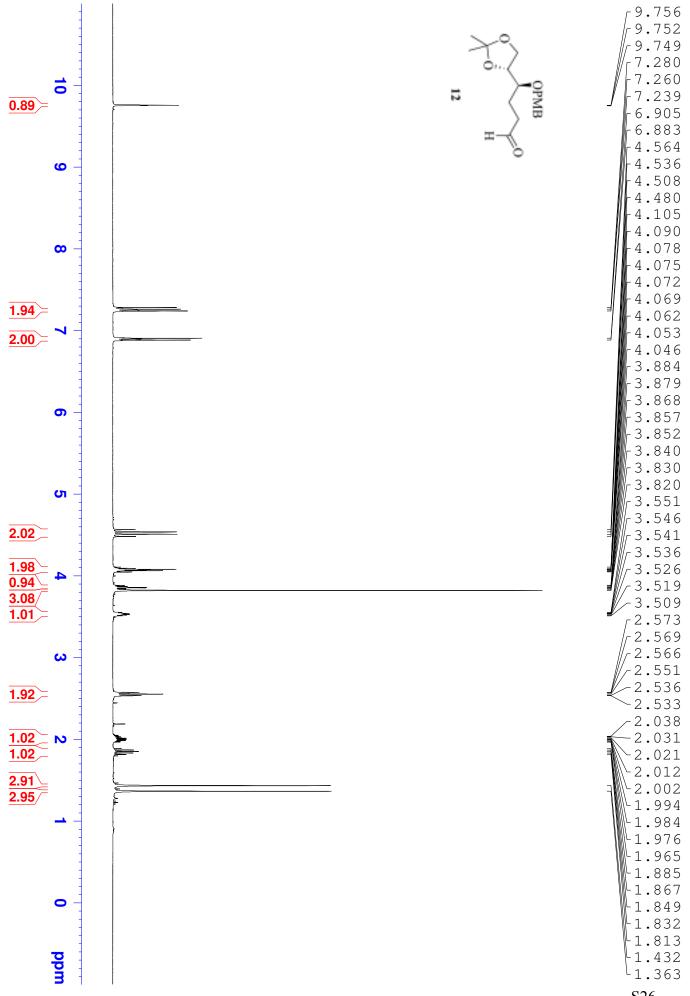
To $[CuH(PPh_3)]_6$ (139 mg, 82.2 µmol) at rt was added a solution of ketone **26a** (52.5 mg, 54.8 µmol) in degassed benzene (3 mL) via cannula. Degassed H₂O (15 mL) was then added. The suspension was stirred at rt for 12 h before a saturated aqueous NaHCO₃ (3 mL) was added. It was then diluted with diethyl ether (10 mL) and stirred under air at rt for 30 min. The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 3 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to give ketone **27** (40 mg, 42 µmol, 76%) as a colorless oil: R_f = 0.43 (hexanes-ethyl acetate, 4:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.68 (dd, *J*=7.6 Hz, 1.6 Hz, 4H), 7.37-7.46 (m, 6H), 5.69-5.78 (m, 2H), 5.64 (d, *J*=10.4 Hz, 1H),

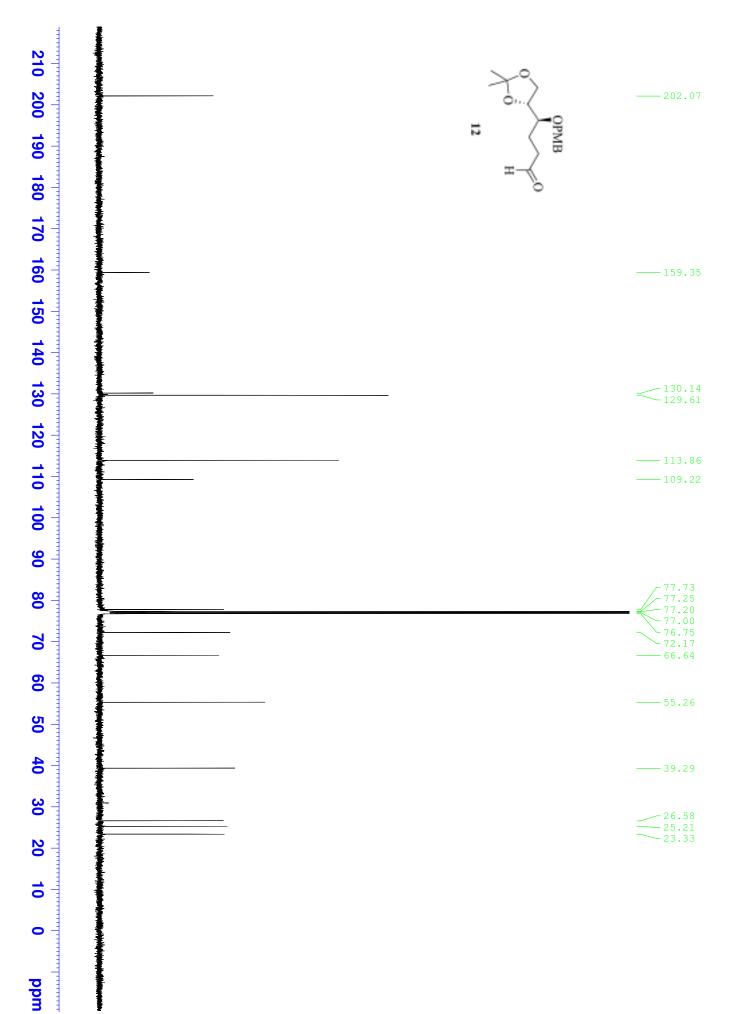
5.46 (dd, J = 15.2 Hz, 7.2 Hz, 1H), 5.31 (t, J = 3.6 Hz, 1H), 4.49 (m, 1H), 4.25 (ddd, J = 8.8 Hz, 7.8 Hz, 4.4 Hz, 1H), 4.17 (m, 2H), 4.07 (dt, J = 10.0 Hz, 3.4 Hz, 1H), 3.94 (q, J = 4.8 Hz, 1H), 3.69 (t, J = 6.4 Hz, 2H), 3.27 (s, 3H), 2.77 (sextet, J = 6.8 Hz, 1H), 2.61 (ddd, J = 17.6 Hz, 10.0 Hz, 6.0 Hz, 1H), 2.50 (ddd, 17.6, J = 17.6 Hz, 10.0 Hz, 5.2 Hz, 1H), 2.31 (ddd, J = 14.0 Hz, 8.8 Hz, 5.6 Hz, 1H), 2.16-2.23 (m, 3H), 2.10 (s, 3H), 2.01-2.09 (m, 3H), 1.91-1.99 (m, 2H), 1.69 (m, 2H), 1.41 (ddd, J = 14.0 Hz, 8.4 Hz, 3.2 Hz, 1H), 1.22 (s, 9H), 1.09-1.16 (m, 24H), 1.07 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 213.0, 178.3, 170.5, 135.6, 134.0, 133.0, 129.5, 129.2, 128.0, 127.6, 121.2, 98.7, 78.8, 77.7, 75.7, 72.6, 70.6, 65.5, 63.3, 48.3, 43.2, 38.8, 35.3, 34.4, 32.7, 31.9, 29.6, 28.6, 27.2, 26.7, 21.0, 19.2, 18.1, 16.1, 12.7; IR (neat): 2940, 2865, 1738, 1237, 1112 cm⁻¹; [α]_D²⁵ - 3.9 (c 0.36, CHCl₃); HRMS-ESI (*m*/*z*) calculated for [M+Na⁺]: 985.5657, found: 985.5679.

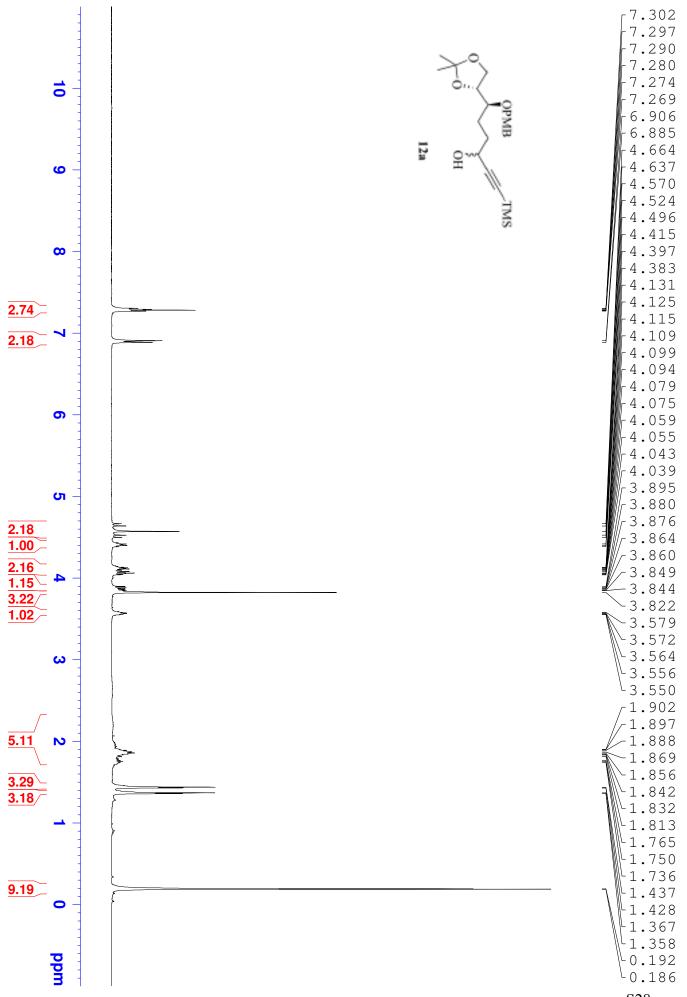

(2S)-2-[(2R,3R,4aR,5'R,6S,6"R,7aR)-6"-[(1E)-5-[(tert-Butyldiphenylsilyl)oxy]pent-1-en-1-yl]-3-methyl-3,3",4,4a,6,6",7,7a-octahydrodispiro[furo[3,2-b]pyran-2,2'oxolane-5',2"-pyran]-6-yl]-2-((triisopropylsilyl)oxy)ethyl pivalate (4).

