Dimerization of Ethylene by Nickel Phosphino Borate Complexes

Dmitry V. Gutsulyak, Andrew L. Gott, Warren E. Piers* and Masood Parvez

Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta,

T2N 1N4, Canada.

Supporting information

Complex	Butenes ^b	Hexenes
2	74%°	26%
3	~100%	-
4	64%	36%

Table S1. The ratio of but	enes and hexenes after	1 h of ethylene	oligomeration b	y Method 2 ^a
----------------------------	------------------------	-----------------	-----------------	-------------------------

a. Based on GC-MS results (GC[Agilent 6890], column[Agilent HP-5MS], MS[Agilent 5975]: oven temperature from 30°C to 40°C in 1 min, initial time 4 min, run time 5 min). b. 95+% 1-butene. c. These ratios reflect the ratio of butenes to hexenes; small amounts of higher oligomers were also detected by GC-MS at higher oven temperatures, but accurate ratios of all the oligomers were not obtained.

I able DE , Ci jotano Liapine D'ata ana Convenion i anametero:	Table S2.	Crystallogra	phic Data and	Collection	Parameters.
---	-----------	--------------	---------------	------------	-------------

	2	2•NCCH ₃	3
formula	C ₃₆ H ₃₈ BF ₃ NiNP ₂	$C_{47}H_{52}BF_3N_2NiP_2$	C ₂₅ H ₃₂ BF ₃ NNiP
formula weight	659.12	833.37	504.01
crystal morphology	Orange prism	Yellow needle	Orange prism
dimensions/mm	0.14 x 0.12 x 0.10	0.16 x 0.08 x 0.06	0.18 x 0.16 x 0.12
crystal system	Orthorhombic	Monoclinic	Monoclinic
space group	Pbca	<i>P</i> 2 ₁ /c	$P2_1/c$
a/Å	18.8585(3)	8.8931(2)	9.2957(2)
b/Å	16.0547(3)	27.1346(7)	15.6947(5)
c/Å	20.9696(4)	18.1564(5)	16.8650(5)
a/deg	90	90	90
β/deg	90	96.0443(2)	90.285(2)
γ/deg	90	90	90
$V, Å^3$	6348.9(2)	4356.98(19)	2460.46(12)
Ζ	8	4	4
$d(\text{calc})/\text{mg.m}^3$	1.379	1.270	1.361
μ (Mo-K α)/mm ⁻¹	0.755	0.566	0.889
Т/К	173(2)	173(2)	173(2)
F(000)	2752	1752	1056
total reflections	13824	18221	10216
ind. Reflections	7264	9589	5611
$R_1 \left[I > 2\sigma(I) \right]$	0.0527	0.0600	0.0482
wR ₂	0.1086	0.1228	0.1040
data/restraints/params	7264/0/392	9589/0/509	5611/0/295
goodness of fit	1.053	1.122	1.084
largest peak/hole e.Å ⁻³	0.436, -0.343	0.360, -0.332	0.435, -0.392

Quantum Chemical Calculations

All geometry optimizations were carried out using the density functional theory with the Gaussian 09 (Revision C.01) program package.¹ The B3LYP functional² with Lanl2dz basis set³ was applied. NBO⁴ charges were calculated.

E = -1901.42201400 a.u. (0)

01

Ni	0.35050000	-0.25683700	-0.02312700
Р	2.64204700	-0.84580600	-0.01117700
Р	-1.92102800	0.42130000	0.02695700
F	0.87675800	1.61007400	0.43135700
F	1.44679300	1.75308400	-1.83347300
F	1.54111300	3.69645100	-0.50898100
С	3.80160200	0.64792800	0.15588600
С	3.33835600	1.96545900	-0.11461400
С	4.25666600	3.03495000	0.02221900
Н	3.89988200	4.04355200	-0.16819500
С	5.59200200	2.82678900	0.40403800

