Supporting Information for

Synthesis of the C1-C21 Domain of Azaspiracid-3

Zhigao Zhang, Yue Ding, Jianyan Xu, Yong Chen, and Craig J. Forsyth*
Department of Chemistry \& Biochemistry, The Ohio State University, Columbus, Ohio 43210
forsyth@chemistry.ohio-state.edu

Contents

General Methods

Experimental Procedures and Characterization Data

 Literature References${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for all New Compounds

General Methods:

Unless otherwise noted, all reactions were carried out under an argon atmosphere in over-dried glassware using standard syringe, cannula, and septa techniques. Dichloromethane, tetrahydrofuran, diethyl ether, toluene, and dimethylformamide were purified with a Pure Solv MD-6 solvent purification system. Triethylamine, diisopropylethylamine, acetonitrile, methanol were distilled from calcium hydride under nitrogen. All other solvents were used as received.

Analytical thin layer chromatography (TLC) was performed using 0.25 mm Silicycle silica gel $60 \mathrm{~F}_{254}$ plates. Solvents for chromatography are listed as volume: volume ratios. Optical rotations were measured on a Perkin-Elmer polarimeter. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DPX 400 spectrometer, operating at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in ppm on the δ scale relative to residual $\mathrm{CHCl}_{3}\left(\delta=7.28\right.$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.2$ for ${ }^{13} \mathrm{C}$ NMR) as an internal reference. The coupling constant values (J) are in Hertz (Hz). The following abbreviations have been used for signal multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broad. ESI mass spectra were measured on a Bruker MicroOTOF instrument.

11

(S)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-((4-methoxybenzyl)oxy)butan-1-ol (11).

To a solution of $\mathbf{8}^{1}(10.8 \mathrm{~g}, 37 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise BH_{3} ($37.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 37 mmol). After 2 h at rt , the reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$. Water $(4.0 \mathrm{~mL}), 3 \mathrm{M}$ aqueous $\mathrm{NaOH}(13.2 \mathrm{~mL})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(8.7 \mathrm{~mL})$ were added sequentially. The mixture was stirred for 2 h at rt then diluted with water (200 mL). The pH was adjusted to $6-7$ with 10% aqueous HCl . The aqueous phase was extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$) and the combined organic phase was washed with saturated aqueous NaHCO_{3} and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to provide alcohol $11(7.94 \mathrm{~g}, 26 \mathrm{mmol}, 70 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33$ (hexanes-ethyl acetate, $\left.1: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 4.59\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=16 \mathrm{~Hz}, J_{\mathrm{AB}}=11 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.12(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{td}, J=6.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{~m}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 159.3,130.3,129.5$, $113.8,109.1,78.58,77.5,72.3,66.6,62.9,55.3,28.1,27.4,26.6,25.23$; IR (neat): 3436, $2935,1612,1513,1454,1370,1301,1248,1069 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+17.1\left(c 1.56, \mathrm{CHCl}_{3}\right)$; HRMS-ESI(m/z) calculated for $[\mathrm{M}+\mathrm{Na}]^{+} 333.1673$, found 333.1687.

12

(S)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-4-((4-methoxybenzyl)oxy)butanal (12).

To a solution of oxalyl chloride ($2.3 \mathrm{~mL}, 26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise DMSO ($3.6 \mathrm{~mL}, 52 \mathrm{mmol}$). After 20 min at $-78^{\circ} \mathrm{C}$, a solution of 11 (4.0
$\mathrm{g}, 13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added, then the solution was warmed to $-60{ }^{\circ} \mathrm{C}$. After 1 h at $-60^{\circ} \mathrm{C}, i-\mathrm{Pr}_{2} \mathrm{NEt}(13.5 \mathrm{~mL}, 77.4 \mathrm{mmol})$ was added. The mixture was stirred for 10 min at $-60^{\circ} \mathrm{C}$ and 10 min at $0^{\circ} \mathrm{C}$. Cold 1 M aqueous HCl solution (48 mL) was added. The organic phase was mixed with pH 7 aqueous buffer. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to provide aldehyde 12 ($3.92 \mathrm{~g}, 12.7 \mathrm{mmol}, 99 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.8$ (hexanes-ethyl acetate, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.75(\mathrm{t}, J=1.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.54\left(\mathrm{q}_{\mathrm{AB}}, \Delta \mathrm{v}=19 \mathrm{~Hz}, J_{\mathrm{AB}}=11.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 202.1,159.4,130.1,129.6,113.9,109.2$, 77.7, 72.2, 66.6, 55.3, 39.3, 26.6, 25.2, 23.3; IR (neat): 2984.3, 2930.1, 2883.6, 1721.5, $1613.0,1512.3,1307.7,1248.7,1070.7,1032.0,846.0 ;[\alpha]_{\mathrm{D}}{ }^{25}+8.14\left(c 1.5, \mathrm{CHCl}_{3}\right)$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 331.1516$, found 331.1521.

(3R/S,6S)-6-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-((4-methoxybenzyl)oxy)-1-(trimethylsilyl)hex-1-yn-3-ol (12a).

To a solution of trimethylsilylacetylene $(6.22 \mathrm{~mL}, 43.8 \mathrm{mmol})$ in THF $(130 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added dropwise a solution of $n-\operatorname{BuLi}(15.7 \mathrm{~mL}, 2.5 \mathrm{M}$ in THF, 40 mmol$)$. After 30 min at $-78^{\circ} \mathrm{C}$, a solution of $\mathbf{1 2}(4.5 \mathrm{~g}, 15 \mathrm{mmol})$ in THF (16 mL) was added slowly. The solution was allowed to stir for 1 h before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The aqueous phase was extracted with diethyl ether ($3 \times 80 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}$) to provide 12a ($5.0 \mathrm{~g}, 13 \mathrm{mmol}, 87 \%$) as a colorless oil:
$\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes-ethyl acetate, $\left.3: 1 \mathrm{v} / \mathrm{v}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.29(\mathrm{~m}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{q}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~d}, 3 \mathrm{H}), 1.36(\mathrm{~d}, 3 \mathrm{H}), 0.19(\mathrm{~d}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 159.33,159.27,130.30,130.06,129.66,129.51,113.84,113.82$, 109.12, 109.09, 106.76, 106.61, 89.52, 89.42, 78.35, 78.32, 77.29, 71.99, 71.85, 66.86, $66.62,62.70,62.55,55.23,32.87,32.44,26.66,26.60,26.23,25.66,25.28,25.26,-0.12$, 0.15 ; IR (neat): 3441.4 (broad), 2937.9, 1613.6, 1514.0, 1249.4, 1073.8, 843.5; HRMS$\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 429.2068$, found 429.2060.

