

Figure S1 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence M_1 SYNLLGFLQR₁₁ (theoretical *mass* 1356.70, experimental m/z 679.35 [M+H]²⁺, Δ m from parent peptide 0.00).

Figure S2 MS/MS spectrum and suggested chemical structure for the oxidized (+32 Da) sequence M_1 SYNLLGFLQR₁₁ (theoretical *mass* 1372.69, experimental m/z 687.35 [M+H]²⁺, Δ m from parent peptide +0.01).

Figure S3 MS/MS spectrum and suggested chemical structure for the oxidized (+14 Da) sequence M_1 SYNLLGFLQR₁₁ (theoretical *mass* 1354.68, experimental m/z 678.34 [M+H]²⁺, Δ m from parent peptide 0.00).

Figure S4 MS/MS spectrum and suggested chemical structure for the modify sequence M_1 SYNLLGFLQR₁₁, where loss of methane sulfenic acid (CH3SOH, -64 Da) occurred as a consequence of Met1 oxidation. For comparison, please refer to Figure S1, where the MS/MS spectrum for the same sequence containing oxidized Met1 (+16 Da) is shown (theoretical *mass* 1292.68, experimental m/z 647.35 [M+H]²⁺, Δm from parent peptide +0.02).

Figure S5a MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $M_{36}NFDIPEEIK_{45}$ (theoretical *mass* 1250.59, experimental m/z 626.30 [M+H]²⁺, Δm from native parent peptide +0.01). Note that either Met36 or Phe38 is oxidized.

Figure S5b Zoom in (m/z range 988-1010) of the MS/MS spectrum depicted in figure S5a and suggested chemical structures for the oxidized (+16 Da) sequence $\mathbf{M}_{36}\mathbf{NFDIPEEIK}_{45}$ in which either Met or Phe is oxidized.

Figure S5c Zoom in (m/z range 220-265) of the MS/MS spectrum depicted in figure S5a.

Figure S6a MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $M_{36}NFDIPEEIK_{45}$ (theoretical *mass* 1250.59, experimental m/z 626.30 [M+H]²⁺, Δm from native parent peptide +0.01). Note that this spectrum was obtained from non-oxidized IFN β 1a, where only Met36 is oxidized.

Figure S6b Zoom in (m/z range 988-1010) of the MS/MS spectrum depicted in figure S6a

Figure S6c Zoom in (m/z range 220-265) of the MS/MS spectrum depicted in figure S6a.

FigureS7 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $M_{62}LQNIFAIFR_{71}$ (theoretical *mass* 1267.68, experimental m/z 634.84 [M+H]²⁺, Δm from native parent peptide 0.00).

Figure S8 MS/MS spectrum and suggested chemical structure for the modify sequence $M_{62}LQNIFAIFR_{71}$ where loss of methane sulfenic acid (CH3SOH, -64 Da) occurred as a consequences of Met62 oxidation. For comparison, please refer to Figure S7, where the MS/MS spectrum for the same sequence containing Met62 oxidized (+16 Da) is shown (theoretical *mass* 1203.68, experimental m/z 402.23 [M+H]³⁺, Δm from native parent peptide +0.01).

Figure S9 MS/MS spectrum and suggested chemical structure for the oxidized (+32 Da) sequence $L_{116}MSSLHLK_{123}$ (theoretical *mass* 959.52, experimental m/z 480.76 [M+H]²⁺, Δm from native parent peptide 0.00).

Figure S10 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $\mathbf{Q}_{46}\mathbf{LQQFQK}_{52}$ (theoretical *mass* 935.48, experimental m/z 468.76 $[M+H]^{2+}$, Δm from native parent peptide +0.04).

Figure S11 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $N_{86}LLANVYHQINHLK_{99}$ (theoretical *mass* 1691.92, experimental m/z 846.96 $[M+H]^{2+}$, Δm from native parent peptide 0.00).

Figure S12 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $N_{86}LLANVYHQINHLK_{99}$ (theoretical *mass* 1691.92, experimental m/z 846.96 $[M+H]^{2+}$, Δm from native parent peptide 0.00).

Figure S13 MS/MS spectrum and suggested chemical structure for the oxidized (+32 Da) sequence $N_{86}LLANVYHQINHLK_{99}$ (theoretical *mass* 1707.91, experimental m/z 854.96 $[M+H]^{2+}$, Δm from native parent peptide +0.01).

Figure S14a MS/MS spectrum and chemical structure for the oxidized (-23 Da) sequence $N_{86}LLANVYHQINHLK_{99}$ (theoretical *mass* 1652.91, experimental m/z 827.46 $[M+H]^{2+}$, Δm from native parent peptide +0.01).

Figure S14b Zoom in (m/z range 1010-1510) of the MS/MS spectrum depicted in figure S14a.

