Total Synthesis of the Marine Cyclic Depsipeptide Viequeamide A

Dongyu Wang, ${ }^{\dagger,{ }^{*}}$ Shanshan Song, ${ }^{\S}$ Ye Tian, ${ }^{*}$ Youjun Xu, ${ }^{\dagger,{ }^{*}}$ Zehong Miao, ${ }^{\S}$ Ao Zhang ${ }^{\text {T, }}$

${ }^{\dagger}$ School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.
${ }^{*}$ CAS Key Laboratory of Receptor Research, and Synthetic Organic \& Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.
${ }^{\text {§ }}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.

Table of Contents

2. Preparation of compound $\mathbf{3}, \mathbf{4}, \mathbf{P 1}, 5, \mathbf{P 2}, \mathbf{6}, 7,8,9, \mathbf{P 3}, 10,12,13,14$ 4-6
3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for $\mathbf{3}, \mathbf{4}, \mathbf{P} 1,5, \mathbf{P} 2,6,7,8,9, \mathbf{P 3}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, 1$
4. HPLC Comparison of synthetic 1 with natural Viequeamide A-------------------18-10

1. ${ }^{1} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR Data (in $\mathbf{C D C l}_{3}$) Comparison of Synthetic with Natural Viequeamide A (1)

L-Thr
Viequeamide A (1)

		Natural ${ }^{\text {c }}$		Synthetic 1^{d}	
residue	position	$\delta_{\mathrm{H}}(J \mathrm{in} \mathrm{Hz})$	$\delta_{\text {C }}$	$\delta_{\text {H }}(J$ in Hz)	$\delta_{\text {C }}$
Thr	1		169.2		169.2
	2	4.68, dd (10.3,	58.1	4.67, dd (10.3, 3.1)	58.1
	3	3.87 , m	68.2	3.87 , m	68.1
	4	0.80, d (6.4)	19^{a}	0.79, d (6.4)	$19^{\text {a }}$
	OH	4.48, d (12.4)		4.50 , d (12.4)	
	NH	8.04, d (10.4)		8.03, d (10.4)	
N-Me-Val-1	5		168.2		168.2
	6	4.06, d (12.4)	67.4	4.07, d (10.7)	67.4
	7	2.41, m	26.0	2.41, m	25.9
	8	0.84, d (6.7)	19^{a}	0.84, d (6.7)	$19^{\text {a }}$
	9	0.93-1.00 ${ }^{\text {b }}$	20.1	$0.91-1.01{ }^{\text {b }}$	20.0
	10	2.77, s	29.0	2.77, s	29.0
Pro	11		172.1		172.1
	12	5.01, dd (8.4,	55.7	5.01, d (7.8)	55.7
	13a	$2.09, \mathrm{~m}$	29.7	$1.95-2.15{ }^{\text {b }}$	29.6
	13b	2.03, m		$1.95-2.15{ }^{\text {b }}$	
	14	2.52, m	25.4	2.52, m	25.3
	15a	3.95 , m	47.4	3.95 , m	47.3
	15b	3.52 , m		3.52 , m	
Hmpa	16		168.7		168.7
	17	4.82, d (2.0)	74.5	4.82, d (1.7)	74.5
	18	1.72, m	36.6	1.6-1.8 ${ }^{\text {b }}$	36.6
	19	1.10, d (6.7)	13.8	$1.09, \mathrm{~d}$ (6.7)	13.8
	20	$1.43-1.55{ }^{b}$	27.3	$1.43-1.55{ }^{b}$	27.2
	21	$0.93-1.00^{b}$	12.0	$0.91-1.01^{b}$	11.9
	22		170.3		170.3