13

(S)-6-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-((4-methoxybenzyl)oxy)-1-

(trimethylsilyl)hex-1-yn-3-one (13).

To a solution of $\mathbf{1 2 a}(4.5 \mathrm{~g}, 11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and DMSO $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were sequentially added $\mathrm{Et}_{3} \mathrm{~N}(9.2 \mathrm{~mL}, 67 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(7.6 \mathrm{~g}, 48 \mathrm{mmol})$. After 2 h at $0{ }^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added. The aqueous phase was extracted with diethyl ether ($3 \times 80 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to provide ketone 13 (3.7 g, 9.2 $\mathrm{mmol}, 83 \%$) as colorless oil: $\mathrm{R}_{\mathrm{f}}=0.57$ (hexanes-ethyl acetate, $3: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $4.07(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 187.3$, $159.3,130.3,129.5,113.9,109.2,102.0,97.8,77.6,72.2,66.7,55.3,40.5,26.6,25.3$, 24.8, -0.8; IR(neat): 2957.5, 2945.6, 2899.2, 1676.8, 1612.3, 1513.8, 1250.7, 1072.8, 847.1, 761.5; $[\alpha]_{\mathrm{D}}{ }^{25}+9.56\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; HRMS (ESI+) calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$: 427.1911, found 427.1903.

((2R,3S,6R)-6-Methoxy-3-((4-methoxybenzyl)oxy)-6-

((trimethylsilyl)ethynyl)tetrahydro-2H-pyran-2-yl)methanol (14).

To a solution of $\mathbf{1 3}(3.58 \mathrm{~g}, 8.86 \mathrm{mmol})$ in methanol $(30 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.17$ $\mathrm{g}, 0.89 \mathrm{mmol}$). After 2 h , diethyl ether and saturated aqueous NaHCO_{3} were added. The aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $8: 1, \mathrm{v} / \mathrm{v}$) to provide alcohol $14(2.2 \mathrm{~g}, 5.8 \mathrm{mmol}, 65 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.37$ (hexanes-ethyl acetate, 3:1, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.43\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=64 \mathrm{~Hz}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H})$, 3.44 (td, $J=10.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (s, 3H), $3.10(\mathrm{~m}, 3 \mathrm{H}), 1.91$ (m, 2H), 0.21 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta 159.3,130.1,129.3,113.9,101.9,94.1,89.0,73.2,72.5$, 70.3, 62.7, 55.2, 50.4, 35.6, 24.3, -0.27; IR (neat): 3502(broad), 2957, 2899, 1612, 1513, $1250,1152,1089,1040,846,760 ;[\alpha]_{\mathrm{D}}{ }^{25}+6.84$ (c 2.1, $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 401.1755$, found 401.1763.

15
(($(2 R, 5 S, 6 R)-6-((E)$-2-Iodovinyl)-2-methoxy-5-((4-methoxybenzyl)oxy)tetrahydro-2H-pyran-2-yl)ethynyl)trimethylsilane (15).
To a solution of $\mathbf{1 4}(1.0 \mathrm{~g}, 2.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and DMSO $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were sequentially added $i-\operatorname{Pr}_{2} \mathrm{NEt}(2.78 \mathrm{~mL}, 15.9 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(1.8 \mathrm{~g}, 11.4 \mathrm{mmol})$. After 5 min at $0{ }^{\circ} \mathrm{C}$, cold 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ was added. The separated organic phase was neutralized with pH 7 aqueous buffer. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography
(hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v})$ to provide the aldehyde $((2 R, 3 S, 6 R)-6$-methoxy-3-((4-methoxybenzyl)oxy)-6-((trimethylsilyl)ethynyl)tetrahydro-2H-pyran-2-yl)methanal as a colorless oil ($0.99 \mathrm{~g}, 2.6 \mathrm{mmol}, 96 \%)$. A solution of the aldehyde ($0.99 \mathrm{~g}, 2.6 \mathrm{mmol}$) and $\mathrm{CHI}_{3}(1.56 \mathrm{~g}, 3.96 \mathrm{mmol})$ in 1,4-dioxane (4 mL) was added dropwise via cannula to a 0 ${ }^{\circ} \mathrm{C}$ stirred suspension of powdered anhydrous $\mathrm{CrCl}_{2}(1.95 \mathrm{~g}, 15.9 \mathrm{mmol})$ in THF (24 mL). The mixture was allowed to warm to rt over 3 h . After stirring for an additional 9 h , saturated aqueous NaHCO_{3} was added. The separated aqueous phase was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $40: 1, \mathrm{v} / \mathrm{v}$) to provide vinyl iodide $\mathbf{1 5}(0.8 \mathrm{~g}, 2$ $\mathrm{mmol}, 75 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.60$ (hexanes-ethyl acetate, $5: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{dd}, J=$ $14.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=54 \mathrm{~Hz}, J_{\mathrm{AB}}=\right.$ $11.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.91 (ddd, $J=6.2 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.21$ $(\mathrm{td}, J=10 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}): \delta 159.3,143.2,130.1,129.4,113.9,101.7,94.1,89.1,79.8,75.2,75.1,70.8$, 55.3, 50.5, 35.5, 24.8, -0.03; IR (neat): 2955, 1513, 1249, 1085, 1043, 944, 859, 844, 760; $[\alpha]_{\mathrm{D}}{ }^{25}+6.57\left(c \quad 1.6, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 523.0772$, found 523.0765 .