Figure S15a MS/MS spectrum and suggested chemical structure for the oxidized sequence $N_{86}LLANVYHQINHLK_{99}$ (theoretical *mass* 1652.91, experimental m/z 827.46 $[M+H]^{2+}$, Δm from native parent peptide +0.01).

Figure S15b Zoom in (m/z range 1010-1510) of the MS/MS spectrum depicted in figure S15a.

Figure S16a MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $I_{129}LHYLK_{134}$ (theoretical *mass* 801.48, experimental m/z 401.74 [M+H]²⁺, Δm from native parent peptide 0.00).

Figure S16b Zoom in (m/z range 375-580) of the MS/MS spectrum depicted in figure S16a.

Figure S16c Zoom in (m/z range 345-365, upper panel, and 180-1400, lower panel) of the MS/MS spectrum depicted in figure S16a.

Figure S17 MS/MS spectrum and suggested chemical structure for the oxidized (+32 Da) sequence $E_{137}YSHCAWTIVR_{147}$ (theoretical *mass* 1393.62, experimental m/z 697.81 [M+H]²⁺, Δm from native parent peptide 0.00).

Figure S18 MS/MS spectrum and suggested chemical structure for the oxidized (+16 da) sequence $Y_{138}SHCAWTIVR_{147}$ (theoretical *mass* 1307.62, experimental m/z 654.81 [M+H]²⁺, Δ m from native parent peptide 0.00).

Figure S19 MS/MS spectrum and suggested chemical structure for the oxidized (+16 Da) sequence $L_{20}LWQLNGR_{27}$ (theoretical *mass* 1015.55, experimental m/z 508.78, $[M+H]^{2+}$, Δm from native parent peptide +0.01).

Figure S20 MS/MS spectrum and suggested chemical structure for the oxidized (+32 Da) sequence $L_{20}LWQLNGR_{27}$ (theoretical *mass* 1031.55, experimental m/z 516.78, $[M+H]^{2+}$, Δm from native parent peptide +0.01).

Table S1 Potential chemical modifications of amino acid residues included in the settings of the database search employed to identify chemical changes in the primary structure of IFN β 1a after MCO.

Chemical modifications	Chemical addition - deletion	Δm (monoisotopic) in Da
Asn deamidation	-H, -N, +O	+0.984016
Arg to glutamic semialdehyde	-C, -5H, -3N, +O	-43.053433
Cys to sulfinic acid	+20	31.989829
Cys to sulfonic acid	+30	47.984744
Cys to oxoalanine	-2H, +O, -S	-17.992806
Cys to carbamidomethyl cysteine (iodoacetamide alkylation)	+2C, +3H, +N, +O	57.021464
Met to sulfoxide	+0	15.994915
Met to sulfone	+20	31.989829
Met loss of CH3SO from oxidized Met	-C, -4H, -S	-48.003371
Gln deamidation	-H, -N, +O	+0.984016
Gln to pyroglutamic acid	-3H, -N	-17.026549
Glu to pyroglutamic acid	-2H, -O	-18.010565
His to 2-oxo histidine	+0	15.994915
His to asparagine	-2C, -H, -N, +O	-23.015984
His to aspartic acid	-2C, -2H, -2N, +2O	-22.031969

Lys to aminoadipic semialdehyde	-3H, -N ,+O,	-1.031634
Lys to alpha aminoadipic acid	-3H, -N, +2O,	14.963280
Lys peroxidation	+20	31.989829
Lys to carbamidomethyl Lysine (iodoacetamide alkylation)	+2C, +3H, +N, +O	57.021464
Tyr to TOPA (2,4,5-trihydroxyphenylalanine)	+20	31.989829
Thr to 2-amino-ketobutirric acid	-2H	-2.015650
Trp to hydroxytryptophan	+0	15.994915
Trp to kynurenine	-C, +O	3.994915
Trp to N-formyl kynurenine	+20	31.989829
Phe to TOPA quinone (2,4,5-trihydroxyphenylalanine quinone)	-2H, +3O	45.969094
Phe to TOPA (2,4,5-trihydroxyphenylalanine)	+30	47.984744
Phe to hydroxytyrosine	+0	15.994915
Phe to 3,4-dihydroxyphenylalanine (DOPA)	+20	31.989829
Phe to DOCH	-2H, +2O	29.974179
Pro to Pyrrolidinone	-C, -2H, -O	-30.010565
Pro to pyroglutamic acid	-2H, +O	13.979265
Tyr to 3,4-dihydroxyphenylalanine (DOPA)	+0	15.994915
Tyr to DOCH	-2H, +O	13.979265
Tyr to TOPA quinone (2,4,5-trihydroxyphenylalanine quinone)	-2H, +2O	29.974179