Supporting Information

Spatially explicit multi-objective optimisation for the strategic design of first and second generation biorefineries including carbon and water footprints

Andrea Bernardi, Sara Giarola, and Fabrizio Bezzo*

CAPE-Lab – Computer-Aided Process Engineering Laboratory Department of Industrial Engineering, Università di Padova, via Marzolo 9, 35131, Padova

^{*} To whom all correspondence should be addressed. Fax no. +39.049.827.5461. E-mail: fabrizio.bezzo@unipd.it

The supporting information comprises the economic formulation used in the model following Giarola *et al.* (2011) (for more details see the original reference). The values of some critical parameters used in the model is also reported in Tables S1-S3.

The modelling framework is summarised as follows.

- Annual cash flow

$$CF_{t} = PBT_{t} + D_{t} - TAX_{t}, \quad \forall t$$
(A.1)

- Gross profits

$$PBT_{t} = Inc_{t} - VarC_{t} - FixC_{t} - D_{t}, \quad \forall t$$
(A.2)

$$Inc_{t} = \sum_{g} \sum_{k} \sum_{j} P_{j,k,g,t}^{T} \cdot MP_{j} , \quad \forall t$$
(A.3)

- Fixed costs

$$D_{t} = \sum_{p} \sum_{k} \sum_{g} \lambda_{p,k,g,t} C I_{k,p} \cdot dk_{t} , \quad \forall t$$
(A.4)

$$FixC_t = \phi \cdot Inc_t$$
, $\forall t$ (A.5)

- Variable costs

$$VarC_{t} = BPC_{t} + TCb_{t} + TCf_{t} + EPC_{t}, \quad \forall t$$
(A.6)

$$BPC_{t} = \sum_{g} \sum_{i} Pb_{i,g,t} \cdot UPC_{i,g} , \quad \forall t$$
(A.7)

$$TCb_{t} = \sum_{i,m} UTC_{m} \cdot \left(\sum_{g,g'} Qb_{i,g,m,g',t} \cdot LD_{g,g'} \cdot \tau_{g,m,g'} \right) + \sum_{i,g} UTC^{*} \cdot Pb_{i,g,t} \cdot LD_{g,g'}, \quad \forall t$$
(A.8)

$$TCf_{t} = \sum_{i,m} UTC_{m} \cdot \left(\sum_{g,g'} Qf_{g,m,g',t} \cdot LD_{g,g'} \cdot \tau_{g,m,g'} \right), \quad \forall t$$
(A.9)

$$EPC_{t} = \sum_{k} coef_{'slope',k} \cdot \sum_{g} P_{ethanol',k,g,t}^{T} + coef_{'int\,ercept',k} \cdot \sum_{g} Y_{g,k,t}, \quad \forall t$$
 (A.10)

- Taxation

$$TAX_{t} \ge Tr \cdot PBT_{t}, \quad \forall t$$
 (A.11)

$$TAX_{t} \ge 0$$
, $\forall t$ (A.12)

- Capacity planning constraints

$$PCap^{\min} \cdot Y_{k,g,t} \le P_{ethanol,k,g,t}^{T} \le \sum_{p} \lambda_{p,k,g,t} \cdot 3 \cdot ER_{p}, \quad \forall k, g, t$$
(A.13)

$$Db_{i,g,t} = \sum_{k} \frac{Pf_{i,k,g,t}}{\gamma_i} \cdot (1 + burn_{i,k}), \qquad \forall i, g, t$$
(A.14)

- Sustainability constraints

$$Pb_{i\sigma t} \le BA_{\sigma i}, \quad \forall i, g, t$$
 (A.15)

$$BA_{g,i} = GS_g \cdot BY_{i,g} \cdot AD_g \cdot BCD_g^{\text{max}}, \quad \forall g, i$$
(A.16)

$$TPot_{i,t} \cdot quota_i \ge \sum_{g} Pb_{i,g,t} \cdot IBF_g, \quad \forall i,t$$
 (A.17)

$$TPot_{i,t} = \sum_{g} BA_{i,g} \cdot IBF_{g}, \quad \forall i,t$$
 (A.18)

- Production constraints

$$Pf_{i,k,g,t} = P_{ethanol,k,g,t}^{T} \cdot \beta_{i,k}, \quad \forall i,k,g,t$$
(A.19)

$$P_{ethanol,k,g,t}^{T} = \sum_{i} Pf_{i,k,g,t}, \quad \forall k, g, t$$
(A.20)

$$P_{DDGS,k,g,t}^{T} = Pf_{corn',k,g,t} \cdot \delta, \quad \forall k, g, t$$
(A.21)

$$P_{power',k,g,t}^{T} = P_{ethanol',k,g,t}^{T} \cdot \frac{\omega_{k}}{\rho}, \quad \forall k,g,t$$
(A.22)