tert-Butyl(((E)-5-((2R,3S,6R)-6-methoxy-3-((4-methoxybenzyl)oxy)-6-((trimethyl-silyl)ethynyl)tetrahydro-2H-pyran-2-yl)pent-4-en-1-yl)oxy)diphenylsilane (16).
To a solution of 3-(O-tert-butyldimehtylsilyl)oxy-propene ($720 \mathrm{mg}, 2.4 \mathrm{mmol}$) in THF $(13 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added a solution of $9-\mathrm{BBN}(6.4 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 3.2 mmol). The solution was slowly warmed to rt then stirred at rt for 2 h . To this solution was added a solution of 3 M aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(1.06 \mathrm{~mL}, 1.2 \mathrm{mmol})$ in DMF $(1.1 \mathrm{~mL})$. After stirring for 30 min at rt , the mixture was added to a mixture of vinyl iodide (600 $\mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(98 \mathrm{mg}, 0.12 \mathrm{mmol})$ via cannula. After 5 min
diethyl ether $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added. The separated aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $40: 1$, v/v) to provide $16(760 \mathrm{mg}, 1.16$ mmol, 95%) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.62$ (hexanes-ethyl acetate, $5: 1, \mathrm{v} / \mathrm{v}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.69$ (dd, $J=7.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.42 ($\mathrm{m}, 6 \mathrm{H}$), 7.22 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{dt}, J=15.4 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.2$ $\mathrm{Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=25 \mathrm{~Hz}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.88(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{td}, J=9.5 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ $(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$, 0.20 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): δ 159.1, 135.6, 134.9, 134.0, 130.5, 129.5, $129.3,127.9,127.6,113.7,102.3,94.0,88.5,75.7,74.6,70.9,63.5,55.2,50.4,35.9,31.9$, 28.9, 26.9, 25.1, 19.2, -0.2; IR (neat): 2933.1, 2856.8, 1612.0, 1513.0, 1249.5, 1109.9, 844.2, 702.5; $[\alpha]_{\mathrm{D}}{ }^{25}+4.32\left(c\right.$ 1.6, $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}:$ 693.3402, found 693.3434.

16a
(2R,3S,6R)-2-((E)-5-((tert-Butyldiphenylsilyl)oxy)pent-1-en-1-yl)-6-methoxy-6-((trimethylsilyl)ethynyl)tetrahydro-2H-pyran-3-ol (16a).

To a stirred, rt mixture of $\mathbf{1 6}(406 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{pH} 7$ aqueous buffer (1 mL), and tert-butanol (0.5 mL) was added DDQ ($412 \mathrm{mg}, 1.8 \mathrm{mmol}$). After 10 min, diethyl ether $(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ were added. The separated aqueous phase was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to provide $\mathbf{1 6 a}(299 \mathrm{mg}, 0.54 \mathrm{mmol}, 90 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.62$ (hexanes-ethyl acetate, $3: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.69$ (dd, $J=7.7 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.42 (m, 6H), 5.87 (dt, $J=15.4 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (dd, $J=15.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{q}, J=6.8 \mathrm{~Hz} 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{td}, J=13$
$\mathrm{Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.07$ (s, 9H), $0.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 137.2,135.6,134.0,129.6,127.6$, $127.2,102.1,94.1,88.8,76.7,68.6,63.2,50.5,35.9,31.7,28.8,26.9,26.8,19.2,-0.2$; IR (neat): 3420.1 (broad), 3070.8, 2933.8, 2858.0, 1428.2, 1251.1, 1111.3, 1049.6, 944.6, 860.0, 702.1; $[\alpha]_{\mathrm{D}}{ }^{25}+5.48\left(c \quad 1.07, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}:$ 573.2852, found 573.2827.

(2R,6R)-2-((E)-5-((tert-Butyldiphenylsilyl)oxy)pent-1-en-1-yl)-6-methoxy-6-((trimethylsilyl)ethynyl)dihydro-2H-pyran-3(4H)-one (17).

To a stirred solution of $\mathbf{1 6 a}(410 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and DMSO $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were sequentially added $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.77 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(510 \mathrm{mg}, 3.2$ $\mathrm{mmol})$. After 10 min at $0^{\circ} \mathrm{C}$, an aqueous 1 M solution of $\mathrm{HCl}(3 \mathrm{~mL})$ was added. The organic phase was separated and neutralized with pH 7 aqueous buffer. The separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $15: 1, \mathrm{v} / \mathrm{v}$) to provide 17 ($400 \mathrm{mg}, 0.72 \mathrm{mmol}, 96 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.72$ (hexanes-ethyl acetate, $5: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.69(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}), 5.78$ (dt, $J=12.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{q}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 207.6$, 136.7, 135.5, 134.0, 129.5, 127.6, 122.8, 101.0, 94.8, 90.0, 77.1, 63.2, 51.4, 35.6, 33.7, 31.6, 28.8, 26.8, 19.2, -0.3; IR (neat): 3048.1, 2957.1, 2856.7, 1733.7, 1471.8, 1427.7, $1250.9,1110.8,1048.2,932.3,844.4,702.5 ;[\alpha]_{\mathrm{D}}{ }^{25}+10.8\left(c 0.59, \mathrm{CHCl}_{3}\right)$; HRMS$\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 571.2666$, found 571.2670 .

tert-Butyl(((E)-5-((2R,6R)-6-methoxy-6-((trimethylsilyl)ethynyl)-5,6-dihydro-2H-pyran-2-yl)pent-4-en-1-yl)oxy)diphenylsilane (18).
To a stirred solution of $17(420 \mathrm{mg}, 0.76 \mathrm{mmol})$ in THF (8 mL) at $-78{ }^{\circ} \mathrm{C}$ was sequentially added Comins' reagent ($450 \mathrm{mg}, 1.14 \mathrm{mmol}$) and KHMDS ($2.3 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 1.14 mmol). After 10 min at $-78^{\circ} \mathrm{C}$, pH 7 aqueous buffer (8 mL) was added. The separated aqueous phase was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes $+0.3 \% \mathrm{Et}_{3} \mathrm{~N}$, v / v) to provide the vinyl triflate ($477 \mathrm{mg}, 0.70 \mathrm{mmol}, 92 \%$) as a pale yellow oil. To a stirred rt solution of the vinyl triflate ($477 \mathrm{mg}, 0.70 \mathrm{mmol}$) in THF (7 mL) was added $\mathrm{LiCl}(294 \mathrm{mg}, 7 \mathrm{mmol})$ and $n \mathrm{Bu}_{3} \mathrm{SnH}(0.55 \mathrm{~mL}, 2.1 \mathrm{mmol})$. To the mixture was slowly added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(81 \mathrm{mg}, 0.07 \mathrm{mmol})$. After stirring for 10 min at rt , saturated aqueous $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$ was added. The separated aqueous phase was extracted with diethyl ether (3 x 10 mL). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $200: 1, \mathrm{v} / \mathrm{v}$) to provide 18 ($289 \mathrm{mg}, 0.54 \mathrm{mmol}, 77 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.58$ (hexanes-ethyl acetate, $\left.10: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ $7.69(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}), 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dt}, J=10.5 \mathrm{~Hz}, 1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.3 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}-\mathrm{broad}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}$, 9H), 0.21 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.6,134.0,133.9,129.5,128.6$, $127.6,127.5,120.1,102.2,94.0,89.2,71.0,63.3,51.3,36.1,31.7,28.6,26.9,19.2,-0.2$; IR (neat): 3042.9, 2956.4, 1659.9, 1471.7, 1250.3, 1182.5, 1110.8, 1016.6, 863.5, 701.9, 613.4; $[\alpha]_{\mathrm{D}}{ }^{25}+3.5\left(c 1.5, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 555.2727$, found 555.2726.