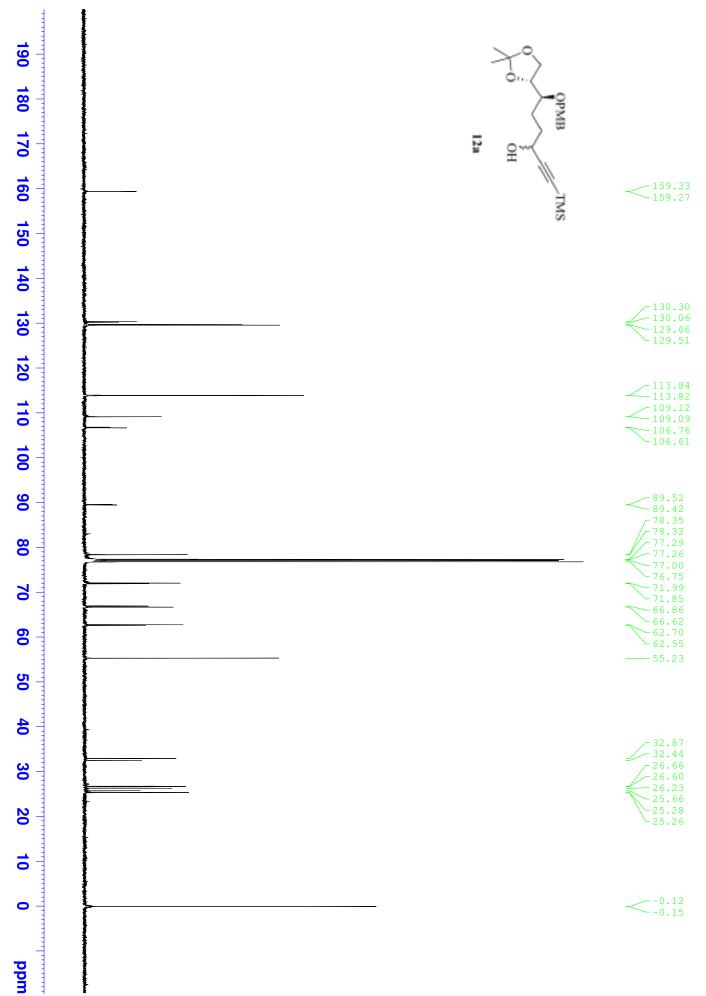
To a stirred solution of ketone **27** (38 mg, 40 μ mol) in methanol (2 mL) at rt was added K₂CO₃ (16 mg, 0.12 mmol). The mixture was stirred at rt for 30 min before diethyl ether (10 mL) and H₂O (3 mL) were added. The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to give alcohol **5** (36 mg, 39 μ mol, 93%) as a colorless oil. This was dissolved in CH₂Cl₂ (2 mL) at rt and PPTS (1.8 mg, 7.2 μ mol) was added. The solution was stirred at rt for 30 min before a saturated aqueous solution of NaHCO₃ (0.5 mL) was added. The mixture was diluted with diethyl ether (5 mL), the organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 2 mL). The combined organic phases were washed with

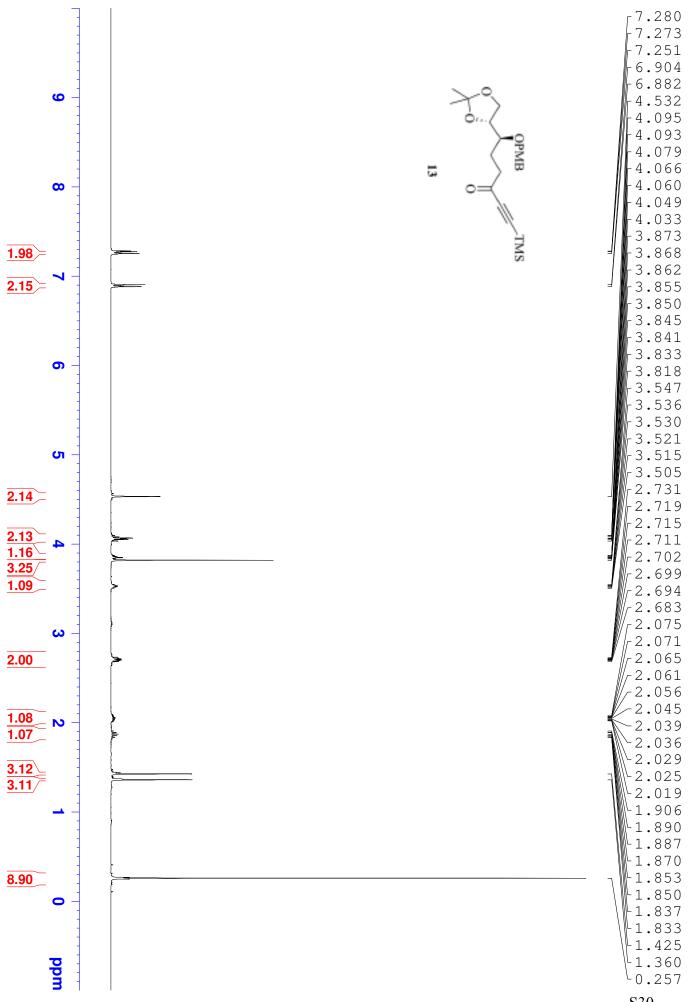
brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography (hexanes–ethyl acetate, 20:1, v/v) to give spiroketal **4** (33 mg, 39 µmol, 99%) as a colorless oil: $R_f = 0.42$ (hexanes-ethyl acetate, 10:1, v/v); ¹H NMR (CDCl₃, 400 MHz): δ 7.68 (d, J = 6.8 Hz, 4H), 7.38-7.45 (m, 6H), 5.71-5.78 (m, 2H), 5.64 (d, J = 10.4 Hz, 1H), 5.47 (dd, J = 15.2 Hz, 7.6 Hz, 1H), 4.81 (m, 1H), 4.33 (m, 1H), 4.12-4.21 (m, 3H), 4.04 (q, J = 4.8 Hz, 1H), 3.89 (m, 1H), 3.68 (t, J = 6.4 Hz, 2H), 2.53 (d, J = 17.6 Hz, 1H), 2.33(td, J = 12.0 Hz, 7.6 Hz, 1H), 2.12-2.18 (m, 4H), 2.00-2.05 (m, 3H), 1.93 (dd, J = 12.8 Hz, 6.4 Hz, 1H), 1.87 (d, J = 14.8 Hz, 1H), 1.78 (dd, J = 14.8 Hz, 4.0 Hz, 1H), 1.66-.172 (m, 3H), 1.22 (s, 9H), 1.09-1.12 (m, 21H), 1.07 (s, 9H), 0.94 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 178.5, 135.6, 134.0, 133.3, 129.5, 129.4, 128.5, 127.6, 122.5, 110.0, 105.6, 79.2, 76.7, 72.5, 72.0, 71.0, 66.0, 63.3, 38.8, 36.7, 35.2, 34.9, 32.2, 31.8, 31.4, 29.5, 28.7, 27.2, 26.9, 19.2, 18.2, 18.1, 16.2, 12.7; IR (neat): 2940, 2865, 2361, 1731, 1138 cm⁻¹; [α]_D²⁵ -11.4 (c 0.79, CHCl₃); HRMS-ESI (*m/z*) calculated for [M+Na⁺]: 911.5289, found: 911.5318.

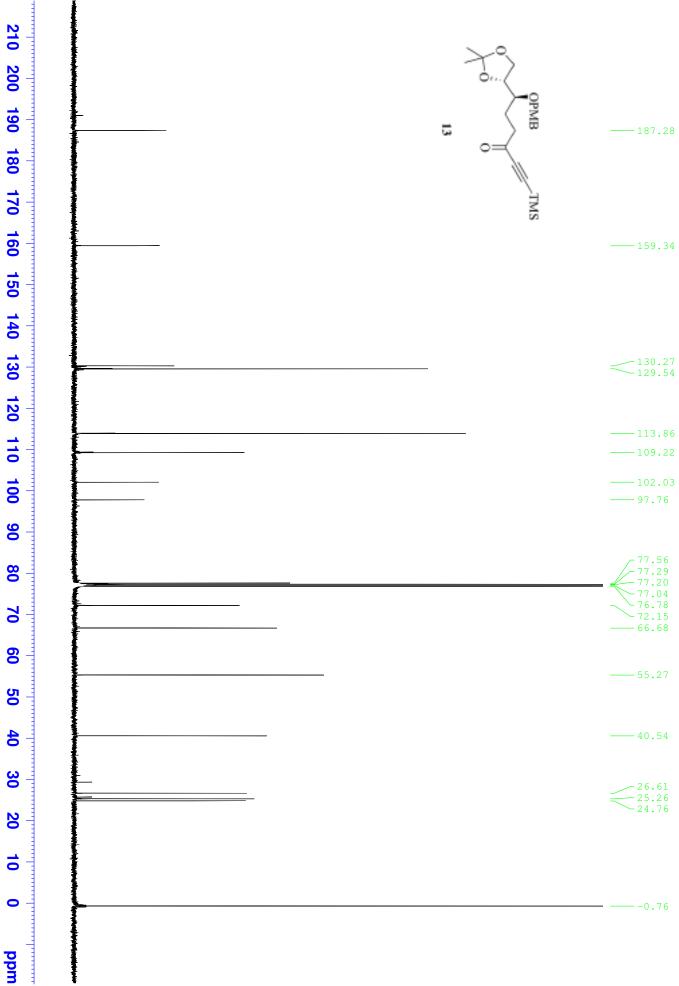

References:

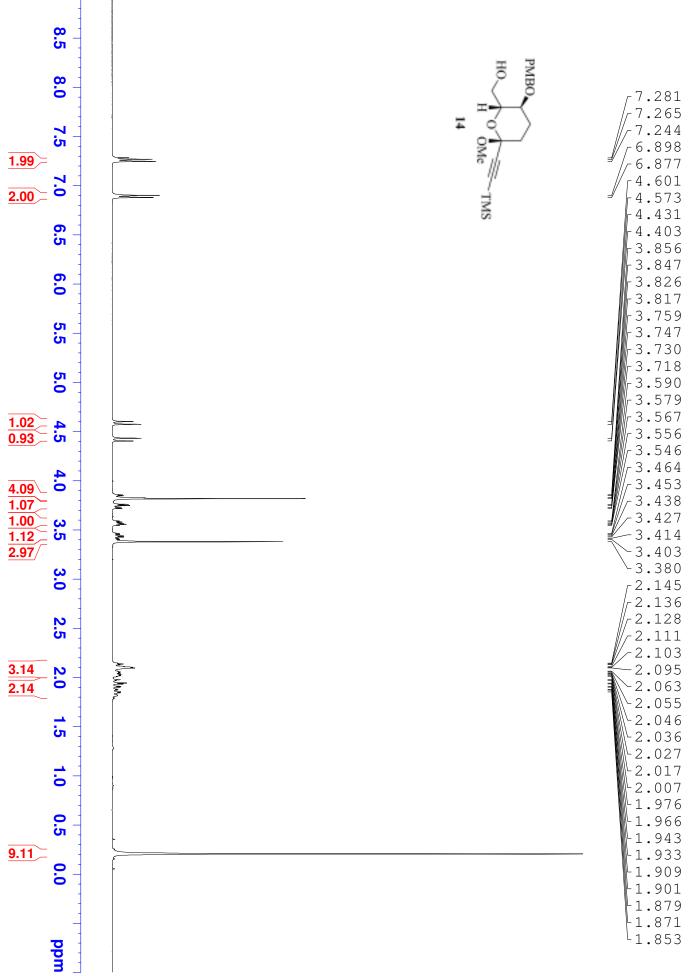

- (1) Rao, K. S.; Chattapadhyay, A. K.; Ghosh, S. Synlett. 2010, 20, 3078.
- (2) Fürstner, A.; Bouchez, L. C.; Funel, J. A.; Liepins, V.; Porée, F. H.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Angew. Chem. Int. Ed. 2007, 46, 9265.
- (3) Bull, J. A.; Balskus, E. P.; Horan, R. J.; Langer, M.; Ley, S. V. Chem. Eur. J. 2007, 13, 5515.

