Reasons for exclusion	Complex				
Protein binding sites are incomplete: the ligand in each of these complexes interacts with a dimer or a tetramer of the protein. However, only part of the dimer or tetramer is given in the database.	6FIV, 1B11, 1TYR, 2D10, 2USN				
Ligand has less than three pharmacophores therefore cannot be matched onto the protein pharmacophores in clique detection.	1L83				
Large protein-ligand complexes that need more than four hours to finish: Both the ligand and the number of protein pharmacophores generated for these complexes are typically quite large. It is too time-consuming to perform an exhaustive search by clique detection on these systems. We are developing a new method to treat these large protein-ligand complexes. Therefore no extra effort was spent in handling these complexes in this study.	1FKN, 1FO0, 1FZK, 1G7Q, 1HFS, 1JQ9, 1NNY, 1PZ5, 1SLG, 1XD1, 2B7D, 2BZZ, 2ER9, 4FIV				
- ·	• •				

Supporting Information S1. Reasons for excluding certain complexes from the study.

Total

20

Supporting Information S2. Potential functions for computing interaction energies on the 3D grid.

The interaction potentials for hydrogen-bonding and hydrophobic ligand atoms placed at individual grid points were computed using a continuous form of the ChemScore¹⁻² scoring function. The aromatic and ionic interactions were calculated using a functional form similar to ChemScore. In detail, the interaction potential for a hydrogen-bond donating atom *i* on a grid point *j* was computed by

$$V_{j}^{donor} = V_{j,dist}^{donor} \cdot V_{j,angle}^{donor}$$
(1a)

with

$$V_{j,dist}^{donor} = \begin{cases} 0 & r_{ij} > 3.4 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.5 \text{ Å}} \cdot \left(r_{ij} - r_{ij}^{HB} - 0.2 \text{ Å}\right)\right) & 2.9 \text{ Å} < r_{ij} \le 3.4 \text{ Å} \\ -1 & 2.5 \text{ Å} < r_{ij} \le 2.9 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.5 \text{ Å}} \cdot \left(-r_{ij} + r_{ij}^{HB} - 0.2 \text{ Å}\right)\right) & 2.0 \text{ Å} < r_{ij} \le 2.5 \text{ Å} \\ 0 & r_{ij} \le 2.0 \text{ Å} \end{cases}$$
(1b)

and

$$V_{j,angle}^{donor} = \begin{cases} 0 & \cos \varphi < \cos(88^{\circ}) \\ 0.5 + 0.5 \cdot \cos\left(\frac{\pi}{\cos(88^{\circ}) - \cos(27^{\circ})} \cdot (\cos \varphi - \cos(27^{\circ}))\right) & \cos(88^{\circ}) < \cos \varphi < \cos(27^{\circ}) \\ 1 & \cos \varphi > \cos(27^{\circ}) \end{cases}$$

(1c)

Where r_{ij} was the distance between the heavy atom *i* and grid point *j*. r_{ij}^{HB} is the approximated sum of van der Waals radii of the donor heavy atom and hypothetical acceptor atom placed on the grid. The angle φ was defined by the angle between lone pair, acceptor of protein and grid point. The same functional form was used for hydrogen-bond acceptors with φ defined by the angle between protein's donor hydrogen atom, donor heavy atom and grid point. The hydrophobic potential was computed by

$$V_{j}^{hydrophobic} = \begin{cases} 0 & r_{ij} > r_{ij}^{vdW} + 1.7 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{1.4 \text{ Å}} \cdot (r_{ij} - r_{ij}^{vdW} - 0.3 \text{ Å})\right) & r_{ij}^{vdW} + 0.3 \text{ Å} < r_{ij} \le r_{ij}^{vdW} + 1.7 \text{ Å} \\ -1 & 2.0 \text{ Å} < r_{ij} \le r_{ij}^{vdW} + 0.3 \text{ Å} \\ 0 & r_{ij} \le 2.0 \text{ Å} \end{cases}$$
(2)

 r_{ij}^{vdW} is the sum of van der Waals radii of protein atom and grid point. The grid point can be considered to represent a potential binding position of a hydrophobic ligand atom. Thus, the van der Waals radius of a carbon atom is assumed for the grid point as carbon atoms are most frequently engaged in hydrophobic contacts between protein and ligand. The distance and angle threshold values in equations 1 and 2 were adjusted to reproduce the overall form of the original ChemScore scoring function. The modified function, however, provides continuous derivatives of the potential with respect to the coordinates.