tert-Butyl(((E)-5-((2R,6R)-6-(iodoethynyl)-6-methoxy-5,6-dihydro-2H-pyran-2-yl)pent-4-en-1-yl)oxy)diphenylsilane (6).

To a stirred solution of $\mathbf{1 8}(87 \mathrm{mg}, 0.16 \mathrm{mmol})$ in DMF $(1.5 \mathrm{~mL})$ at rt was added NIS (47 $\mathrm{mg}, 0.21 \mathrm{mmol}$) and $\operatorname{AgOTf}(36.1 \mathrm{mg}, 0.16 \mathrm{mmol})$. Diethyl ether (3 mL) and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ were added. The aqueous phase was extracted with diethyl ether (3 x 5 mL). The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanesethyl acetate, $40: 1, \mathrm{v} / \mathrm{v}$) to provide $6(79 \mathrm{mg}, 0.13 \mathrm{mmol}, 82 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=$ 0.42 (hexanes-ethyl acetate, $10: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.69$ (dd, $J=7.7$ $\mathrm{Hz}, 1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 6 \mathrm{H}), 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dt}, J=10.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}$, $J=15 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}-\mathrm{broad}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.72$ $(\mathrm{m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 135.6,134.2,134.0,129.5,128.3,127.6,127.5,120.6,95.0,92.6$, 71.1, 63.2, 51.6, 36.1, 31.7, 28.6, 26.9, 19.2, 3.8; IR (neat): 3069.7, 3042.9, 2930.9, 2855.5, 2180.9, 1660.0, 1588.9, 1470.6, 1427.2, 1232.0, 1182.4, 1110.2, 1016.2, 1036.6, 967.1, 822.9, 702.2, 505.5; $[\alpha]_{\mathrm{D}}{ }^{25}+10.4\left(c 0.85, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-\operatorname{ESI}(\mathrm{m} / \mathrm{z})$ calculated for $[\mathrm{M}+\mathrm{Na}]^{+}: 609.1298$, found 609.1294.

(2R,4R)-2-(Benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-4-methylpentan-1-ol (10a).
To a stirred solution of diol ${ }^{2} \mathbf{1 0}(92 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt was added benzaldehyde dimethoxy acetal ($0.13 \mathrm{~mL}, 0.91 \mathrm{mmol}$) and PPTS ($10 \mathrm{mg}, 42 \mu \mathrm{~mol})$. The solution was stirred at rt for 2 h before saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added. The organic phase was separated and the aqueous layer was extracted with diethyl ether ($3 \times 2 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-
ethyl acetate, $20: 1 \mathrm{v} / \mathrm{v}$) to give the benzylidene acetal ($125 \mathrm{mg}, 0.37 \mathrm{mmol}, 99 \%$) as a colorless oil. To a stirred solution of the benzylidene acetal ($125 \mathrm{mg}, 0.370 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of DIBAL-H (0.75 mL of 1.0 M solution in $\mathrm{PhMe}, 0.75 \mathrm{mmol})$. The solution was warmed to rt over 1 h before a saturated aqueous solution of sodium potassium tartrate $(10 \mathrm{~mL})$ and diethyl ether $(10 \mathrm{~mL})$ were added. The separated aqueous layer was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $7: 1, \mathrm{v} / \mathrm{v}$) to give alcohol 10a ($88 \mathrm{mg}, 0.26 \mathrm{mmol}, 70 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33$ (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.30-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.63\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=11.4\right.$ $\left.\mathrm{Hz}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.76$ (ddd, $\left.J=8.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.56$ (dt, $J=11.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}$, $2 \mathrm{H}), 1.26$ (ddd, $J=15.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91-0.93(\mathrm{~m}, 13 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 138.5,128.5,127.8,127.7,77.9,71.4,68.4,64.6,34.9,32.3$, $25.9,18.3,17.2,-5.4$; IR (neat): $3420,2928,2856,1255,1096 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-6.2$ (c 1.02 , CHCl_{3}); HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 361.2175$, found: 361.2169.

20

(2R,4R)-2-(Benzyloxy)-5-((tert-butyldimethylsilyl)oxy)-4-methylpentanal (20).

To a stirred solution of alcohol 10a ($75 \mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and DMSO (1 mL) at $0{ }^{\circ} \mathrm{C}$ were added $i \operatorname{Pr}_{2} \mathrm{NEt}(233 \mu \mathrm{~L}, 1.34 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \operatorname{Py}(142 \mathrm{mg}, 892 \mu \mathrm{~mol})$. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min before a $0^{\circ} \mathrm{C} 1 \mathrm{M}$ aqueous solution of $\mathrm{HCl}(5$ mL) was added. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic phase was washed with pH 7 buffer solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $12: 1$, v/v) to give aldehyde $20(74 \mathrm{mg}, 0.22$ mmol, 99%) as a colorless oil.
$\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes-ethyl acetate, $\left.10: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.68(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.72\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=83 \mathrm{~Hz}, J_{\mathrm{AB}}=11.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.89(\mathrm{ddd}, J$ $=9.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{ddd}, J=14.0$, $9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (ddd, $J=14.0,8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 203.9,137.4,128.5,128.1,81.7,72.6$, $68.2,33.4,31.8,25.9,18.3,16.2,-5.4$; IR (neat): 2954, 2928, 1733, $1059 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-$ 56.8 (c 1.05, CHCl_{3}); HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}^{+}\right]$: 391.2281, found: 391.2278 .

