Supporting Information for the paper Multifunctionality of Crystalline M1 MoV(TeNb) Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol Kazuhiko Amakawa,[†] Yury V. Kolen'ko,^{†,‡} Alberto Villa,[§] Manfred Schuster, [†] Lénárd-István Csepei, [†] Gisela Weinberg, [†] Sabine Wrabetz, [†] Raoul Naumann d'Alnoncourt, [†] Frank Girgsdies, [†] Laura Prati[§], Robert Schlögl, [†] and Annette Trunschke*[†] [†]Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany § Department of Inorganic Chemistry, University of Milan, Via Venezian 21, I-20133 Milan, Italy [†]Fax: +49-30-8413-4405; Tel: +49-30-8413-4457; E-mail: <u>trunschke@fhi-berlin.mpg.de</u> Figure S1. Results of the Rietveld refinement of the powder XRD data for catalyst I-a. Figure S2. Results of the Rietveld refinement of the powder XRD data for catalyst I-b. Figure S3. Results of the Rietveld refinement of the powder XRD data for catalyst II. Figure S4. Results of the Rietveld refinement of the powder XRD data for catalyst III. **Figure S5.** XRD patterns of catalyst **III** before and after propane oxidation. Note that the reflections at around 35° are due to the contamination of silicon carbide used as a diluent in the catalytic test.