Н	6.27172100	3.67037900	0.50080400
С	6.03994100	1.52017400	0.66485400
Н	7.07033300	1.33639400	0.96102900
С	5.14764700	0.44208700	0.54184700
Н	5.52148200	-0.55543400	0.75087300
С	3.23669700	-1.75439900	-1.60126100
Н	2.59600400	-2.64519700	-1.63914000
С	2.95482600	-0.88127800	-2.84430600
Н	3.19965000	-1.44986900	-3.75217800
Н	3.56590100	0.02886000	-2.83529100
Н	1.90991700	-0.56151000	-2.90161400
С	4.71603200	-2.19678400	-1.57111700
Н	4.92840100	-2.79354200	-2.46929700
Н	4.96117000	-2.81510700	-0.69908600
Н	5.38844800	-1.33167000	-1.58386500
С	3.17590400	-1.95823800	1.46779000
Н	4.26800100	-1.87594100	1.52380700
С	2.58173000	-1.37599700	2.77074100
Н	2.94014800	-1.95255400	3.63448000
Н	1.48626300	-1.43018600	2.75955300
Н	2.87147300	-0.32820600	2.91769100
С	2.82022000	-3.44961900	1.28813200
Н	3.18106700	-4.00993100	2.16231500
Н	3.29022300	-3.88632500	0.39931000
Н	1.74178900	-3.60420100	1.21071800
С	-0.18580300	-2.05789500	-0.25923300
С	-0.18217100	-2.68486800	-1.52846500

Н	0.13141900	-2.13087800	-2.41092100
С	-0.60130300	-4.02355000	-1.67916600
Н	-0.59280100	-4.48153800	-2.66667600
С	-1.03666800	-4.76435700	-0.56236800
Н	-1.35595500	-5.79771400	-0.67845300
С	-1.05753200	-4.15034400	0.70584100
Н	-1.39715000	-4.70758800	1.57729500
С	-0.63850600	-2.81100000	0.85383900
Н	-0.67665700	-2.35873300	1.84316300
С	-3.21219800	-0.39049600	-1.08382000
С	-3.87647400	0.36895200	-2.07217300
Н	-3.67080700	1.42900100	-2.17983800
С	-4.81761100	-0.23684100	-2.92591100
Н	-5.31793500	0.36370300	-3.68176600
С	-5.11077100	-1.60706100	-2.80050400
Н	-5.83992000	-2.07423800	-3.45841900
С	-4.44960300	-2.36892300	-1.81840600
Н	-4.65913800	-3.43075100	-1.71512600
С	-3.50211400	-1.76910300	-0.96992200
Н	-2.99322200	-2.38165000	-0.23406900
С	-2.50934800	0.14384300	1.79305600
С	-1.62717200	0.54105700	2.82447500
Н	-0.66418600	0.98297100	2.57599800
С	-1.99868400	0.38853900	4.17184200
Н	-1.31609200	0.70429400	4.95700800
С	-3.25016100	-0.16952100	4.50228700
Н	-3.53637000	-0.29027900	5.54442800

С	-4.12894600	-0.56616700	3.47711900
Н	-5.09810400	-0.99323600	3.72393400
С	-3.76215600	-0.40709200	2.12579900
Н	-4.45272600	-0.71002600	1.34414900
С	-2.23951600	2.25523400	-0.24429100
С	-1.51032700	2.94123900	-1.23653400
Н	-0.72847000	2.43915100	-1.79754900
С	-1.76594800	4.30321400	-1.48259200
Н	-1.17740200	4.82627000	-2.23105900
С	-2.74853500	4.98618900	-0.74307500
Н	-2.93754800	6.04102900	-0.92869400
С	-3.47457400	4.30265400	0.25211400
Н	-4.23017000	4.82469600	0.83462900
С	-3.22141000	2.94193300	0.50200400
Н	-3.78286000	2.42844200	1.27752600
В	1.85367300	2.31597500	-0.55469800

E = -1812.40350265 a.u. (0)

01

Ni	0.27085900	-0.33612700	-0.01254800
Р	2.55495200	-0.99429700	-0.02508600
Р	-1.96659200	0.40464700	0.04266200
С	3.80704600	0.43898300	0.14030500
С	3.47100200	1.79278800	-0.05273600
С	4.37696500	2.84899100	0.09795300
Н	4.02858700	3.86805700	-0.04553800
С	5.70639000	2.56016100	0.44844600
Н	6.42505400	3.36577700	0.57072900
С	6.09160500	1.22200400	0.63892600
Н	7.11754500	0.98149400	0.90608000
С	5.15509500	0.18277700	0.49119900
Н	5.49210000	-0.83460400	0.65551300
С	3.13289800	-1.95116000	-1.59453100
Н	2.45890000	-2.81826300	-1.59694900
С	2.86577800	-1.11308500	-2.86478200
Н	3.03693400	-1.73856100	-3.75194800
Н	3.53809600	-0.24876900	-2.92150800
Н	1.84618400	-0.71952500	-2.90075200
С	4.59510100	-2.44586800	-1.56516000
Н	4.76742400	-3.09501500	-2.43485000
Н	4.83677800	-3.02791500	-0.66766900
Н	5.29848400	-1.60854900	-1.63938400
С	3.07213000	-2.07854100	1.48633700
Н	4.16469800	-2.01155500	1.55073700
С	2.47185900	-1.45791000	2.76887500