21

(2R,3S)-Ethyl 2,3-dihydroxybutanoate (21).

To a stirred suspension of AD-mix- $\alpha(24 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ and t - $\mathrm{BuOH}(80 \mathrm{~mL})$ at rt were added methyl sulfonamide $(1.66 \mathrm{~g}, 17.5 \mathrm{mmol})$ and ethyl $(2 E)$-butenoate $(9,2.00 \mathrm{~g}$, 17.5 mmol). After stirring for 12 h , a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(50 \mathrm{~mL})$ and diethyl ether (100 mL) were added. The separated aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $2: 1, \mathrm{v} / \mathrm{v}$) to give diol $21(1.86 \mathrm{~g}, 11.4 \mathrm{mmol}, 65 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.79$ (hexanes-ethyl acetate, $\left.1: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 4.30(\mathrm{q}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.03$ (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.34(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 173.4,74.3,68.7,62.1,19.7,14.1$; IR (neat): $3417,2980,1735,1144 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{25}+11\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{3} \mathrm{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 171.0633$, found: 171.0630 .

21a

(2R,3S)-Ethyl 3-hydroxy-2-((triisopropylsilyl)oxy)butanoate (21a).

To a stirred rt solution of $21(1.86 \mathrm{~g}, 11.4 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at rt was added imidazole ($1.11 \mathrm{~g}, 16.3 \mathrm{mmol}$), TIPSCl ($3.22 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and DMAP ($0.15 \mathrm{~g}, 1.3$ $\mathrm{mmol})$. After stirring for 12 h , diethyl ether (100 mL) and water were added. The separated aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}$) to give ester 21a ($1.7 \mathrm{~g}, 5.6 \mathrm{mmol}, 44 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.61$ (hexanes-ethyl acetate, 1:1, $\mathrm{v} / \mathrm{v})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.21-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.17(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 172.2,76.7,69.9,61.0,18.9,17.9,14.2,12.4$; IR (neat): 3495, 2943, 2867, 1751, $1151 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+22.2\left(\mathrm{c} 1.20, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-E S I(\mathrm{~m} / z)$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 327.1968$, found: 327.1973 .

21b

(2S,3S)-2-((Triisopropylsilyl)oxy)butane-1,3-diol (21b).

To a stirred solution of $21 \mathrm{a}(1.70 \mathrm{~g}, 5.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIBAL (24.9 mL of 1.0 M solution in toluene, 24.9 mmol). The solution was warmed to rt over 30 min and saturated sodium potassium tartrate solution $(30 \mathrm{~mL})$ was added. The resulting mixture was diluted with diethyl ether (100 mL) and the separated aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to give diol 21b (1.28 $\mathrm{g}, 4.86 \mathrm{mmol}, 87 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.46$ (hexanes-ethyl acetate, $2: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.94(\mathrm{dq}, J=10.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.71$
$(\mathrm{m}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) 1.09-1.17(\mathrm{~m}$, $21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 76.0,68.8,64.1,19.1,18.1,12.6$; IR (neat): 3368, 2942, 2866, 1462, $1086 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+8.3\left(\mathrm{c} 1.30, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-E S I(m / z)$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 285.1862$, found: 285.1861 .

22
(2S,3S)-3-Hydroxy-2-((triisopropylsilyl)oxy)butyl pivalate (22).
To a stirred solution of $\mathbf{2 1 b}(0.72 \mathrm{~g}, 2.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt was added pyridine ($0.44 \mathrm{~mL}, 5.4 \mathrm{mmol}$), pivaloyl chloride ($0.34 \mathrm{~mL}, 2.8 \mathrm{mmol}$) and DMAP (33 mg , 0.27 mmol). The solution was stirred at rt for 12 h then a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added. The resulting mixture was diluted with diethyl ether (100 mL) and the separated aqueous layer was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $20: 1, \mathrm{v} / \mathrm{v})$ to give alcohol $22(1.28 \mathrm{~g}, 3.69 \mathrm{mmol}, 77 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.60$ (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 4.19$ (dd, $J=10.6 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.10-1.14(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta 178.3,74.5,68.1,65.0,38.8,27.2,19.3,18.1,18.0,12.6$; IR (neat): 3486, 2944, 2867, 1731, $1161 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+12.1\left(\mathrm{c} 1.35, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}$-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 369.2437$, found: 369.2431.

22a

(S)-3-Oxo-2-((triisopropylsilyl)oxy)butyl pivalate (22a).

To a stirred solution of $22(1.05 \mathrm{~g}, 3.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and DMSO $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $i \operatorname{Pr}_{2} \mathrm{NEt}(3.16 \mathrm{~mL}, 18.2 \mathrm{mmol})$, and $\mathrm{SO}_{3} \cdot \operatorname{Py}(1.92 \mathrm{~g}, 12.6 \mathrm{mmol})$. The
solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min before a cold 1 M HCl solution (30 mL) was added. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic phase was washed with pH 7 aqueous buffer then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $40: 1, \mathrm{v} / \mathrm{v}$) to give ketone 22a ($0.98 \mathrm{~g}, 2.9$ mmol, 94\%) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.71$ (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.30-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=10.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $1.20(\mathrm{~s}, 9 \mathrm{H}), 1.08-1.15(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 210.3,178.0,76.9$, 68.3, 66.4, 38.7, 27.1, 26.1, 19.3, 18.0, 17.9, 12.2; IR (neat): 2944, 2867, 1735, $1143 \mathrm{~cm}^{-}$ ${ }^{1} ;[\alpha]_{\mathrm{D}}{ }^{25}-5.9\left(\mathrm{c} 1.01, \mathrm{CHCl}_{3}\right)$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 367.2281$, found: 367.2282.

23

(S)-2-((Triisopropylsilyl)oxy)-3-((trimethylsilyl)oxy)but-3-en-1-yl pivalate (23).