$N-\mathrm{Me}-\mathrm{Val}-2$	23	3.91, d (10.7)	63.7	3.91, d (10.7)	63.6
	24	2.28	29.5	$2.19-2.32^{b}$	29.4
	25	$0.93-1.00^{b}$	19^{a}	$0.91-1.01^{b}$	$19^{\text {a }}$
	26	$0.93-1.00^{b}$	19^{a}	$0.91-1.01{ }^{\text {b }}$	$19^{\text {a }}$
	27	2.98 s	28.3	2.97 s	28.2
Val	28		172.8		172.7
	29	4.89, dd (7.3,	53.9	4.88, d (7.2)	53.9
	30	1.96, m	31.7	$1.95-2.15^{b}$	31.7
	31	$0.93-1.00^{\text {b }}$	20.7	$0.91-1.01^{b}$	20.6
	32	0.75, d (6.6)	16.1	0.74, d (6.5)	16.1
	NH	$6.83, \mathrm{~d}$ (7.4)		6.83, d (7.2)	
Dhoya	33		174.7		174.7
	34		46.7		46.6
	35	1.36, s	17.1	1.36, s	17.0
	36	1.18, s	25.6	1.17, s	25.6
	37	5.55, d (8.5)	77.4	5.53, d (8.7)	77.4
	38a	1.76, m	27.9	$1.6-1.8^{b}$	27.9
	38 b	$1.43-1.55^{b}$		$1.43-1.55^{b}$	
	39	$1.43-1.55^{b}$	24.8	$1.43-1.55^{b}$	24.7
	40	2.19-2.32 ${ }^{\text {b }}$	18.1	2.19-2.32 ${ }^{\text {b }}$	18.1
	41		84.2		84.1
	42	1.93, t (2.6)	68.9	1.93, t (2.5)	68.9

[^0]
2. Preparation of compound $3,4, \mathrm{P} 1,5, \mathrm{P} 2,6,7,8,9, \mathrm{P} 3,10,12,13,14$

