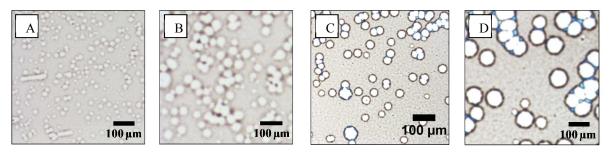
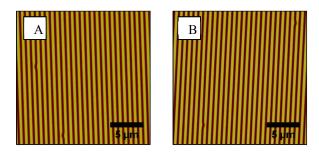
SUPPORTING INFORMATION

Capillary Wave Confinement Induced Stabilization of Polymer Films

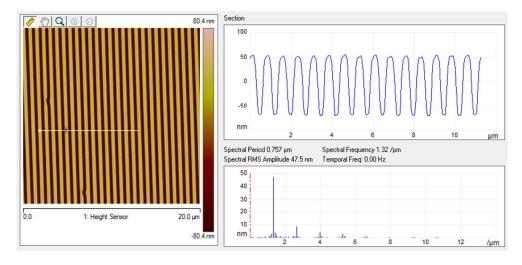

Diya Bandyopadhyay, ¹ Gurpreet Singh, ¹ Matthew L. Becker, ² Alamgir Karim, ^{1,*}

¹Department of Polymer Engineering, The University of Akron, Akron, OH 44325

²Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States.


*Correspondence to: Alamgir Karim (330) 972-8324, alamgir@uakron.edu

Supporting Information S1


Figure S1. Effect of top-down flexible, unpatterned confinement on PS film stability; optical images of PS films of thickness (A) 30 nm (B) 70 nm (C) 120 nm (D) 220 nm

Supporting Information S2

Figure S2. Representative AFM topography images of PS film surfaces following removal of nanopatterned confinement post-annealing (A) 70 nm PS film (B) 120 nm PS film

Supporting Information 3

Figure S3. Representative AFM section profile of the topography image of a 120 nm PS film surface confined, during thermal annealing, by DVD patterned PDMS.