To a stirred solution of $\mathbf{2 2 a}(0.98 \mathrm{~g}, 2.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at rt was sequentially added $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8.61 \mathrm{mmol})$ and $\operatorname{TMSOTf}(1.04 \mathrm{~mL}, 5.75 \mathrm{mmol})$. The solution was stirred at rt for 30 min before saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The organic phase was separated and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), pH 7 aqueous buffer (10 mL), and brine $(10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was dissolved in benzene and concentrated to give enol ether $23(1.17 \mathrm{~g}, 2.85 \mathrm{mmol}, 99 \%)$ as a yellow oil, which was used without further purification.

(2S,5R,6R,8R)-6-(Benzyloxy)-9-((tert-butyldimethylsilyl)oxy)-5-hydroxy-8-methyl-3-oxo-2-((triisopropylsilyl)oxy)nonyl pivalate (24).

To a stirred solution of aldehyde $20(58 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{SnCl}_{4}(0.1 \mathrm{~mL}, 0.9 \mathrm{mmol})$, the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min before a
solution of enol ether $\mathbf{2 3}(218 \mathrm{mg}, 524 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added via cannula. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 25 min before saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The mixture was diluted with diethyl ether and warmed to rt. The organic phase was separated and the aqueous layer was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 7: $1, \mathrm{v} / \mathrm{v}$) to give ketone $24(90 \mathrm{mg}, 0.13 \mathrm{mmol}, 76 \%)$ as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.25$ (hexanes-ethyl acetate, $10: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.30-7.35(\mathrm{~m}, 5 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=4.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{d}, J=10.8$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 (dt, $J=8.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (dd, $J=9.6 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, $J=9.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=18.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=18.4 \mathrm{~Hz}, 9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86($ sextet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{ddd}, J=18.0 \mathrm{~Hz}, 8.4$ $\mathrm{Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (ddd, $J=18.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19$ (s, 9H), 1.05-1.10 (m, $21 \mathrm{H})$ 0.90-0.91 (m, 12H), $0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 212.5,178.2$, $138.5,128.3,127.7,127.6,78.7,72.1,68.6,67.8,66.0,41.2,38.8,33.4,32.4,27.1,26.0$, $18.4,17.9,16.8,12.2,-5.3,-5.4$; IR (neat): $3527,2955,1731,1462,1143 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+$ 13.2 (c $0.95, \mathrm{CHCl}_{3}$); HRMS-ESI (m / z) calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 703.4401, found: 703.4402 .

(2S,5R,6R,8R)-5-Acetoxy-6-(benzyloxy)-9-((tert-butyldimethylsilyl)oxy)-8-methyl-3-oxo-2-((triisopropylsilyl)oxy)nonyl pivalate (24a).

To a stirred solution of ketone $24(90 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt was added sequentially pyridine ($54 \mu \mathrm{~L}, 0.67 \mathrm{mmol}$), DMAP ($3.2 \mathrm{mg}, 26 \mu \mathrm{~mol}$) and acetyl chloride ($38 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$). The solution was stirred at rt for 5 min before saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added. The resulting mixture was diluted with diethyl ether (10 mL) and the separated aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and
concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to give ketone $\mathbf{2 4 a}\left(90 \mathrm{mg}, 0.13 \mathrm{mmol}, 94 \%\right.$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.33$ (hexanes-ethyl acetate, $10: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.30-7.34(\mathrm{~m}, 5 \mathrm{H})$, $5.64(\mathrm{ddd}, J=9.2 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66\left(\mathrm{q}_{\mathrm{AB}}, \Delta v=37 \mathrm{~Hz}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 4.36 (dd, $J=4.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dd, $J=11.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=11.2$ $\mathrm{Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (dt, $J=10.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.41 (dd, $J=10.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (ddd, J $=14.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.05-1.11(\mathrm{~m}, 21 \mathrm{H}) 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 208.9,178.0,170.0,138.3$, $128.3,127.8,127.6,76.8,75.3,71.9,68.6,68.4,66.1,38.8,37.7,33.2,32.2,27.1,26.0$, $21.0,18.3,17.9,16.4,12.2,-5.4$; IR (neat): 2954, 1738, 1462, 1238, $1142 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+$ 10.1 (c 1.00, CHCl_{3}); HRMS-ESI (m / z) calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 745.4507 , found: 745.4513 .

25a
(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-3-hydroxy-2-methylpropyl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (25a).

To a stirred solution of ketone 24a ($90 \mathrm{mg}, 0.13 \mathrm{mmol}$) in ethyl acetate $(5 \mathrm{~mL})$ at rt was added $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon ($44 \mathrm{mg}, 20 \%, 62 \mu \mathrm{~mol}$). The resulting suspension was degassed and flushed with H_{2} three times. The suspension was then stirred at rt for 15 min, filtered through celite and washed with ethyl acetate. The combined organic phase was concentrated and purified by flash chromatography (hexanes-ethyl acetate, 10:1, v/v) to give alcohol 25 ($79 \mathrm{mg}, 0.013 \mathrm{mmol}, 99 \%$) as a colorless oil. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. To the stirred solution were sequentially added $\mathrm{Et}_{3} \mathrm{SiH}(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol})$ and $\mathrm{SnCl}_{4}(29 \mathrm{~mL}, 0.25 \mathrm{mmol})$. The solution was warmed to $-30{ }^{\circ} \mathrm{C}$ over 1 h with stirring. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The resulting mixture was warmed to rt , diluted with diethyl ether $(10 \mathrm{~mL})$ and the separated aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic phase
was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 7:1, v/v) to give alcohol 25a (38 $\mathrm{mg}, 77 \mu \mathrm{~mol}, 60 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.53$ (hexanes-ethyl acetate, $2: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 5.35$ (t, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (ddd, $J=9.2 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.46(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=17.6 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.03$ (dd, $J=14.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (octet, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 (ddd, $J=14.4 \mathrm{~Hz}, 10.0$ $\mathrm{Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.43 (ddd, $J=14.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.22 (s, 9H), 1.06-1.12 (m, $21 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.3,170.6,80.7,77.8$, $76.3,72.2,68.2,65.4,38.8,34.5,34.3,34.0,27.2,21.1,18.1,17.8,12.7$; IR (neat): 3460, 2945, 2867, 1732, 1241, $1137 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+10.0\left(\mathrm{c} 0.84, \mathrm{CHCl}_{3}\right) ; \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 525.3224$, found: 525.3220.