Н	2.81082400	-2.02287100	3.64784900
Н	1.37646700	-1.49143500	2.74548400
Н	2.77419500	-0.41162400	2.89888600
С	2.69618000	-3.56809400	1.33423000
Н	3.02621500	-4.10970500	2.23185600
Н	3.18125100	-4.03558400	0.46956900
Н	1.61796700	-3.70804100	1.23344800
С	-0.30707900	-2.13410500	-0.28343500
С	-0.37025800	-2.73752800	-1.56383800
Н	-0.09537100	-2.16607900	-2.44896100
С	-0.80642400	-4.06990600	-1.72433800
Н	-0.85070900	-4.50572200	-2.72111100
С	-1.19323400	-4.83325400	-0.60467500
Н	-1.52744200	-5.86114000	-0.72857500
С	-1.14962900	-4.24716200	0.67579600
Н	-1.45284100	-4.82164900	1.54994300
С	-0.71519000	-2.91325100	0.83072900
Н	-0.70711700	-2.48122200	1.83091800
С	-3.36362800	-0.47920700	-0.87019100
С	-4.06550800	0.17780100	-1.90485400
Н	-3.82669700	1.20408300	-2.16322600
С	-5.08747400	-0.48645900	-2.60923300
Н	-5.61593500	0.03598400	-3.40315800
С	-5.42493900	-1.81364100	-2.28752200
Н	-6.21604700	-2.32536500	-2.83087800
С	-4.72661700	-2.47472400	-1.25923600
Н	-4.96844200	-3.50399700	-1.00576500

С	-3.70008700	-1.81603700	-0.55984800
Н	-3.15993000	-2.35354600	0.21108200
С	-2.44146700	0.37486800	1.86516500
С	-1.47965400	0.87015400	2.77726900
Н	-0.53107100	1.25270600	2.40523000
С	-1.76464900	0.89529400	4.15403300
Н	-1.02355300	1.28547900	4.84763600
С	-3.00306300	0.42236400	4.63319200
Н	-3.21993100	0.44050800	5.69886000
С	-3.96006100	-0.06863000	3.72563800
Н	-4.92057600	-0.42934500	4.08637800
С	-3.68264000	-0.08937600	2.34413100
Н	-4.43408500	-0.46041700	1.65337500
С	-2.24287800	2.19778200	-0.45394200
С	-1.57107300	2.71076800	-1.58211900
Н	-0.84371100	2.10697000	-2.11779100
С	-1.80328700	4.03532300	-1.99719900
Н	-1.25853100	4.42801700	-2.85137000
С	-2.70568800	4.85243600	-1.29182500
Н	-2.87549000	5.87912800	-1.60804800
С	-3.37217000	4.34205100	-0.16097900
Н	-4.06279200	4.97025100	0.39696400
С	-3.14155000	3.01911600	0.25837600
Н	-3.65449400	2.64010500	1.13786700
S	1.73401600	2.30836500	-0.54781600
0	1.65575300	3.91753800	-0.34637200
0	0.77257500	1.45450500	0.56244600

References

1. Gaussian 09, Revision C.01, Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman

J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P.,

Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J.,

Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F.,

Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J.,

Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M.,

Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J.,

Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P.,

2. Becke A. D., J. Chem. Phys. 1993, 98, 5648.

a) Dunning T. H. Jr., Hay P. J., in *Modern Theoretical Chemistry*, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1976) 1-28; b) Hay P. J., Wadt W. R., *J. Chem. Phys.* 1985, *82*, 270-83; c) Wadt W. R., P. J. Hay, *J. Chem. Phys.* 1985, *82*, 284-98; P. d) Hay J., Wadt W. R., *J. Chem. Phys.* 1985, *82*, 299-310.

4. Foster J. P., Weinhold F., J. Am. Chem. Soc. 1980 ,102 ,7211 -7218.

Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian, Inc., Wallingford CT, 2010.