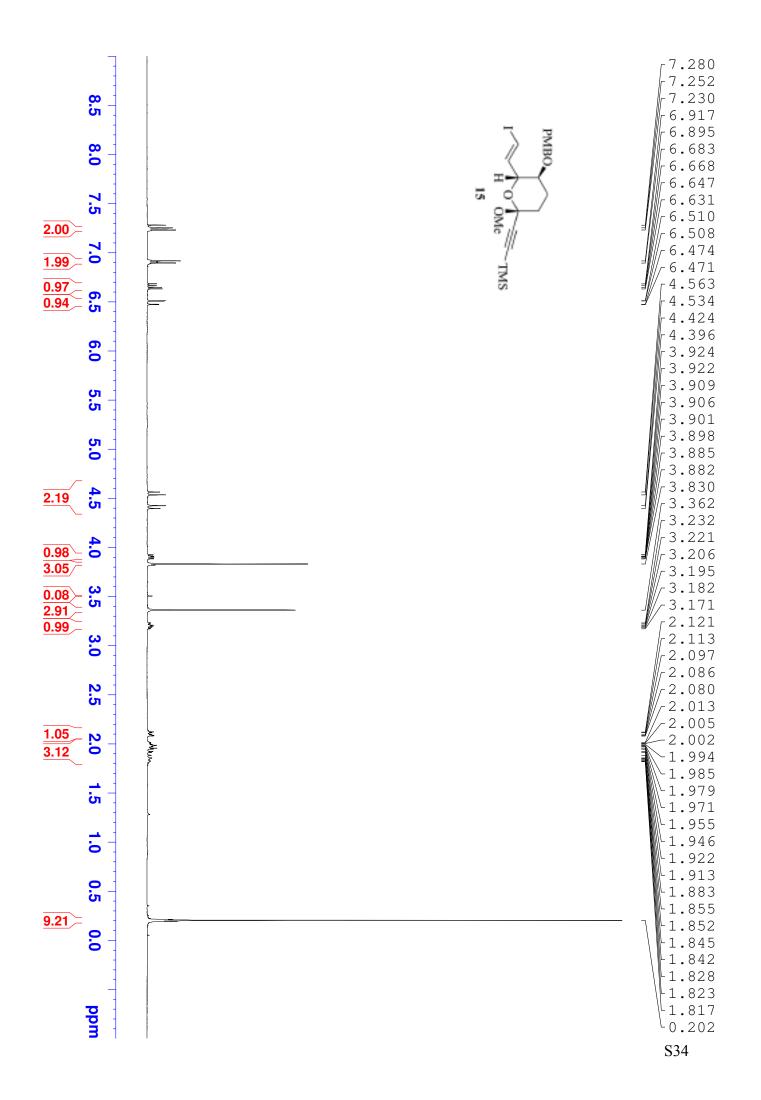


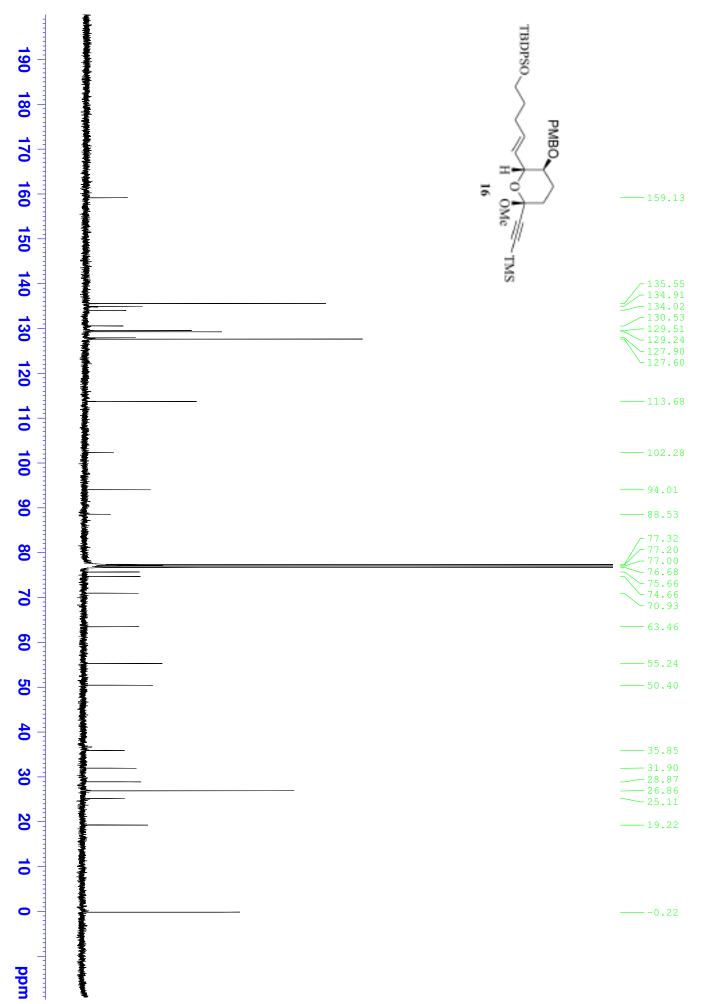

S24

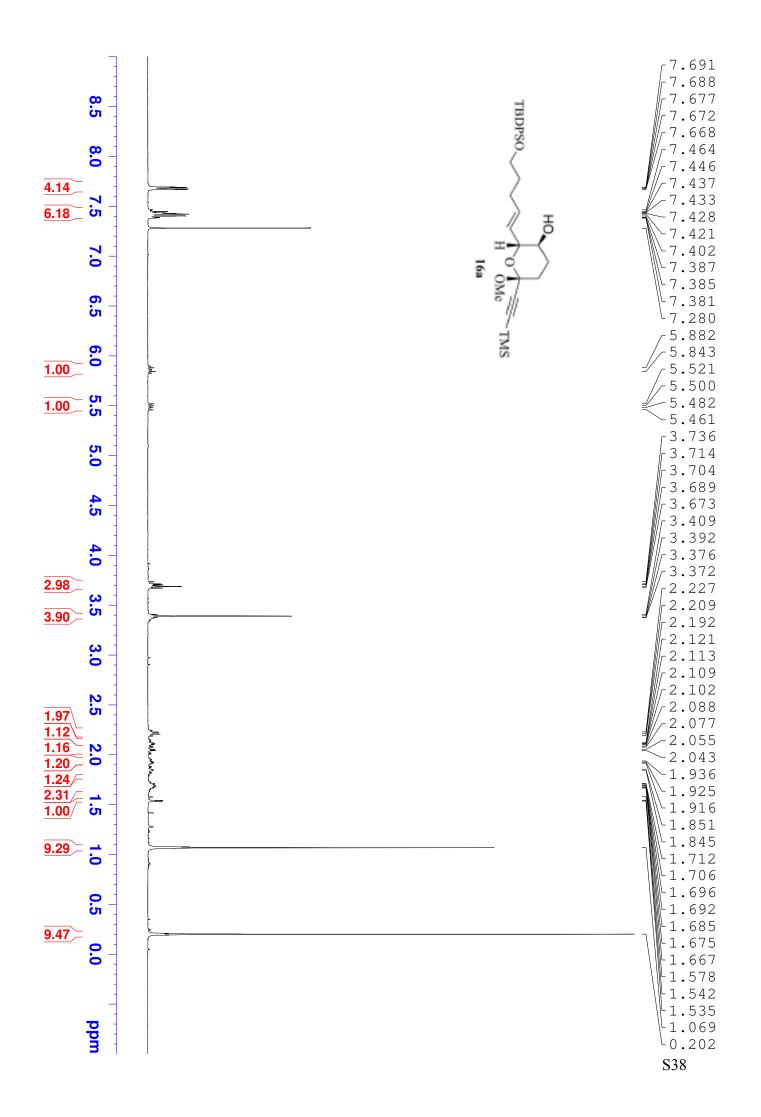

ppm	0	6	20	30	40	50	8	70	80	90	100	110	120	130	140	150	160	170	180	190
والمراجع والمحاصر والمحاصر والمحاط			an an an Andrew States and the second se		ing and the second second	in the second					المراجع المراجع محمد المراجع الم				daala taaraa kaadii faraada ka sigada yaaya sigada (haranda ka	الغارين الإعرابية مع المار العارين الإعرابية المارية المارين		a su		المراجع
							_		<u> </u>			_								
																		=		
																	Сон	OPMB	J.	
S 25			~25.28	28.11 27.43 26.60 25.28		55.26	62.89	78.58 77.25 77.20 77.00 76.75 72.31 66.58	78.58 77.25 77.20				112.00	130.33						