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-2-methyl-3-oxopropyl)tetrahydrofuran-2-yl)-2-

 ((triisopropylsilyl)oxy)ethyl pivalate (7).To a stirred solution of alcohol 25a ($38 \mathrm{mg}, 77 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DMSO (1 mL) at $0{ }^{\circ} \mathrm{C}$ was sequentially added $i \mathrm{Pr}_{2} \mathrm{NEt}(0.10 \mathrm{~mL}, 0.58 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(48 \mathrm{mg}$, 0.30 mmol). The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min before a $0{ }^{\circ} \mathrm{C}$ aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 3 \mathrm{~mL})$ was added. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The combined organic phases were washed with $\mathrm{pH}=$ 7 aqueous buffer, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 10:1, v/v) to give aldehyde $7(38 \mathrm{mg}, 76$ $\mu \mathrm{mol}, 99 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes-ethyl acetate, $4: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.67(\mathrm{~d}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (ddd, $J=10.8$ $\mathrm{Hz}, 6.8 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{dt}, J=10.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (q, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (sextet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (ddd, $J=14.0 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{ddd}, J=14.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}$,
$9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.09(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 204.4$, $178.3,170.5,78.8,77.8,75.7,72.6,65.5,43.9,38.8,34.5,30.2,27.2,21.0,18.1,13.2$, 12.7; IR (neat): 2944, 2867, 2714, 1731, 1237, $1139 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}+4.0$ (c 1.01, CHCl_{3}); HRMS-ESI (m / z) calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 523.3067$, found: 523.3068.

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-5-((2R,6R)-6-((E)-5-((tert-

butyldiphenylsilyl)oxy)pent-1-en-1-yl)-2-methoxy-3,6-dihydro-2H-pyran-2-yl)-2-methyl-3-oxopent-4-yn-1-yl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (26a).

To a mixture of $\mathrm{CrCl}_{2}(42 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(0.2 \mathrm{mg}, 1.5 \mu \mathrm{~mol})$ at rt was added a solution of aldehyde $7(38 \mathrm{mg}, 76 \mu \mathrm{~mol})$ and iodide $6(35 \mathrm{mg}, 60 \mu \mathrm{~mol})$ in THF (3 mL) via cannula. The suspension was stirred at rt for 12 h before diethyl ether $(10 \mathrm{~mL})$ and an aqueous solution of 1 M serine saturated with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added. The resulting mixture was stirred at rt for 1 h . The organic phase was separated and the aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 5:1, v/v) to give alcohol 26 (45 $\mathrm{mg}, 47 \mu \mathrm{~mol}, 78 \%)$ as a colorless oil. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and DMSO $(1 \mathrm{~mL})$ at rt , and $i \operatorname{Pr}_{2} \mathrm{NEt}(0.10 \mathrm{~mL}, 0.58 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot \mathrm{Py}(48 \mathrm{mg}, 0.30 \mathrm{mmol})$ were added sequentially. The solution was stirred at rt for 5 min before a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added. The organic phase was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 8:1, v/v) to give 26a ($35 \mathrm{mg}, 36 \mu \mathrm{~mol}, 77 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.64$ (hexanes-ethyl acetate, $\left.4: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ MHz): $\delta 7.68$ (dd, $J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.46$ (m, 6H), 5.70-5.80 (m, 2H), 5.63 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, $J=15.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (m,
$1 \mathrm{H}), 4.26$ (ddd, $J=11.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (dt, $J=6.4$ $\mathrm{Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.83$ (sextet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dq}, J=14.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$, 1 H), 2.32 (ddd, $J=12.8 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.11$ ($\mathrm{s}, 3 \mathrm{H}), 2.06$ (dd, $J=13.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (m, 2H), 1.47 (ddd, $J=14.0 \mathrm{~Hz}, 8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.22-$ $1.24(\mathrm{~m}, 12 \mathrm{H}), 1.09-1.12(\mathrm{~m}, 21 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 190.4$, $178.3,170.4,135.6,134.2,134.0,129.5,128.1,127.6,120.3,94.3,88.2,80.9,78.3,77.8$, $75.6,72.6,71.0,65.5,63.2,51.8,45.4,38.8,35.6,34.5,31.8,31.3,28.6,27.2,26.9,21.0$, 19.2, 18.1, 15.3, 12.7; IR (neat): 2939, 2865, 2218, 1738, 1681, 1236, 1137, $1112 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{25}+9.4\left(\mathrm{c} 0.67, \mathrm{CHCl}_{3}\right)$; HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 981.5344$, found: 981.5338.

27

(S)-2-((2S,4R,5R)-4-Acetoxy-5-((R)-5-((2S,6R)-6-((E)-5-((tert-

butyldiphenylsilyl)oxy)pent-1-en-1-yl)-2-methoxy-3,6-dihydro-2H-pyran-2-yl)-2-methyl-3-oxopentyl)tetrahydrofuran-2-yl)-2-((triisopropylsilyl)oxy)ethyl pivalate (27).

To $\left[\mathrm{CuH}\left(\mathrm{PPh}_{3}\right)\right]_{6}(139 \mathrm{mg}, 82.2 \mu \mathrm{~mol})$ at rt was added a solution of ketone $26 \mathrm{a}(52.5 \mathrm{mg}$, $54.8 \mu \mathrm{~mol}$) in degassed benzene (3 mL) via cannula. Degassed $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was then added. The suspension was stirred at rt for 12 h before a saturated aqueous NaHCO_{3} (3 $\mathrm{mL})$ was added. It was then diluted with diethyl ether $(10 \mathrm{~mL})$ and stirred under air at rt for 30 min . The organic phase was separated and the aqueous layer was extracted with diethyl ether ($3 \times 3 \mathrm{~mL}$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $5: 1, \mathrm{v} / \mathrm{v}$) to give ketone $27(40 \mathrm{mg}, 42 \mu \mathrm{~mol}, 76 \%$) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes-ethyl acetate, $\left.4: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.68(\mathrm{dd}$, $J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 6 \mathrm{H}), 5.69-5.78(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$,
5.46 (dd, $J=15.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (ddd, $J=$ $8.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (m, 2H), 4.07 (dt, $J=10.0 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (q, $J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.77$ (sextet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (ddd, $J=17.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, 17.6, J=17.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.31 (ddd, $J=14.0 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.23$ (m, 3H), 2.10 ($\mathrm{s}, 3 \mathrm{H}$), 2.01-2.09 (m, 3H), 1.91-1.99 (m, 2H), 1.69 (m, 2H), 1.41 (ddd, $J=14.0 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.22(\mathrm{~s}, 9 \mathrm{H}), 1.09-1.16(\mathrm{~m}, 24 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 213.0$, $178.3,170.5,135.6,134.0,133.0,129.5,129.2,128.0,127.6,121.2,98.7,78.8,77.7$, 75.7, 72.6, 70.6, 65.5, 63.3, 48.3, 43.2, 38.8, 35.3, 34.4, 32.7, 31.9, 29.6, 28.6, 27.2, 26.7, $21.0,19.2,18.1,16.1,12.7$; IR (neat): 2940, 2865, 1738, 1237, $1112 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-3.9$ (c $0.36, \mathrm{CHCl}_{3}$); HRMS-ESI (m / z) calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 985.5657, found: 985.5679.