For aromatic interactions, both sandwich (AromP) and T-shaped (AromT) configurations were considered for a given aromatic group:

$$V_{j}^{aromP} = V_{j,dist}^{aromP} \cdot V_{j,angle}^{arom} \quad \text{and} \quad V_{j}^{aromT} = V_{j,dist}^{aromT} \cdot V_{j,angle}^{arom} \quad (3a)$$
with

$$V_{j,dist}^{aromP} = \begin{cases} 0 & r_{ij} > 4.3 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.6 \text{ Å}} \cdot (r_{ij} - 3.7 \text{ Å})\right) & 3.7 \text{ Å} < r_{ij} \le 4.3 \text{ Å} \\ -1 & 3.5 \text{ Å} < r_{ij} \le 3.7 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.6 \text{ Å}} \cdot (3.5 - r_{ij})\right) & 2.9 \text{ Å} < r_{ij} \le 3.5 \text{ Å} \\ 0 & r_{ij} \le 2.9 \text{ Å} \end{cases}$$
(3b)

$$V_{j,dist}^{aromT} = \begin{cases} 0 & r_{ij} > 6.1 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.7 \text{ Å}} \cdot (r_{ij} - 5.4 \text{ Å})\right) & 5.4 \text{ Å} < r_{ij} \le 6.1 \text{ Å} \\ -1 & 4.9 \text{ Å} < r_{ij} \le 5.4 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.7 \text{ Å}} \cdot (4.9 - r_{ij})\right) & 4.2 \text{ Å} < r_{ij} \le 4.9 \text{ Å} \\ 0 & r_{ij} \le 4.2 \text{ Å} \end{cases}$$
(3c)

and

$$V_{j,angle}^{donor} = \begin{cases} 0 & \cos\varphi \le \cos(45^\circ) \\ 0.5 + 0.5 \cdot \cos\left(\frac{\pi}{\cos(45^\circ) - \cos(30^\circ)} \cdot (\cos\varphi - \cos(30^\circ))\right) & \cos(30^\circ) < \cos\varphi \le \cos(45^\circ) \\ 1 & \cos\varphi > \cos(30^\circ) \end{cases}$$

(3d)

Finally, the ionic interactions were computed by:

$$V_{j,dist}^{ionic} = \begin{cases} 0 & r_{ij} > 5.4 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.5 \text{ Å}} \cdot (r_{ij} - 2.9 \text{ Å})\right) & 2.9 \text{ Å} < r_{ij} \le 5.4 \text{ Å} \\ -1 & 2.5 \text{ Å} < r_{ij} \le 2.9 \text{ Å} \\ -0.5 - 0.5 \cdot \cos\left(\frac{\pi}{0.5 \text{ Å}} \cdot (-r_{ij} + 2.5 \text{ Å})\right) & 2.0 \text{ Å} < r_{ij} \le 2.5 \text{ Å} \\ 0 & r_{ij} \le 2.0 \text{ Å} \end{cases}$$
(4)

Where r_{ij} was the distance between the heavy atom *i* and grid point *j* with opposite ionic properties.

Supporting Information S3. Average number of protein pharmacophores per protein-ligand complex generated using different set of parameters.

<u>Hydrogen bond</u>							<u>Aromatic</u>						<u>lonic</u>							
	es	113	33 1120		517	554		222	218	113	119		349	421	422	237	219	1.0Å	fs	b 0
<u>Number of</u>	hor	63	636 638		305	305	:	114	114	60	60		137	143	147	91	88	1.5Å	Itof	ring
	do	45	454 454		226	225		76	76	42	42		76	77	78	55	53	2.0Å	e cu	stei
	nac	35	59 359		189	189		58	58	33	33		51	51	51	39	37	2.5Å	nce	clu
	arr	31	314 318		174	74 174		47	48	28	28		36	36	37	30	29	3.0Å 🗄	ista	ista for
	친	13	4	134	79	79		13	13	9	9		9	9	9	7	7	N/A	Δ	
		2.0-3.0Å		2.0-3.4Å	2.5-3.0Å	2.5-3.4Å		2.9-5.4Å	2.9-6.1Å	3.5-5.4Å	3.5-6.1Å		2.0-3.0Å	2.0-4.0Å	2.0-5.4Å	2.5-4.0Å	2.5-5.4Å			
Hydrophobic																				
	re s		752	95	4 9	77	979	540	54	6 3	343 3	346	200	208	1.0	Å ૠ	Ø			
, J			295	33	0 3	47	348	186	18	8 1	.14 1	115	76	76	1.5	å	erin			
oqu			151	15	51	.60	161	96	97	7	62	62	43	43	2.0	åğ	uste			
			89)	91	91	62	61	L	40	41	29	29	2.5	stan	or cl			
	ĥ		58 5		7 !	59	59	44	44	1	29	29	21	21	3.0	åÖ	ç			
			2.0-3.0Å	2.0-4.1Å		2.0-5.0A	2.0-5.5Å	2.5-5.0Å	רביב ה-ה המילי		3.0-5.0Å	3.0-5.5Å	3.5-5.0Å	3.5-5.5Å						

Interaction range for pharmacophore generation (IRFPG)

References

1. Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. *J. Comput. Aided Mol. Des.* **1997**, *11* (5), 425-45.

2. Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D., Flexible docking using tabu search and an empirical estimate of binding affinity. *Proteins: Struct., Funct., Bioinf.* **1998**, *33* (3), 367-382.