2-Hydroxy-3-methyl-pentanoic acid allyl ester (3). L-Isoleucine ($32.75 \mathrm{~g}, 250 \mathrm{mmol}$) was dissolved in $1.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(175 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{NaNO}_{2}(25.9 \mathrm{~g}, 375 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{~mL})$ was added dropwise over 1 h . The resulting reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then over night at room temperature (rt). The mixture was extracted with EtOAc $(3 \times$ 300 mL). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. 2-Hydroxy-3-methyl-pentanoic acid was obtained as a colorless oil, which was then dissolved in DMF (60 mL). To the solution, $\mathrm{K}_{2} \mathrm{CO}_{3}(31.05 \mathrm{~g}, 225$ mmol) , allylbromide ($26 \mathrm{~mL}, 49.2 \mathrm{mmol}$) and TBAB $(9.67 \mathrm{~g}, 30 \mathrm{mmol})$ were added. The obtained mixture was stirred for 16 h at rt , and then diluted with 200 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with EtOAc $(2 \times 300 \mathrm{~mL})$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure. Flash chromatography of the residue (petroleum ether/ EtOAc, 30/1) provided 3 as a colorless oil $(25.8 \mathrm{~g}, 62 \%$ in two steps $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.06-5.88(1 \mathrm{H}, \mathrm{m})$, $5.31(2 \mathrm{H}, \mathrm{dd}, J=32.7,13.8 \mathrm{~Hz}), 4.65(2 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}), 1.80(1 \mathrm{H}, \mathrm{m})$, $1.59-1.40(1 \mathrm{H}, \mathrm{m}), 1.35-1.14(1 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$.
(S)-Allyl 2-(tert-butoxycarbonyl(methyl)amino)-3-methylbutanoate (5). NaH (60% in mineral oil, $4.91 \mathrm{~g}, 122.7 \mathrm{mmol}$) was added to a solution of $\mathrm{L}-\mathrm{N}$-Boc-valine $(5.29 \mathrm{~g}, 24.3 \mathrm{mmol})$ and MeI $(12.1 \mathrm{~mL}, 184 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 18 h , the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(500 \mathrm{~mL})$, extracted with $\mathrm{EtOAc}(3 \times 150 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvents, the obtained N -methyl- N -Boc-valine was mixed with $\mathrm{K}_{2} \mathrm{CO}_{3}(6.7 \mathrm{~g}, 48.6 \mathrm{mmol})$ and allyl bromide ($3.15 \mathrm{~mL}, 36.5 \mathrm{mmol}$) in DMSO $(60 \mathrm{~mL})$. The mixture was stirred at rt for 12 h , and then partitioned between EtOAc and brine. The organic phase was separated and the aqueous phase was extracted with EtOAc. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Flash chromatography (petroleum ether/EtOAc, 15/1) gave $5\left(5.9 \mathrm{~g}, 90 \%\right.$ in two steps) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers) $\delta 6.03-5.84(1 \mathrm{H}, \mathrm{m}), 5.28(2 \mathrm{H}, \mathrm{dd}, J=28.9,13.8 \mathrm{~Hz})$, $4.66-4.58(2 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{m}), 2.83(3 \mathrm{H}, \mathrm{s}), 2.22(1 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}), 0.89(3 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers) $\delta 171.3,170.8$,
$156.2,155.6,132.0,131.8,118.4,118.1,80.3,80.0,65.2,65.1,63.2,30.6,30.5,28.4,27.8,27.7$, 20.0, 19.8, 19.0, 18.8 .
(S)-4-Benzyl-3-((S)-3-hydroxy-2,2-dimethyloct-7-ynoyl)oxazolidin-2-one (6). The fragment $9(1.03 \mathrm{~g}, 4.17 \mathrm{mmol})$ was dissolved in dry THF $(15 \mathrm{~mL})$ and then added dropwise to a solution of LDA (1.5 equiv) in dry THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , chlorotriisopropoxytitanium IV (1.0 M in THF, $16.68 \mathrm{~mL}, 16.68 \mathrm{mmol}, 4$ equiv) was added dropwise, and the resulting mixture was warmed to $-40^{\circ} \mathrm{C}$ for 1 h . The mixture was then cooled to $-78^{\circ} \mathrm{C}$, a solution of hexynal ($400 \mathrm{mg}, 4.17 \mathrm{mmol}$) in THF (6 mL) was added, and the reaction mixture was warmed to $-40^{\circ} \mathrm{C}$. After stirring at $-40^{\circ} \mathrm{C}$ for 3 h , the mixture was warmed to $0^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred with Celite for 30 min while warming to rt. The filtrate was extracted with EtOAc , washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The product was purified by flash chromatography (petroleum ether/EtOAc, 5/1) yielding 6 as a pale yellow oil ($874 \mathrm{mg}, 61 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.20(5 \mathrm{H}, \mathrm{m}), 4.70$ $(1 \mathrm{H}, \mathrm{dd}, J=9.7,6.9 \mathrm{~Hz}), 4.24-4.12(3 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 2.76(1 \mathrm{H}, \mathrm{dd}, J=13.1$, $9.9 \mathrm{~Hz}), 2.57(1 \mathrm{H}, \mathrm{s}), 2.27(2 \mathrm{H}, \mathrm{t}, J=5.3 \mathrm{~Hz}), 1.95(1 \mathrm{H}, \mathrm{s}), 1.87-1.60(4 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.37$ (3H, s).
(S)-3-Hydroxy-2,2-dimethyloct-7-ynoic acid (7). A solution of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (53.5 $\mu \mathrm{L}$, $0.524 \mathrm{mmol})$ was added dropwise to a solution of $6(45 \mathrm{mg}, 0.131 \mathrm{mmol})$ in a solution of THF : $\mathrm{H}_{2} \mathrm{O}(4: 1,1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C} . \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(11 \mathrm{mg}, 0.262 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(300 \mu \mathrm{~L})$ was added. After 1 h , $\mathrm{Na}_{2} \mathrm{SO}_{3}(75 \mathrm{mg}, 0.59 \mathrm{mmol})$ was added and THF was removed from the slurry under vacuum. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layers were collected and acidified to $\mathrm{pH}=1$ with 1 N HCl . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to yield the title compound as a colorless oil $(23 \mathrm{mg}, 95 \%$ yield $):[\alpha]_{\mathrm{D}}{ }^{21}=-26.8^{\circ}\left(c 0.424, \mathrm{CHCl}_{3}\right)$; $\left[\operatorname{Ref}:[\alpha]_{\mathrm{D}}{ }^{21}=-26.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)\right] .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.00(1 \mathrm{H}, \mathrm{bs}), 3.67(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}), 2.25(2 \mathrm{H}, \mathrm{td}, J=6.6,2.4 \mathrm{~Hz})$, $1.96(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 1.89-1.76(1 \mathrm{H}, \mathrm{m}), 1.62(2 \mathrm{H}, \mathrm{ddd}, J=18.8,12.9,6.9 \mathrm{~Hz}), 1.48-1.36(1 \mathrm{H}$, m), $1.24(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s})$.
(S)-4-Benzyl-3-isobutyryloxazolidin-2-one (9). A solution of (4S)-4-benzyl-3-
propanoyloxazolidin-2-one ($700 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (6 mL) was added dropwise to a stirred solution of sodium hexamethyldisilazide (2.0 M in THF, $1.65 \mathrm{~mL}, 3.3 \mathrm{mmol}$) in THF (15 mL) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then iodomethane $(0.37 \mathrm{~mL}, 6.0$ mmol) was added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h , then satd. ammonium chloride solution $(15 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$ were added and the aqueous phase was acidified to $\mathrm{pH}=2$ with conc. HCl . The mixture was extracted with EtOAc , and the combined extracts were washed successively with satd. sodium hydrogencarbonate, sodium thiosulfate and brine. After dried with magnesium sulfate, filtered and concentrated, the oily residue was purified by column chromatography (petroleum ether/EtOAc, 20/1) to afford title compound 9 in 78% yield (579 mg). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(3 \mathrm{H}, \mathrm{m}), 7.24-7.17(2 \mathrm{H}, \mathrm{m}), 4.74-4.61(1 \mathrm{H}, \mathrm{m})$, 4.25-4.13 ($2 \mathrm{H}, \mathrm{m}$), $3.76(1 \mathrm{H}, \mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.2 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{dd}, J$ $=13.3,9.5 \mathrm{~Hz}), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$.

