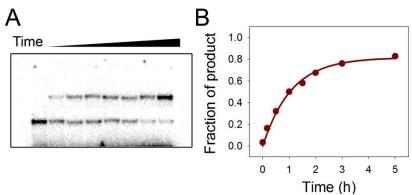
Supporting Information

Backbone-Branched DNA Building Blocks for Facile Angular Control in Nanostructures

Eduardo Paredes $^{\S},$ Xiaojuan Zhang ${\S},$ Harshad Ghodke $^{\square},$ Vamsi K. Yadavalli ${\S}^{,*}$ and Subha R. Das §,*


Table S1. DNA sequences used in this study.

Name	Sequence	Source
DNA1	5'- ctc gat cgg tct ccA(2'-O-propargyl) gcc tgg -3'	synthesized
DNA2	5'-N ₃ - cac tag gcg cct agt g-3'	synthesized
bbDNA3	5'- ctc gat cgg tct ccA(2'-cac tag gcg cct agt g) gcc tgg -3'	CuAAC
DNA4	5'-cca ggc tgg aga ccg atc gag-3'	IDT
DNA5	5'-acc gat cga gcc agg ctg gag-3'	IDT
DNA6	5'-cca ggc tgg aga ccg atc gag cca ggc tgg aga ccg atc gag -3'	IDT
DNA7	5'-cgc tagU(2'- O-propargyl)cat gca gU(2'- O-propargyl)ccacgc-3' ^a	synthesized
bbDNA8	5'-cgc tagU(2'- cac tag gcg cct agt g)cat gca gU(2'- cac tag gcg cct agt g)cca cgc-3' ^a	CuAAC
DNA9	5'-gcg tgg act gca tga cta gcg -3'	IDT
DNA10	5'-cat gac tag cgg cgt gga cag -3'	IDT
DNA11	5'-gcg tgg act gca tga cta gcg gcg tgg act gca tga cta gcg -3'	IDT

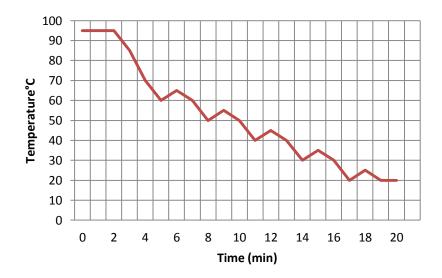
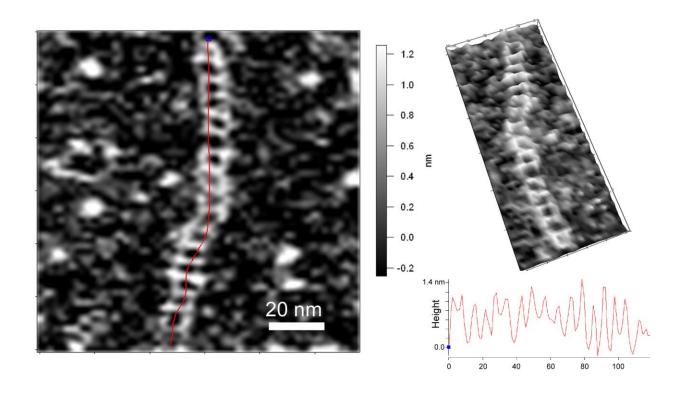

^a The branching residue base is 'U' rather than 't' (i.e., 5-methyl-U) as the 2'-O-propargyl necessitates a ribosyl (RNA) phosphoramidite.

Table S2. Dihedrals between backbone extensions at the 2'-atom in B-form helix based on 10.5 residues per turn (360°) or helical pitch of 34.29° per residue. For angles greater than 180°, Θ is calculated in the other direction (i.e., the smaller angle corresponding to 360-Θ). Thus for N = 7, $\Theta = 274.32° \equiv (360-274.32) = 85.68°$


Dihedral	
between	
branches	
(Θ; degrees)	
34.29	
68.57	
102.86	
137.14	
171.43	
154.29	
120	
85.68	
51.39	
17.10	
17.10	
51.39	
85.68	
120	
154.29	
171.43	
137.14	
102.86	
68.57	
34.29	
0	

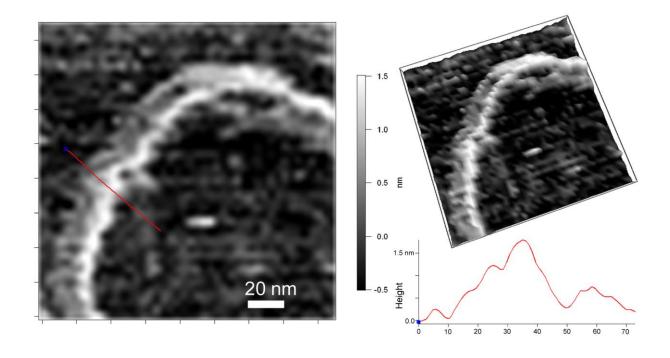

Figure S1. Optimizing timing for the click-branching reaction to obtain **bbDNA3**. **A.** A 20% polyacrylamide (8M urea) gel used to resolve click branching reaction mixtures over time. The **bbDNA3** (upper band) forms with disappearance of **DNA1** over time (t= 0 to 5hrs). **B.** Graph of **bbDNA3** formed over time as quantified from the gel, indicates maximal labeling is achieved in 3h with marginal improvement after 2 h.

Figure S2. Time-temperature trace of the step-wise annealing for nanoassembly formation.

Figure S3. AFM scans of DNA nanoassembly based on co-planar branches and associated line profile

Figure S4. AFM scans of DNA nanoassembly based on dual perpendicular branches and associated line profile.