- Capital costs linearisation constraints

$$TCI_{t} = \sum_{p} \sum_{k} \sum_{g} \lambda_{p,k,g,t}^{plan} \cdot CI_{k,p} , \quad \forall t$$
(A.23)

$$D_{t} = \sum_{p} \sum_{k} \sum_{q} \lambda_{p,k,g,t} \cdot CI_{k,p} \cdot dk_{t}, \quad \forall t$$
(A.24)

$$\lambda_{p,k,g,t} = \lambda_{p,k,g,t-1} + \lambda_{p,k,g,t}^{plan}, \quad \forall k, g, t, p$$
(A.25)

$$\lambda_{p,k,g,t} - y_{p-1,k,g,t} - y_{p,k,g,t} \le 0, \quad \forall k, g, t, p \in sub(p)$$
(A.26)

$$\lambda_{p,k,g,t}^{plan} - y_{p-1,k,g,t} - y_{p,k,g,t} \le 0, \quad \forall k,g,t,p \in sub(p)$$
(A.27)

$$y_{p,k,g,t} = 0, \quad \forall k, g, t, \quad p = 6$$
 (A.28)

$$\sum_{p=1}^{P-1} y_{p,k,g,t} = Y_{k,g,t} , \quad \forall k, g, t$$
 (A.29)

$$\sum_{p} \lambda_{p,k,g,t} = Y_{k,g,t} , \quad \forall k, g, t$$
 (A.30)

$$\sum_{p} \lambda_{p,k,g,t}^{plan} = Y_{k,g,t}^{plan} , \quad \forall k, g, t$$
(A.31)

- Planning constraints

$$Y_{k,g,t} = Y_{k,g,t-1} + Y_{k,g,t}^{plan}$$
 $\forall k, g, t$ (A.32)

$$Y_{k,g,1'}^{plan} = Y_{k,g}^{start} \qquad \forall k,g \tag{A.33}$$

$$\sum_{k} Y_{k,g,t} = 1 \qquad \forall g,t \tag{A.34}$$

Table S1.values for water consumption (direct contribution) related to corn cultivation, $f_{\text{'corn','bp'}}^{WF}$.[m³/t_{com}]

g	$f_{'corn','bp'}^{\mathit{WF}}$	g	$f_{'corn','bp'}^{\mathit{WF}}$	g	$f_{'corn','bp'}^{WF}$
1	79.96	21	68.91	41	155.73
2	79.96	22	63.47	42	150.18
3	79.96	23	39.46	43	158.71
4	49.93	24	118.61	44	142.96
5	35.93	25	127.78	45	157.54
6	35.93	26	140.51	46	179.12
7	64.63	27	135.18	47	179.25
8	81.65	28	115.50	48	171.93
9	71.94	29	117.43	49	181.07
10	42.12	30	106.79	50	187.29
11	52.62	31	106.59	51	180.57
12	57.40	32	105.97	52	174.38
13	51.49	33	132.07	53	0.00
14	49.93	34	78.40	54	213.97
15	87.87	35	124.70	55	177.18
16	71.18	36	130.78	56	184.96
17	42.16	37	191.57	57	192.73
18	100.59	38	171.05	58	173.99
19	86.61	39	173.18	59	173.99
20	83.49	40	170.07	60	116.25

 Table S2. water consumption related to biomass and ethanol transportation

Transport mode	Water consumption $(L_{H2O}/(t_{trans}*km))$
small truck	3.10E-02
truck	6.42E-03
train	1.10E-03
barge	4.52E-04
ship	3.32E-04
trans ship	3.14E-04

Table S3. Parameters ω_k and ec_k^{WF} representing the biomass-to-power conversion yields and the credits for avoided impact on water resources—achieved by each technology k.

technology	ω_k	ec_k^{WF}	
k	$[kWh/L_{ethanol}]$	$\left[m_{\rm H_2O}^3/t_{ethanol}\right]$	
1	0	170.5	
2	0.743	13.7	
3	0.496	179.7	
4	0.602	11.1	
5	0.482	103.0	
6	0.515	74.5	
7	0.533	59.5	
8	0.482	8.9	
9	0.515	9.5	
10	0.533	9.9	

List of symbols

Acronyms

CHP Combined Heat and Power

DDGS Distiller's Dried Grains with Solubles

WF Water Footprint

Sets

 $c \in C$ set of production costs regression coefficients

 $C = \{slope, intercept\}$

 $g \in G$ grid squares, $G = \{1, ..., 60\}$

 $g' \in G$ set of square regions different than g

 $i \in I$ set of biomass typology, $I = \{corn, stover\}$

 $j \in J$ set of product, $J = \{ethanol, DDGS, power\}$

 $k \in K$ set of conversion technologies, $K = \{1, ..., 10\}$

 $m \in M$ set of means of transport, $M = \{truck, rail, barge, ship, tship\}$

 $l \in L$ environmental objective functions, $L = \{CF, WF\}$

 $p \in P$ set of plant scale index, $P = \{1, ..., 6\}$

s $\in S$ set of life cycle stages, $S = \{bp, bpt, bt, fp, ft\}$

 $t \in T$ set of time intervals (years), $T = \{1, ..., 20\}$

 $tech(k) \subset K$ subset of conversion technologies producing DDGS to be sold,

 $tech(k) = \{1,3,5,6,7\}$

 $fratio(k) \subset K$ subset of conversion technologies using both biomass typology for ethanol

production,

 $fratio(k) = \{5, 6, 7, 8, 9, 10\}$

 $sub(p) \subset P$ subset of discretisation intervals, $sub(p) = \{1,...,5\}$

Scalars

 δ DDGS conversion factor [$t_{DDGS}/t_{ethanol}$]