4
(2S)-2-[(2R,3R,4aR,5'R,6S,6"R,7aR)-6"-[(1E)-5-[(tert-Butyldiphenylsilyl)oxy]pent-1-en-1-yl]-3-methyl-3,3",4,4a,6,6",7,7a-octahydrodispiro[furo[3,2-b]pyran-2,2’-oxolane-5',2"-pyran]-6-yl]-2-((triisopropylsilyl)oxy)ethyl pivalate (4).

To a stirred solution of ketone $27(38 \mathrm{mg}, 40 \mu \mathrm{~mol})$ in methanol (2 mL) at rt was added $\mathrm{K}_{2} \mathrm{CO}_{3}(16 \mathrm{mg}, 0.12 \mathrm{mmol})$. The mixture was stirred at rt for 30 min before diethyl ether $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ were added. The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1, v/v) to give alcohol 5 (36 $\mathrm{mg}, 39 \mu \mathrm{~mol}, 93 \%)$ as a colorless oil. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt and PPTS $(1.8 \mathrm{mg}, 7.2 \mu \mathrm{~mol})$ was added. The solution was stirred at rt for 30 min before a saturated aqueous solution of $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ was added. The mixture was diluted with diethyl ether (5 mL), the organic phase was separated and the aqueous layer was extracted with diethyl ether ($3 \times 2 \mathrm{~mL}$). The combined organic phases were washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 20:1, v/v) to give spiroketal 4 ($33 \mathrm{mg}, 39 \mu \mathrm{~mol}$, 99%) as a colorless oil: $\mathrm{R}_{\mathrm{f}}=0.42$ (hexanes-ethyl acetate, $\left.10: 1, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 7.68$ (d, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 5.71-5.78$ (m, 2H), 5.64 (d, $J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, $J=15.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.21$ $(\mathrm{m}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{~d}, J=17.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{td}, J=12.0 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.93$ (dd, $J=12.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dd, $J=14.8 \mathrm{~Hz}, 4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66-172(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.09-1.12(\mathrm{~m}, 21 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 178.5,135.6,134.0,133.3,129.5,129.4,128.5$, $127.6,122.5,110.0,105.6,79.2,76.7,72.5,72.0,71.0,66.0,63.3,38.8,36.7,35.2,34.9$, $32.2,31.8,31.4,29.5,28.7,27.2,26.9,19.2,18.2,18.1,16.2,12.7$; IR (neat): 2940, 2865, 2361, 1731, $1138 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{25}-11.4$ (c $0.79, \mathrm{CHCl}_{3}$); HRMS-ESI (m / z) calculated for $\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 911.5289$, found: 911.5318.

References:

(1) Rao, K. S.; Chattapadhyay, A. K.; Ghosh, S. Synlett. 2010, 20, 3078.
(2) Fürstner, A.; Bouchez, L. C.; Funel, J. A.; Liepins, V.; Porée, F. H.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Angew. Chem. Int. Ed. 2007, 46, 9265.
(3) Bull, J. A.; Balskus, E. P.; Horan, R. J.; Langer, M.; Ley, S. V. Chem. Eur. J. 2007, 13, 5515.

159.29

udd 0

7.302
7.297
7.290
7.280
7.274
7.269
6.906
6.906
-6.885
4.664
4.637
4.570
4.524
4.496
4.415
4.397
4.397
4.383
4.131
4.125
4.115
4.115
4.109
4.099
4.094
4.079
4.075
-4.059
4.055
-4.043
4.039
3.895
3.895
3.880
3.876
3.864
3.860
3.849
3.844
3.822
-3.579
-3.572
-3.572
-3.564
3.564
3.556
3.550
1.902
1.897
1.888
1.869
1.856
1.842
1.832
1.832
1.813
1.765
1.750
1.736
$]\left[\begin{array}{l}1.437 \\ 1.428\end{array}\right.$
1.428
1.367
1.358
$\left[\begin{array}{r}1.358 \\ 0.192 \\ 0.186\end{array}\right.$
udd
091 021 08L 06L
$\ll 159.27$
150140
O\&1 Ot
08
OLV OZL
OOL OLL
06001
$\stackrel{\varnothing}{\circ}$

0 OL OZ
(1)

Λ
$<_{89.42}^{89.52}$

OS
+
ట
。

mdd

udd
-
01
\circ
8
8
8

\pm

0L1 081 061
Numem
091
OSI
O\&L Oカト
120

N
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{\circ}$

\propto
\qquad

udd

modd 0°

${ }^{\text {rr }} 1$ prommpromp

$$
\begin{aligned}
& \overline{\overline{2.94}}= \\
& \underline{1.01}
\end{aligned}
$$

$\frac{1.06}{1.01}$
$\overline{0.97}$
$\frac{3.03}{2.00}$

1

0.93 or

$\sqrt{ }$

$$
\begin{aligned}
& \begin{array}{l}
\frac{1.96}{1.17} \\
\frac{2.25}{1.16} \\
2.16 \\
9.10 \\
\\
9.08
\end{array}
\end{aligned}
$$

041081064 $+$

-102.09
\qquad
旁
\qquad

136.73
-135.54
$\mathbf{-} 133.96$.73
54
.96
.50
.59

135.56
$\mathbf{1 3 4 . 0 0}$
133.89
129.51
128.61
127.59
127.56
120.81

\qquad

ะ

SdLLO

N

178.29
${ }^{170.61}$