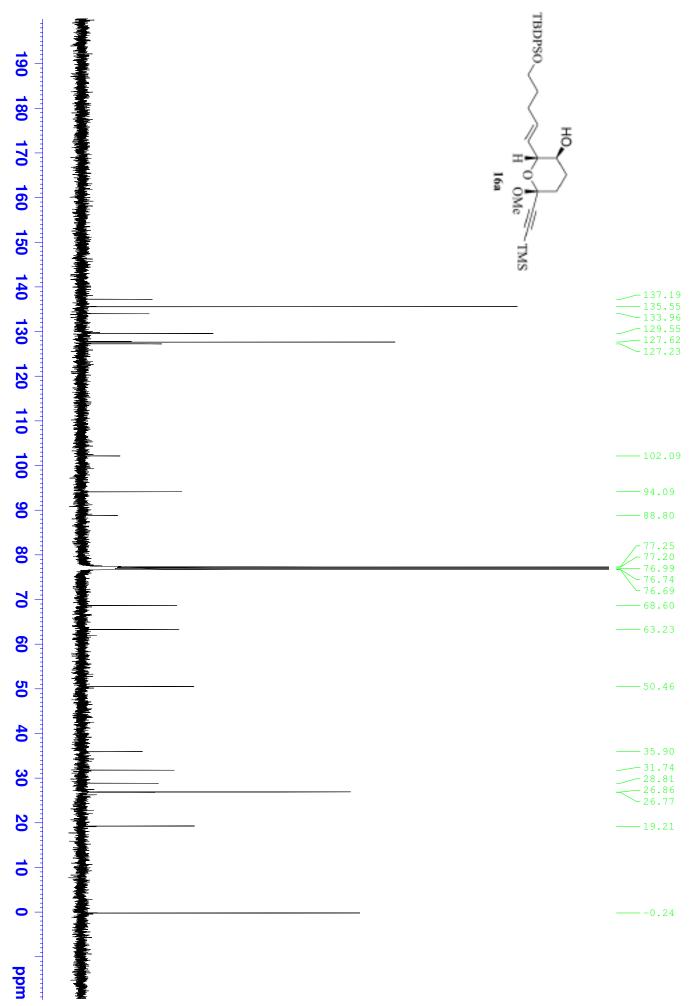


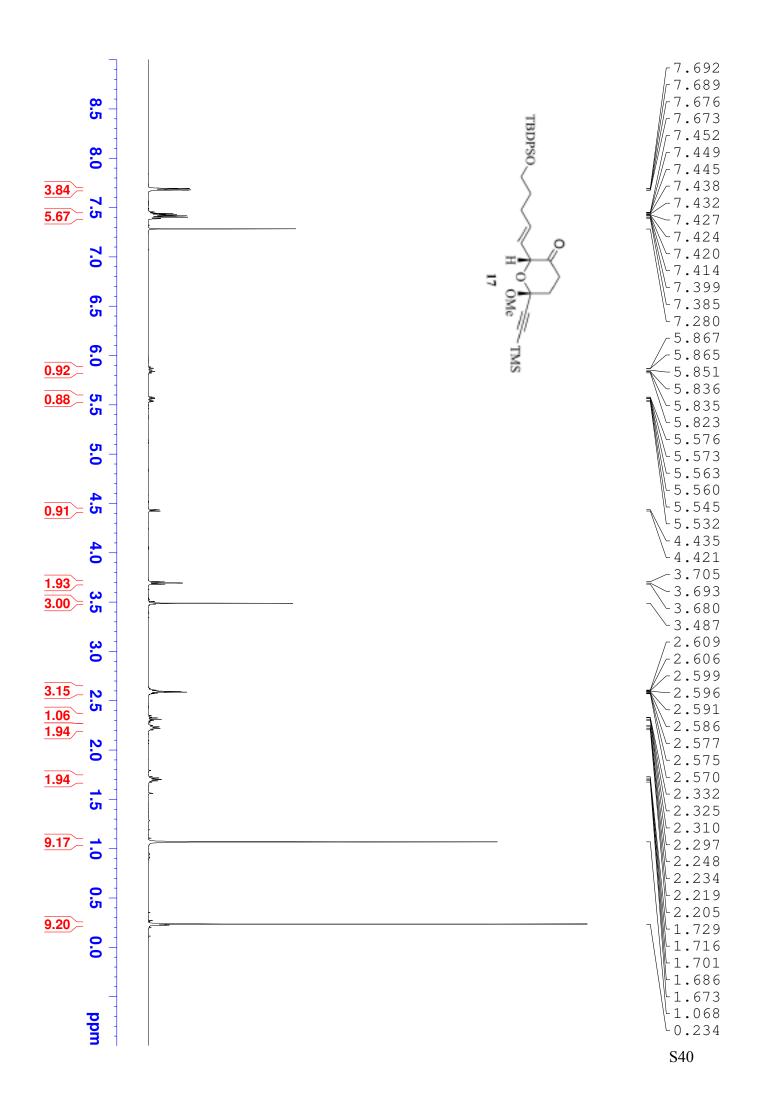


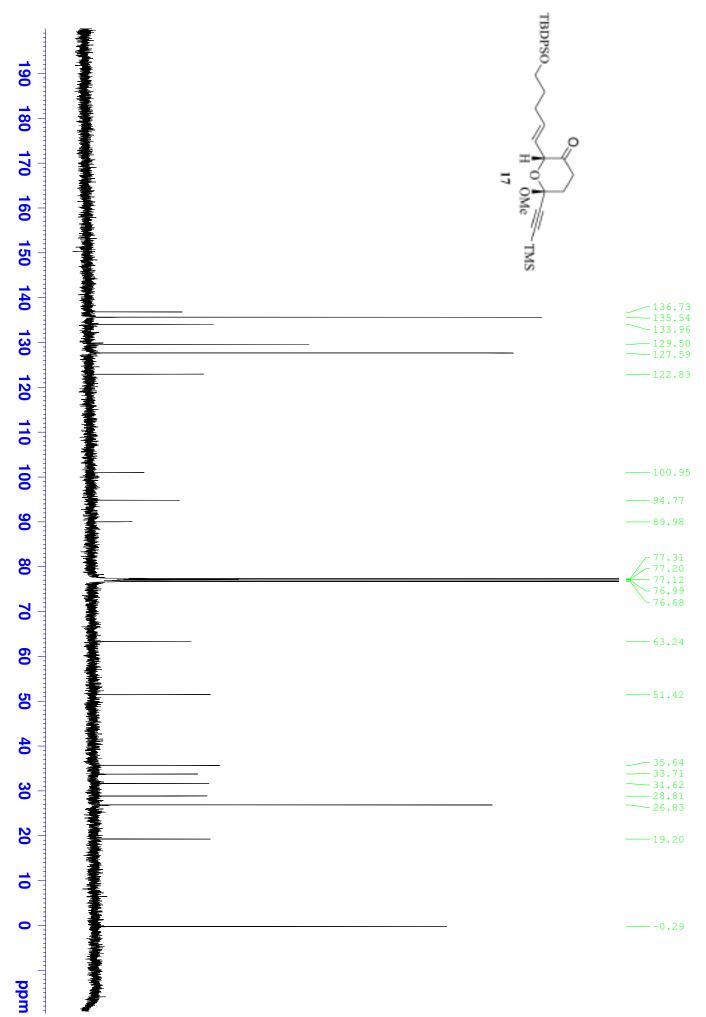


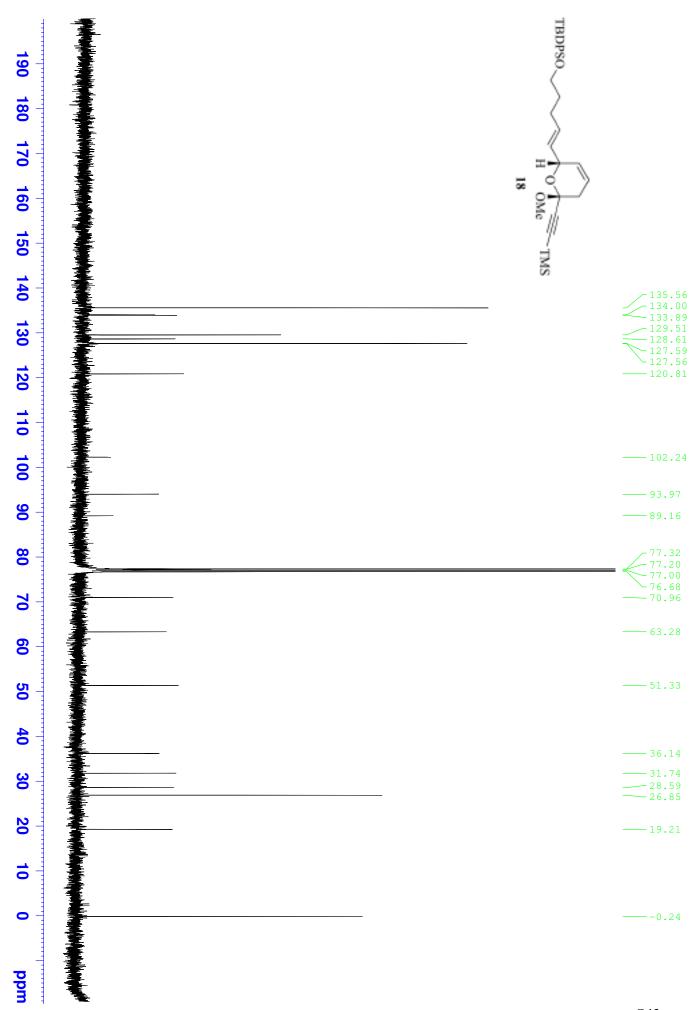


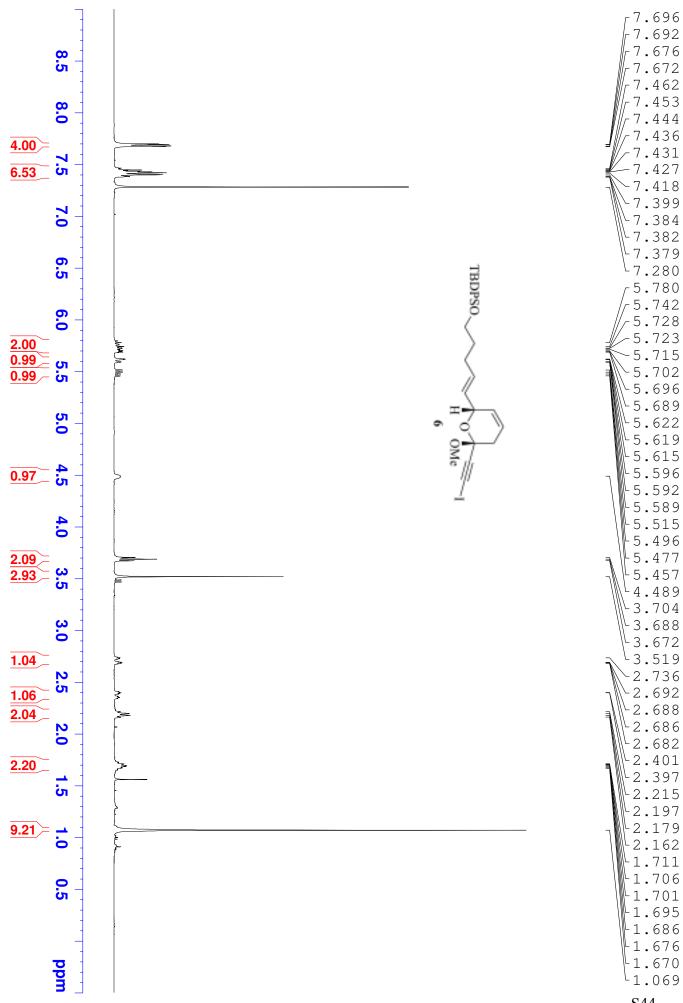

190	بار عبلہ ، مار عمل عمل عمل عمل عمل عمل عمل م	но	
180	a i stan	_ = _ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
170	المحالية بينياني بيناني والم	OMe	
160	and the second secon	TMS	
150	and the second		
140	an se an		
130			130.15 129.34
120	-		
110	-		
100	and the second secon		101.94
90	and the second secon		94.09 88.96
80	المنابعة بمعجدة		77.31
70	ने प्रतिकृति के विद्यु स्विति क जो प्रतिकृति के विद्यु स्विति		77.31 77.20 77.00 76.68 73.18 72.48 70.33
60	والمنابع المنابع المنابع		62.74
50	and the second secon		55.24 50.40
40	يى يەرىپىيە يەرىلىرىيە. 1. يەرىپىيە يەرىلىرىيە		
30	and the second se		35.59
20	and the second		24.25
0 10	واللاسية فيستعادها والمتعالم		
0	and the second		-0.27
-	يعلدها مريافية باعثاله		0.27
ppm			