 ρ ethanol density [kg/L]

Tr taxation rate

 ϕ fixed costs over incomes

PCap^{min} minimum ethanol production capacity [t/y]

Parameters

 $\beta_{i,k}$ fraction of ethanol rate from biomass type *i* for each technology *k*

 AD_g arable land density [km²_{arable}/km²_{grid surface}]

 $BA_{g,i}$ biomass i available for ethanol production in grid g [t/y]

 BCD_g^{max} maximum cultivation density in region $g \left[\text{km}^2_{\text{cultivation}} / \text{km}^2_{\text{arable}} \right]$

 $burn_{i,k}$ fraction of biomass i fed to the CHP station in technology k

 $BY_{i,g}$ cultivation yields for each biomass i in grid g [t/ha]

 $coef_{c,k}$ coefficients (slope $[\epsilon/t_{ethanol}]$, intercept $[\epsilon]$) for linear regression of production

costs for technology k

 $CI_{k,p}$ capital investment at each linearisation interval p for the conversion technology k

[M€]

 dk_t depreciation charge at time t

 ec_k^l credits for avoided emissions of conversion technology k on climate change [kg

CO₂-eq/t] (l = CF) or on water resources [$m_{\rm H_2O}^3/t$] (l = WF)]

 $f_{i,s,g}^l$ impact factors for biomass i and cell g on climate change [kg CO₂-eq/t] (l = CF)

or on water resources $[m_{H,O}^3/t]$ (l = WF) for biomass production (s = bp)

 ER_p ethanol production rate for each plant size p [t_{-EtOH}/year]

 GS_g grid surface of cell g [km²]

 IBF_g internal biomass production feasibility, binary parameter

 γ_i conversion of biomass i to ethanol [$t_{\text{ethanol}}/t_{\text{biomass}}$]

 $LD_{g,g'}$ local delivery distance between grids g and g' [km]

 MP_j market price of product $j \in MWh$

 $quota_i$ maximum quota of collectable biomass i for ethanol production

 $\tau_{g,m,g'}$ tortuosity factor of transport mode m between g and g'[-]

 $UPC_{i,g}$ unit purchase cost for biomass i in grid $g \in [t]$

 UTC_m unit transport cost via mean $m \in [t]$

*UTC** unit transport cost for local transport of biomass $[\in /t]$

 ω_k electricity sold potential of technology k (kWh/L_{ethanol})

Continuous variables

 BPC_t biomass purchase cost at time $t \in [0, y]$

 CF_t cash flow at time $t \in [V]$

 D_t depreciation charge at time $t \in [t]$

 $Db_{i,g,t}$ biomass i demand in region g at time t [t/y]

*EPC*_t ethanol production cost at time $t \in V$

 $FixC_t$ fixed costs at time $t \in [0, y]$

*Inc*_t gross earnings at time $t \in [t/y]$

$\lambda_{p,k,g,t}$	linearisation variables for TCI for technology k at interval p in region g at time t
$\lambda_{p,k,g,t}^{\mathit{plan}}$	linearisation variables for TCI for technology k at interval p in region g at time t
$Pb_{i,g,t}$	production rate of biomass i in cell g at time t [t/y]
PBT_t	profit before taxes at time $t \in [y]$
$Pf_{i,k,g,t}$	ethanol production rate from biomass i through facility k at time t in grid g [t/y]
$P_{j,k,g,t}^T$	total production rate for product j through technology k at time t in grid g [t/y]
$Qb_{i,g,m,g',t}$	flow rate of biomass i between g and g' with transport mode m in time period t
	[t/y]
$Qf_{g,m,g',t}$	[t/y] ethanol flow rate between g and g ' with transport mode m in time period t [t/y]
$Qf_{g,m,g',t}$ TAX_t	
	ethanol flow rate between g and g ' with transport mode m in time period t [t/y]
TAX_t	ethanol flow rate between g and g ' with transport mode m in time period t [t/y] tax amount at time t [ϵ /y]
TAX_t TCb_t	ethanol flow rate between g and g' with transport mode m in time period t $[t/y]$ tax amount at time t $[\notin/y]$ biomass transport cost at time t $[\notin/y]$
TAX_t TCb_t TCf_t	ethanol flow rate between g and g ' with transport mode m in time period t $[t/y]$ tax amount at time t $[\notin/y]$ biomass transport cost at time t $[\notin/y]$ ethanol transport cost at time t $[\notin/y]$

Binary variables

$Y_{k,g,t}$	1 if a production facility k is already established in region g at time t , 0 otherwise
$Y_{k,g,t}^{plan}$	1 if the establishment of a new conversion facilities k is to be planned in region g during
	time period <i>t</i> , 0 otherwise
$Y_{k,g}^{start}$	1 if establishment of a new conversion facilities k is to be planned in region g at the
	beginning, 0 otherwise
$y_{p,k,g,t}$ S11	supporting variable for linearisation of plant scale