(6S,9S,12R)-12-sec-Butyl-6,9-diisopropyl-2,2,8-trimethyl-4,7,10-trioxo-3,11-dioxa-5,8-diazatr

 idecan-13-oic acid (10). To a solution of peptide $\mathbf{P 1}(420 \mathrm{mg}, 0.867 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg}, 0.043 \mathrm{mmol})$ and NMA $(0.28 \mathrm{~mL}, 2.6 \mathrm{mmol})$. The reaction was stirred at room temperature for 10 h . After evaporation in vacuo, the residue was pureed by silica gel chromatography (petroleum ether/ethyl acetate, then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to give the carboxyl acid intermediate $\mathbf{1 0}$ as yellow oil ($328 \mathrm{mg}, 85 \%$).
3. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for New Compounds

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{P 1}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{P 1}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound 5

ppm (t1)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{P} 2$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound $\mathbf{P} 2$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 7

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 9

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{P 3}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 2}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 2}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 3}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 4}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 14

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{1}$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1}$

4. Comparison of HPLC for Synthetic 1 and Natural Viequeamide A

HPLC system: Agilent 1260 Infinity
Mass spectrometry: Waters Acquity UPLC/Synapt Q-TOF-MS
Flow rate: $0.6 \mathrm{ml} / \mathrm{min}$
Wavelength monitoring: 214 nm
Column temperature: $25^{\circ} \mathrm{C}$
Column: ZORBAX Eclipse XDB-C18 $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$

Condition 1:

Synthetic $1-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=80: 20$

Natural Viequeamide $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=80: 20$

Synthetic 1+ Natural Viequeamide A (mixture) $-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=80: 20$

Condition 2:

Synthetic $1-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=60: 40$

Natural Viequeamide $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=60: 40$

Synthetic 1+ Natural Viequeamide A (mixture) $-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=60: 40$

LC/Q-TOF-MS for Synthetic $\mathbf{1}-\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}=80: 20$

[^0]: ${ }^{a}$ Synthetic 1: 18.8, 19.1, 19.3, 19.5 (Natural: 18.9, 19.1, 19.4, 19.6); ${ }^{\text {b }}$ These proton resonances overlapped.
 ${ }^{c}$ Recorded at 500 MHz and $125 \mathrm{MHz} . \quad{ }^{d}$ Recorded at 300 MHz and 125 MHz .