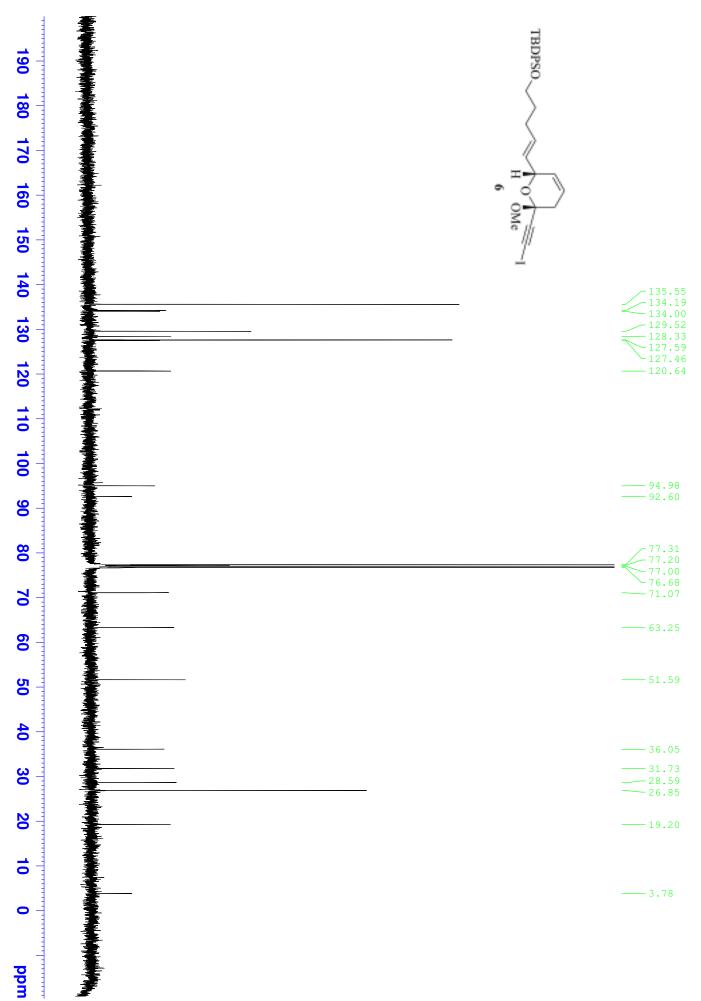


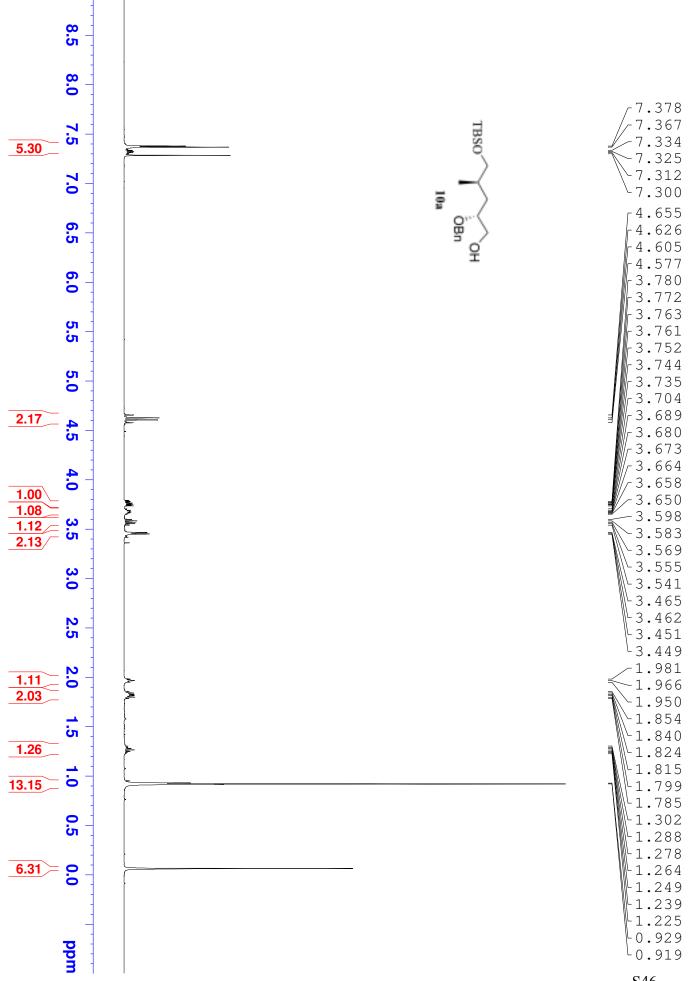

190	2 2	
180		
170		
160	TMS	159.30
150	\$2 5	
140		
130		130.05
120		112.00
110		113.86
100		101.68 94.14
90		
8		79.77 77.31 77.20 77.00 76.68 75.20 75.07 70.81
70		75.20 75.07 70.81
60		55.28
50		50.53
4 0		35.52
30		24.81
20		
10		
0		
ppm		835

