Supporting Information

Backbone-Branched DNA Building Blocks for Facile Angular Control in Nanostructures

Eduardo Paredes ${ }^{\S}$, Xiaojuan Zhang \natural, Harshad Ghodke ${ }^{\square}$, Vamsi K. Yadavalli千 , * and Subha R. Das ${ }^{\text {§,* }}$

Table S1. DNA sequences used in this study.

Name	Sequence	Source
DNA1	$5^{\prime}-$ ctc gat cgg tct ccA(2'- O-propargyl $)$ gcc tgg -3'	synthesized
DNA2	$5^{\prime}-\mathrm{N}_{3}-$ cac tag gcg cct agt g-3'	synthesized
bbDNA3	$5^{\prime}-$ ctc gat cgg tct ccA(2'-cac tag gcg cct agt g) gcc tgg -3'	CuAAC
DNA4	$5^{\prime}-$ cca ggc tgg aga ccg atc gag-3'	IDT
DNA5	$5^{\prime}-$-acc gat cga gcc agg ctg gag-3'	IDT
DNA6	$5^{\prime}-$ cca ggc tgg aga ccg atc gag cca ggc tgg aga ccg atc gag -3'	IDT
DNA7	$5^{\prime}-$-cgc tagU(2'- O-propargyl)cat gca gU(2'- O-propargyl)ccacgc-3' ${ }^{a}$	synthesized
bbDNA8	$5^{\prime}-$-cgc tagU(2'- cac tag gcg cct agt g)cat gca gU(2'- cac tag gcg cct agt g)cca cgc-3' ${ }^{a}$	CuAAC
DNA9	$5^{\prime}-$-gcg tgg act gca tga cta gcg -3'	IDT
DNA10	$5^{\prime}-$ cat gac tag cgg cgt gga cag -3'	IDT
DNA11	$5^{\prime}-$ gcg tgg act gca tga cta gcg gcg tgg act gca tga cta gcg -3'	IDT

${ }^{a}$ The branching residue base is 'U' rather than ' t ' (i.e., 5-methyl-U) as the 2 '- O-propargyl necessitates a ribosyl (RNA) phosphoramidite.

Table S2. Dihedrals between backbone extensions at the 2'-atom in B-form helix based on 10.5 residues per turn $\left(360^{\circ}\right)$ or helical pitch of 34.29° per residue. For angles greater than $180^{\circ}, \Theta$ is calculated in the other direction (i.e., the smaller angle corresponding to $360-\Theta)$. Thus for $\mathrm{N}=7, \Theta=274.32^{\circ} \equiv(360-274.32)=85.68^{\circ}$

Number of residues between branches (N)	Dihedral between branches (Θ; degrees)
0	34.29
1	68.57
2	102.86
3	137.14
4	171.43
5	154.29
6	120
7	85.68
8	51.39
9	17.10
10	17.10
11	51.39
12	85.68
13	120
14	154.29
15	171.43
16	137.14
17	102.86
18	68.57
19	34.29
20	0

A
Time

B

Figure S1. Optimizing timing for the click-branching reaction to obtain bbDNA3. A. A 20% polyacrylamide (8 M urea) gel used to resolve click branching reaction mixtures over time. The bbDNA3 (upper band) forms with disappearance of DNA1 over time ($\mathrm{t}=0$ to 5 hrs). B. Graph of bbDNA3 formed over time as quantified from the gel, indicates maximal labeling is achieved in 3 h with marginal improvement after 2 h .

Figure S2. Time-temperature trace of the step-wise annealing for nanoassembly formation.

Figure S3. AFM scans of DNA nanoassembly based on co-planar branches and associated line profile

Figure S4. AFM scans of DNA nanoassembly based on dual perpendicular branches and associated line profile.