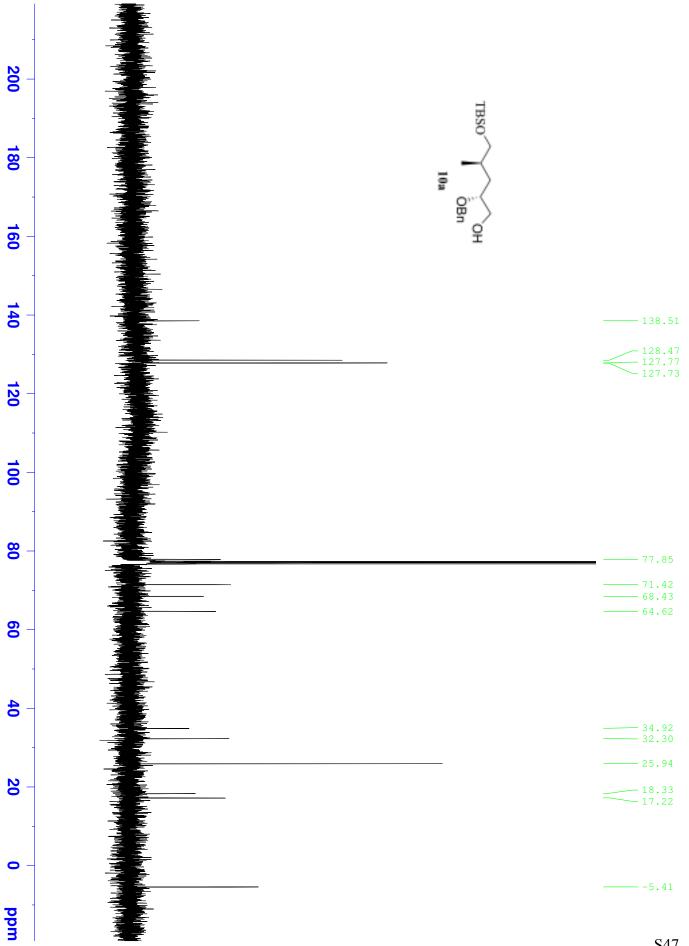


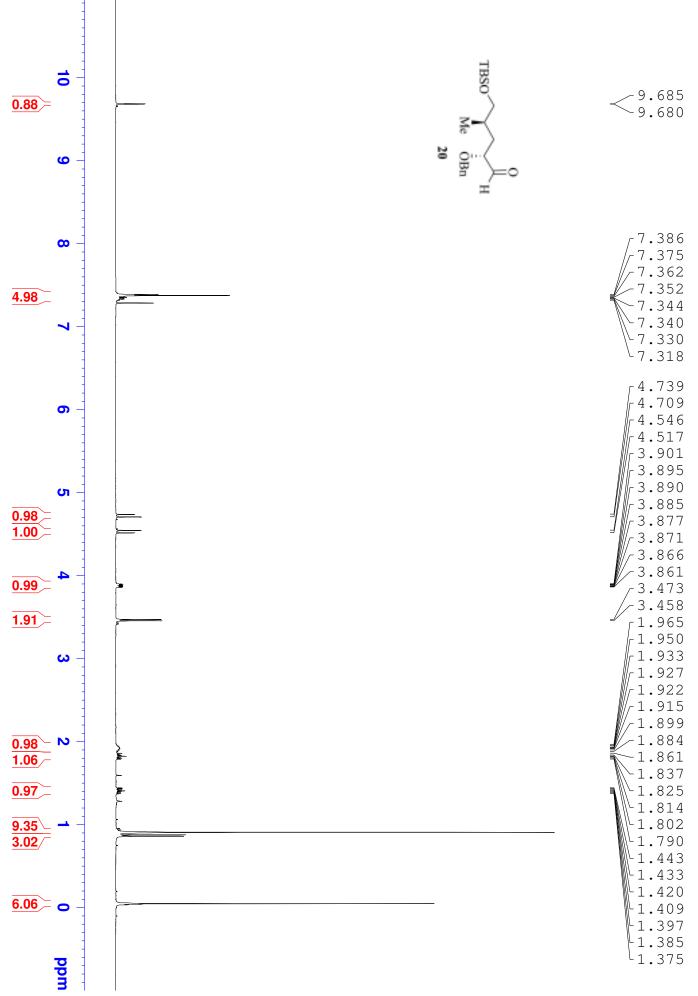


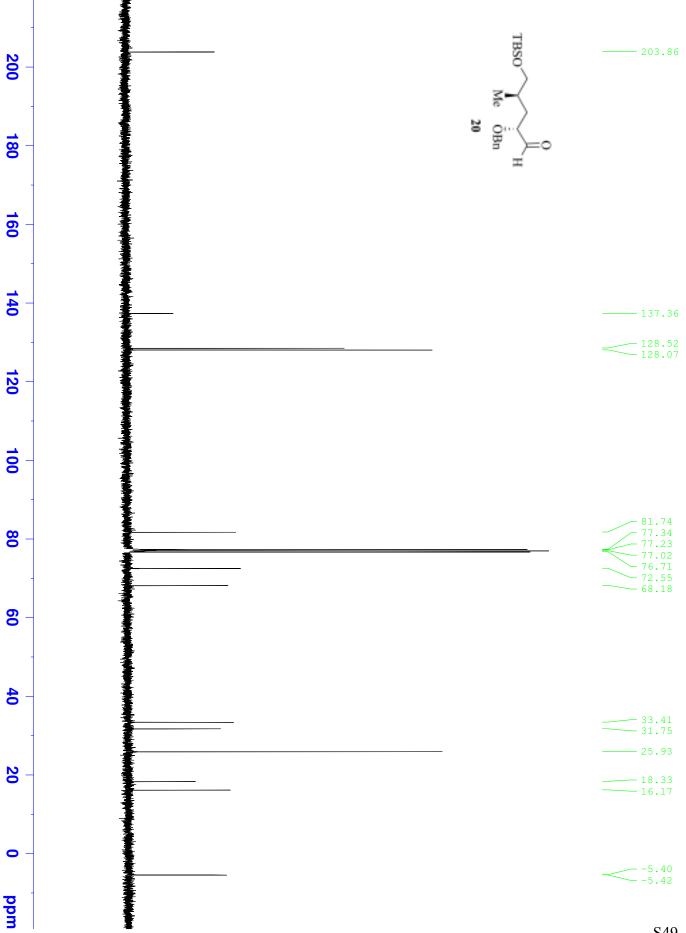


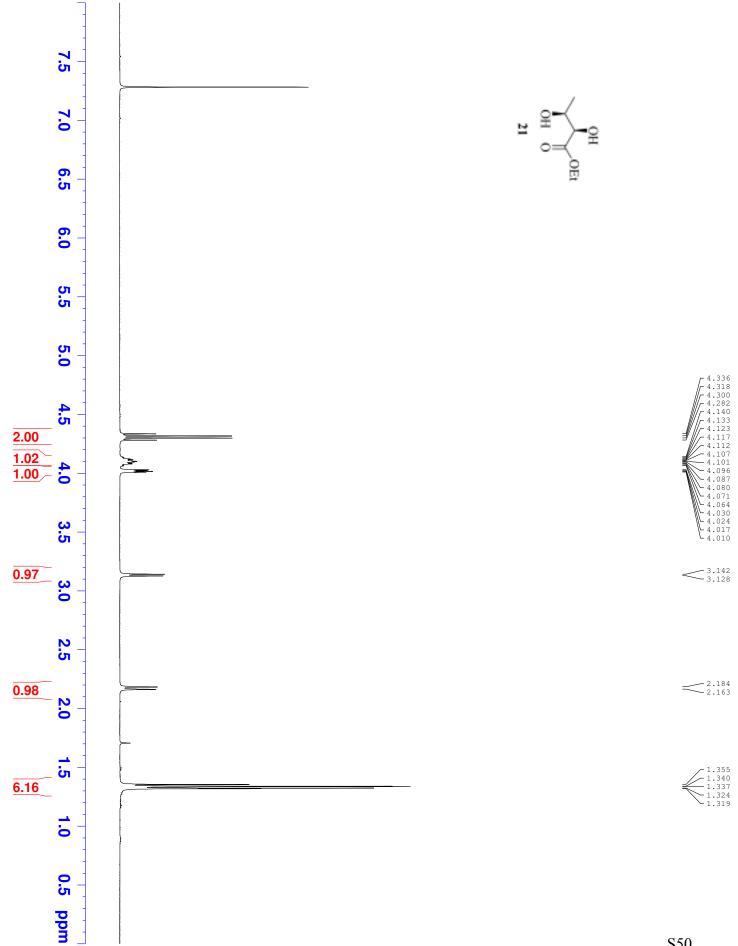


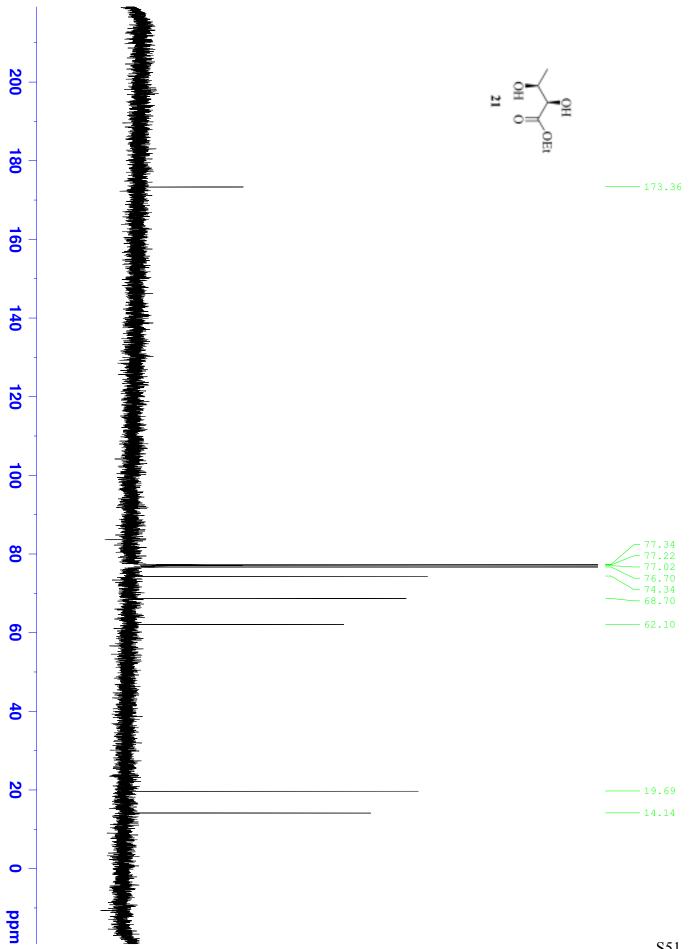


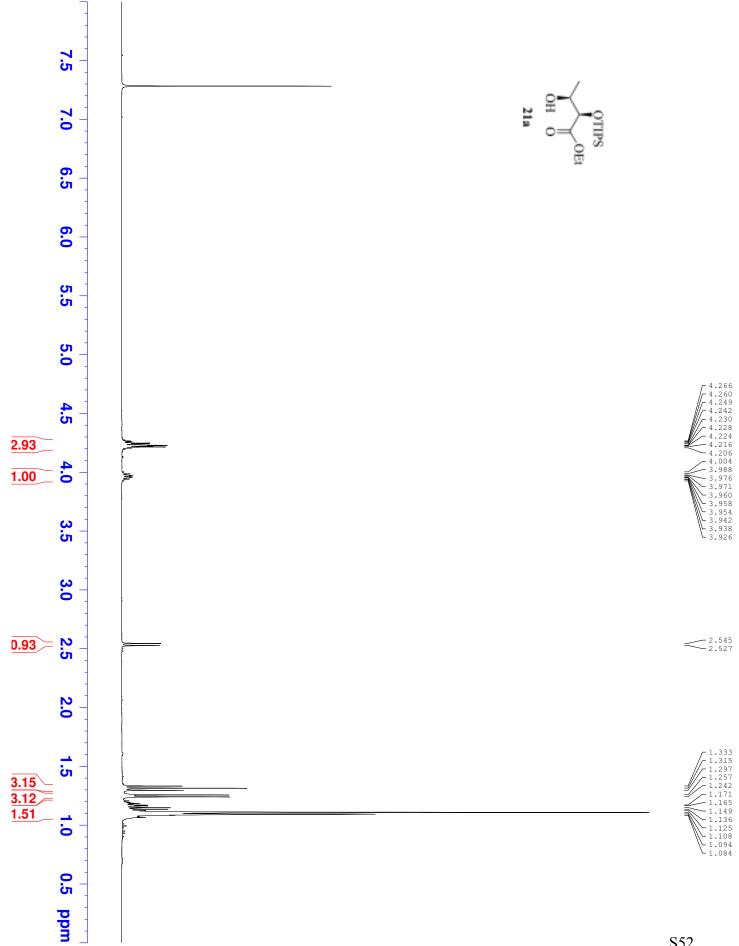


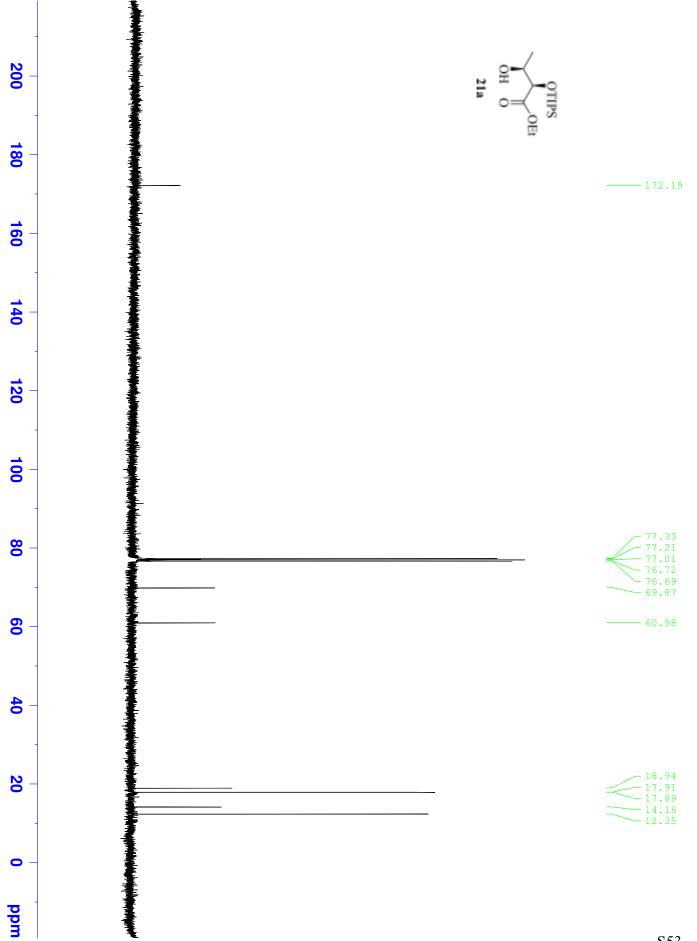


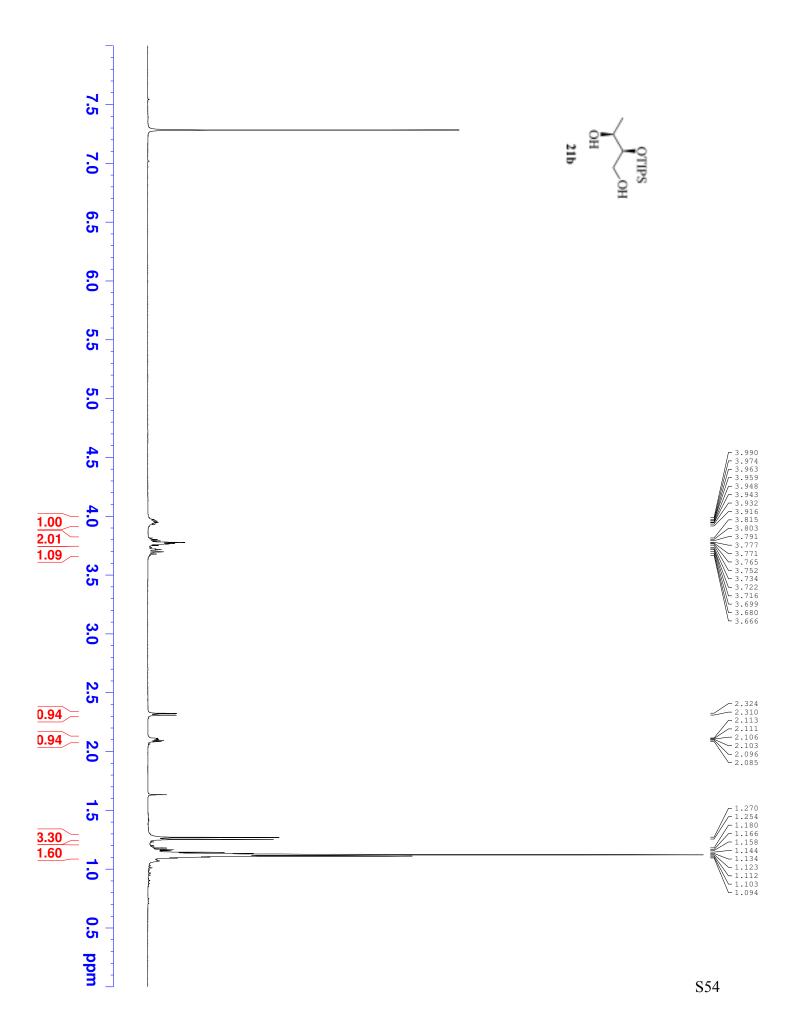


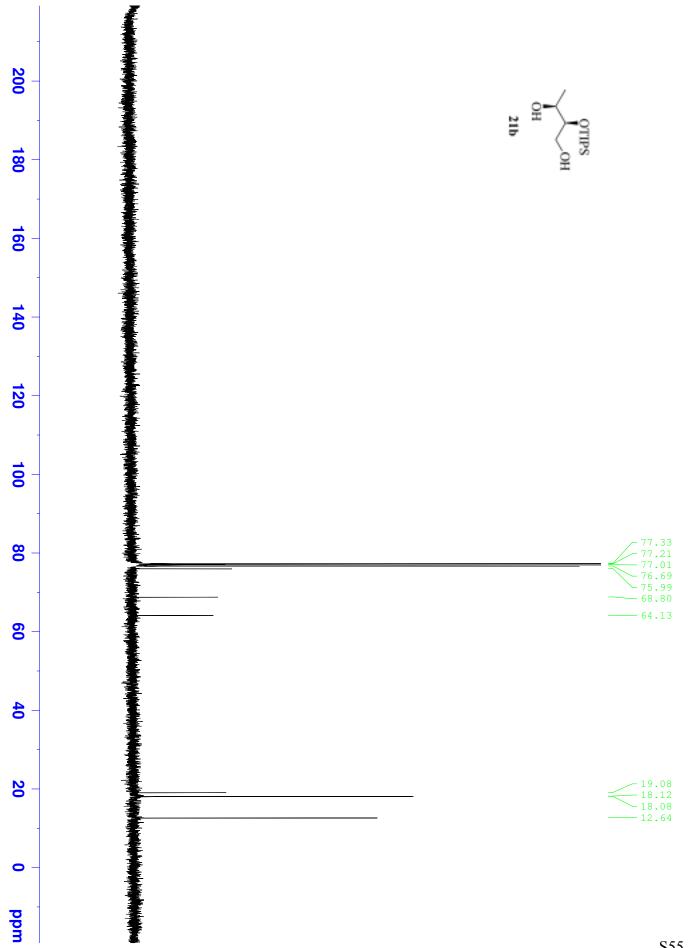


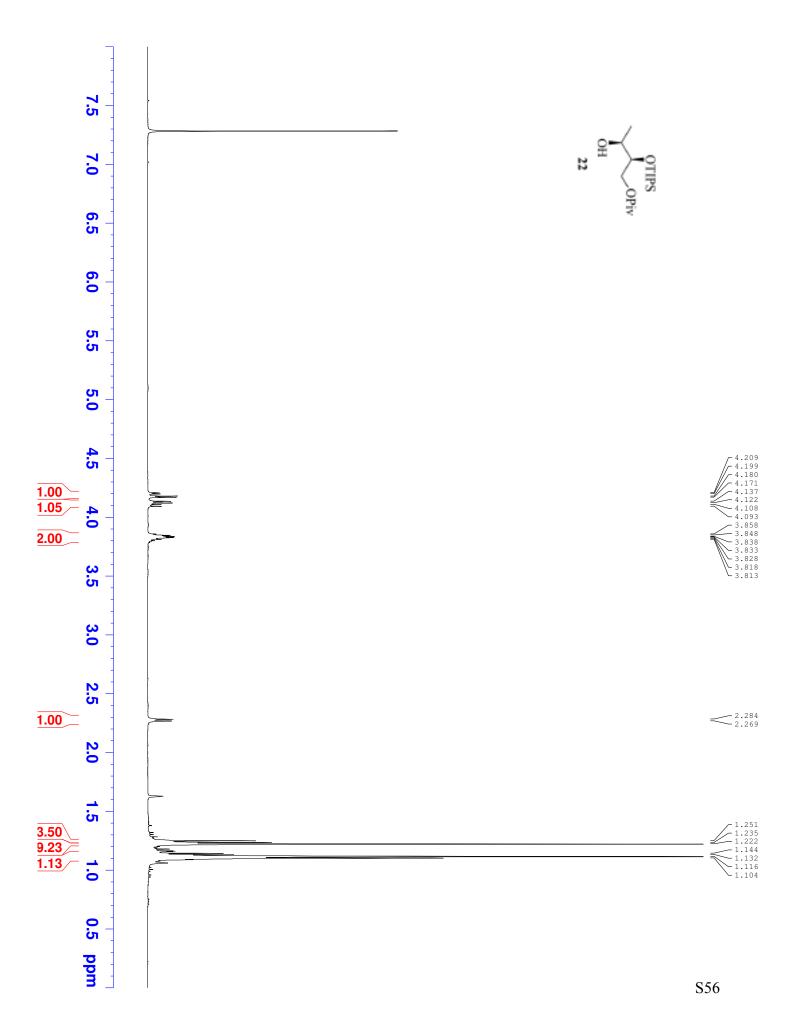


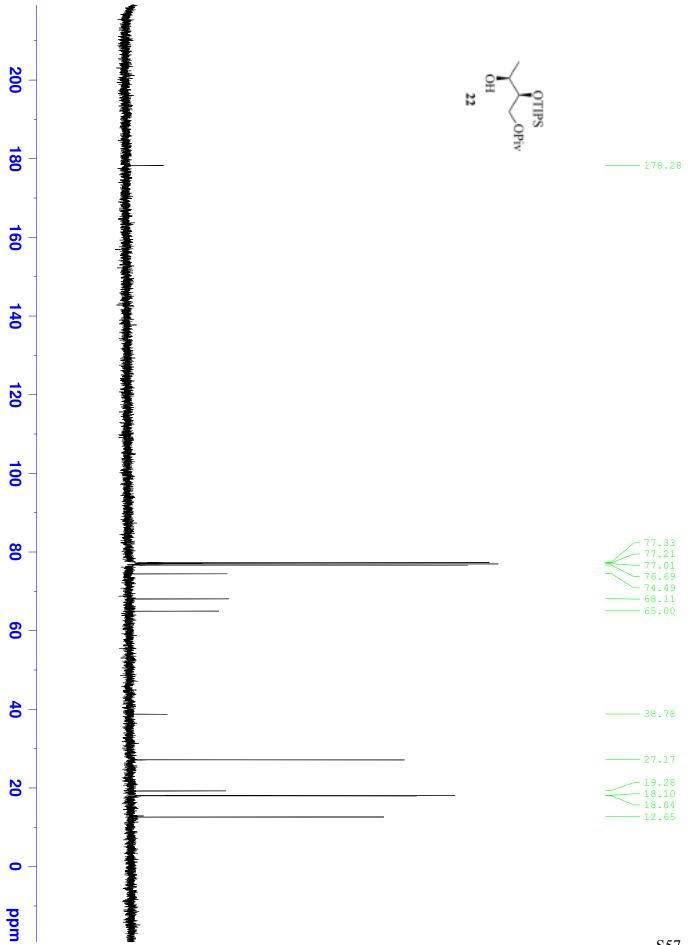


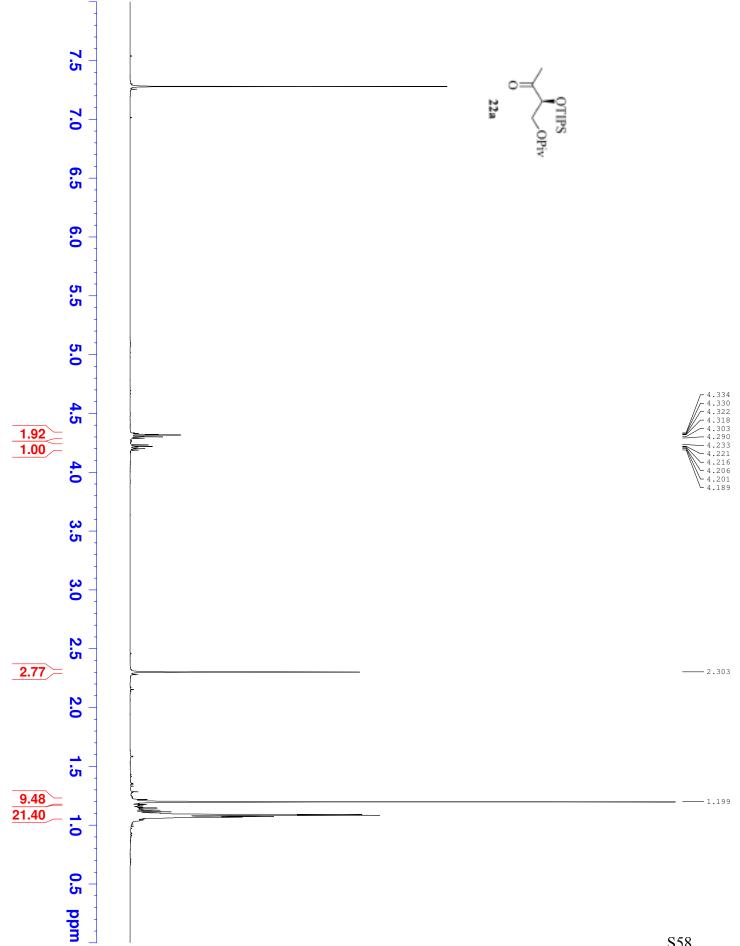


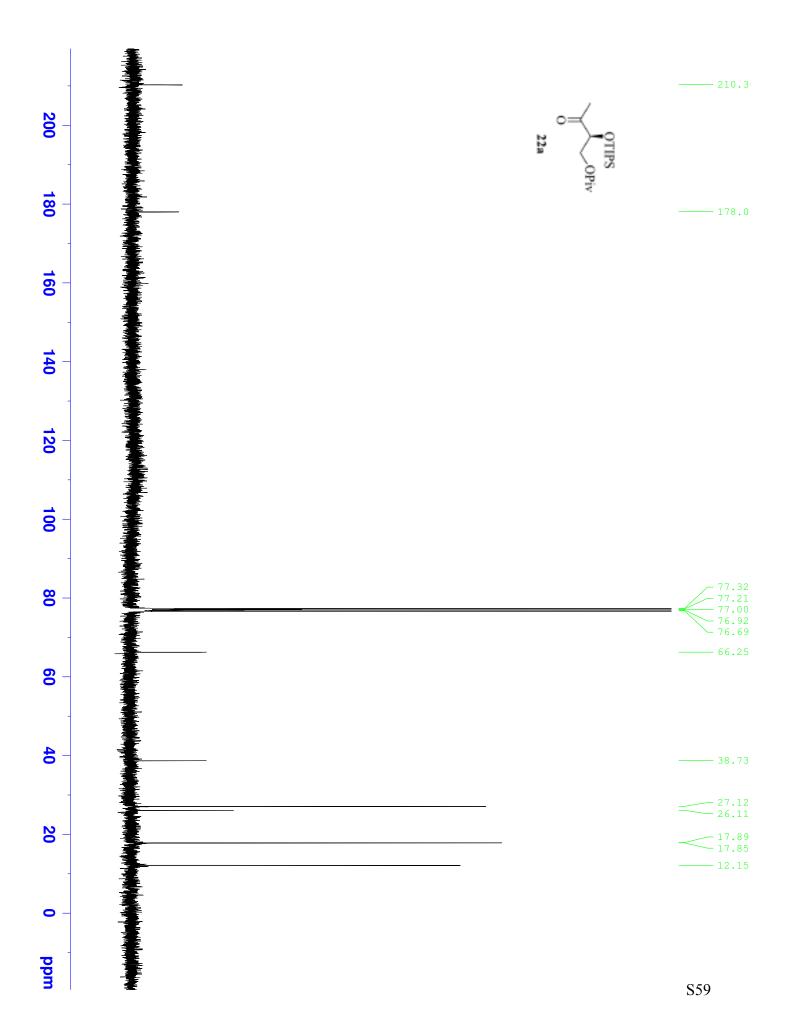


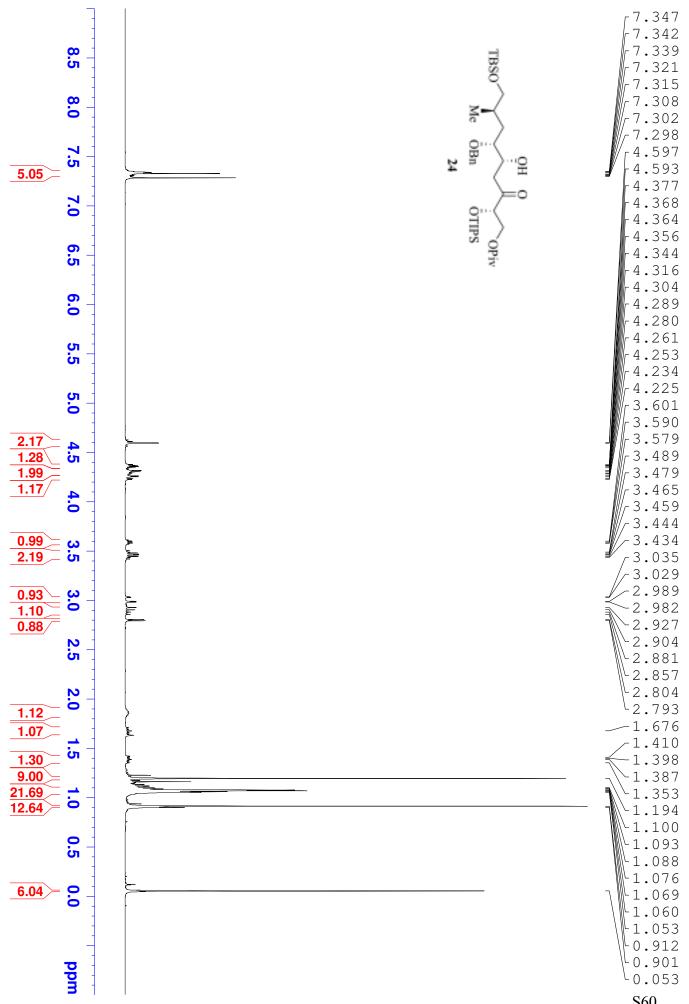


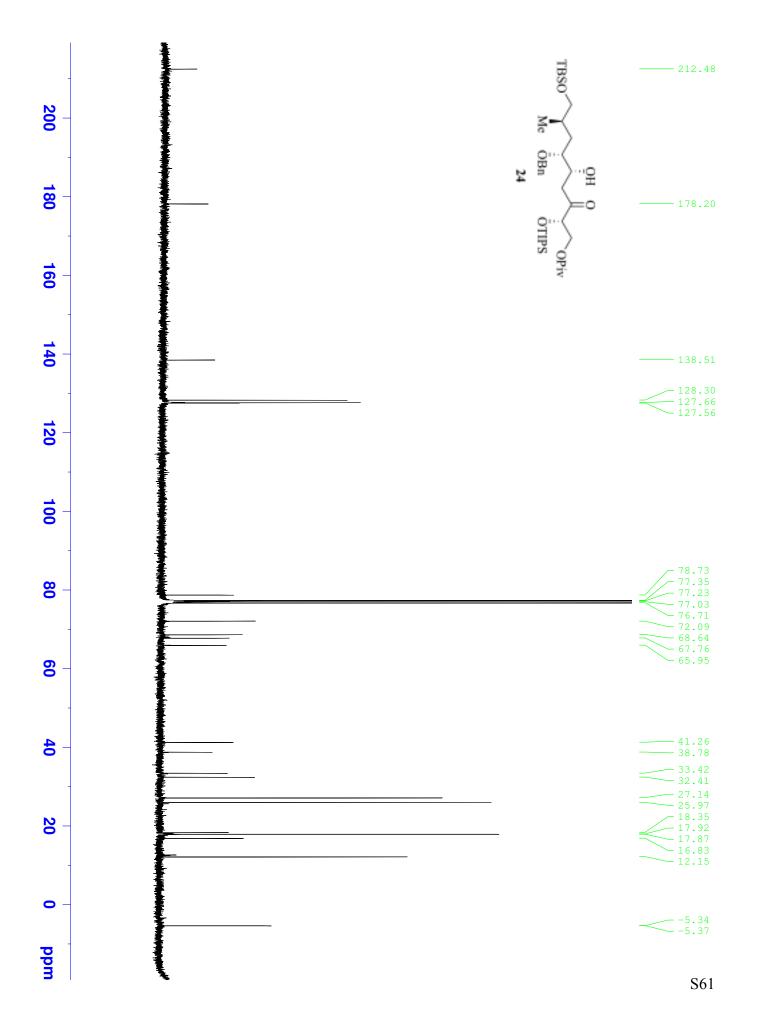


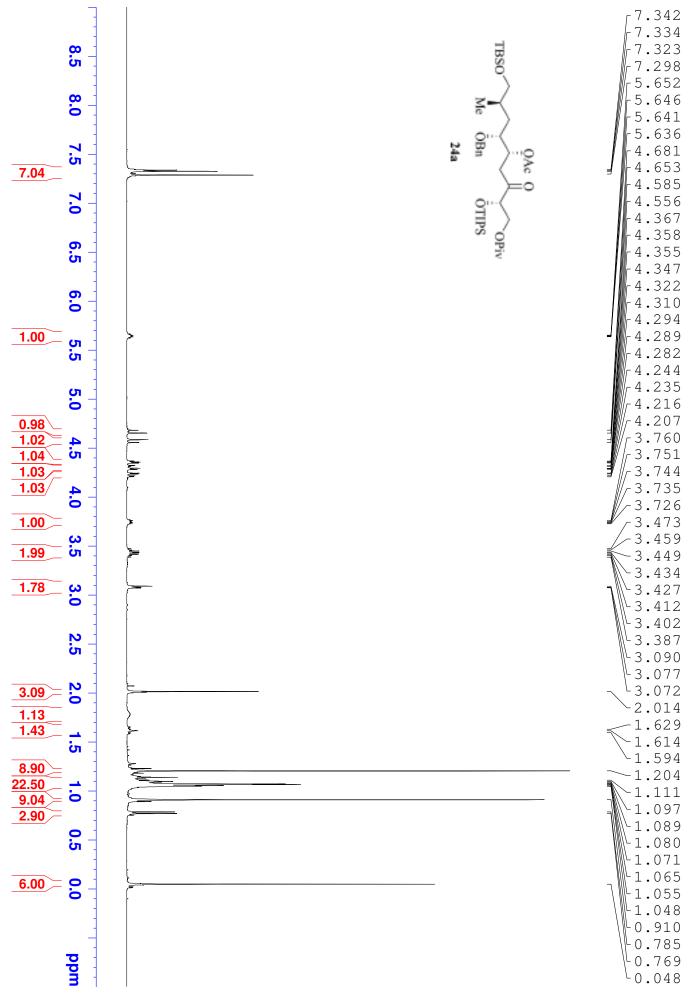


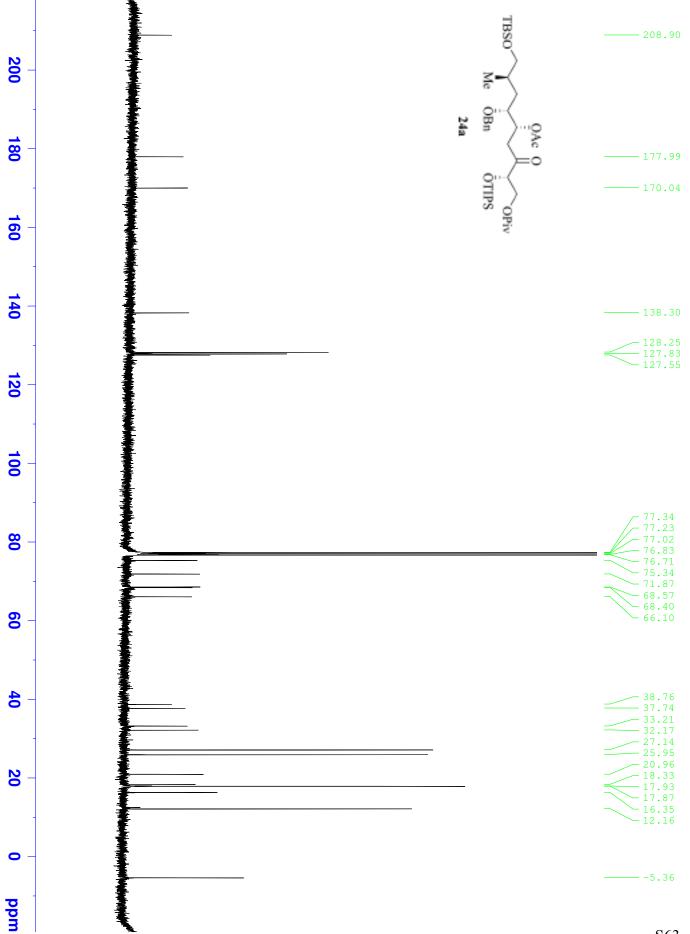











S58

