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S1. CODE FOR RT HISTOGRAM

The following Matlab code computes the RT histogram FR, given the occupancy

vector A0 (including any vacancies) for a singly occupied site.

A = A0(A0∼=0);

B = any(diff(A,1,1)∼=0,2);

B = [true; B(:); true];

VR = diff(find(B));

if A0(length(A0))∼=0, VR(length(VR)) = []; end

if A0(1)∼=0, VR(1) = []; end

FR = zeros(max(VR),1);

VRuni = unique(VR);

FR(VRuni) = histc(VR,VRuni);

S2. CODE FOR RT AND ST STATISTICS

The following Matlab code computes the quantities QR(n), QS(n), τR and τS, given

the RT vector VR, the RT histogram FR and the sampling resolution ∆τ . In addition,

the uncorrelated statistical uncertainties in these quantities are computed.
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Nvec = [0; (1:length(FR))’];

tau = dtau*Nvec;

NR = sum(FR);

NF = sum(VR);

VRm = NF/NR;

VR2m = mean(VR.ˆ2);

VR3m = mean(VR.ˆ3);

VR4m = mean(VR.ˆ4);

tauR = dtau*VRm;

tauS = (dtau/2)*VR2m/VRm;

FRcumsum1 = flipud(cumsum(flipud(FR)));

QR = [1; (FRcumsum1 - FR)/NR];

FRcumsum2 = flipud(cumsum(flipud(FRcumsum1)));

QS = [1; (FRcumsum2 - FRcumsum1)/NF];

sigtauR = dtau*sqrt((VR2m - VRmˆ2)/(NR-1));

sigtauS = dtau*sqrt((VRmˆ2*VR4m + VR2mˆ3 - 2*VRm*VR2m*VR3m)/NR)/(2*VRmˆ2);

sigQR = sqrt(QR.*(1-QR)/(NR-1));

NQR = (2*Nvec+1).*QR;

sigQS = (dtau/tauR)*sqrt((cumsum(NQR) - NQR - (cumsum(QR) - QR).ˆ2)/NR);
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S3. MULTIPLE OCCUPANCY

Here we indicate how the algorithm for constructing the RT vector can be generalized

to multiply occupied hydration sites.

For a site that contains ν water molecules at all times, we replace the occupation

vector by an occupation matrix A of size NF× ν. To analyze the overall RT and ST

statistics for the entire site, we need not keep track of the individual subsites or of

any water interchange among them. Exchange events are identified by taking ν × ν

differences of w indices between successive frames. The site-based RTs obtained in

this way are then multiplied by ν to obtain molecule-based RTs averaged over the ν

subsites.

If the occupancy fluctuates in time, the A0 matrix is dimensioned according

to the maximum occupancy νmax and a negative integer is entered instead of the

molecule index w whenever one or more subsites are vacant (for example, −1 and

−2 if two subsites are vacant in the same frame). The occupancy in a given frame k

then equals the number of positive elements in the corresponding row of A0. Rather

than removing all vacancies, as we did for the singly occupied site, we can treat the

negative w indices as additional water molecules. The first-frame index must now be

accompanied by a label that specifies whether it refers to a vacancy or not, so that

the corresponding vacancy RTs can be discarded.
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S4. BINNING ERROR

Here we provide more details about the analysis of the binning error in the RT

histogram FR(n) and in the RT and ST statistics.

Figure 1 shows a small part of the analyzed trajectory. On the upper continuous

time line, exchange events are indicated by tick marks and the different resident water

molecules are labeled by letters. On the lower discrete time line, the observation time

points, that is, the frames saved for analysis, are indicated by dots separated by the

time interval ∆τ , which is the resolution. For each frame, the identity of the observed

resident water molecule is indicated.
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Figure S1: Top: continuous time line with 6 resident water molecules (labelled a to

f) and 5 exchange events (tick marks). Bottom: discrete time line indicating the

water molecules observed at resolution ∆τ .
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The distribution of RTs on the upper time line, that is, the separation of adja-

cent tick marks, is described by the continuous probability density ψR(τ), such that

ψR(τ) dτ is the fraction of all RTs that are within dτ of τ in length. The total number

of RTs in the trajectory is denoted by N0
R.

From the lower time line, we obtain the observed RT histogram FR(n), which

gives the number of times that we observe in the trajectory the same resident water

molecule in precisely n contiguous frames. The total number of such discretized RTs

is denoted by NR. Clearly,

NR =
∞∑
n=1

FR(n) (S1)

In Fig. S1, N0
R = 6 but NR = 5 since water molecule e escapes detection.

From the example in Fig. S1, it is seen that water molecules b and c are both

assigned a discrete RT of n = 1 although the true continuous RTs are only a fraction

of ∆τ or nearly 2 ∆τ , respectively. In general, if the discrete RT is n, we know that

the continuous RT must lie in the interval

(n− 1) ∆τ < τ ≤ (n+ 1) ∆τ (S2)

But not all continuous RTs in this interval contribute to FR(n). The mapping from

the continuous probability density ψR(τ) to the histogram FR(n) takes the form

FR(n) = N0
R

∫ (n+1)∆τ

(n−1)∆τ

dτ ψR(τ) pn(τ) , n ≥ 1 (S3)
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where N0
R ψr(τ) dτ is the number of continuous RTs with length within dτ of τ and

pn(τ) is the probability that a randomly placed time interval of length τ covers

exactly n frames. Clearly,

pn(τ) =


τ − (n− 1) ∆τ

∆τ
, for (n− 1) ∆τ < τ ≤ n∆τ

(n+ 1) ∆τ − τ
∆τ

, for n∆τ < τ ≤ (n+ 1) ∆τ

(S4)

Thus,

FR(n) =
N0

R

∆τ

{∫ n∆τ

(n−1)∆τ

dτ ψR(τ) [τ − (n− 1) ∆τ ] +

∫ (n+1)∆τ

n∆τ

dτ ψR(τ) [(n+ 1) ∆τ − τ ]

}
(S5)

For τ in the interval specified in eq S2, we can Taylor expand ψR(τ) around the

central frame at τ = n∆τ as

ψR(τ) = ψR(n∆τ) + (τ −n∆τ)
∂ψR

∂τ

∣∣∣
τ=n∆τ

+
(τ − n∆τ)2

2

∂2ψR

∂τ 2

∣∣∣
τ=n∆τ

+ · · · (S6)

Inserting this expansion into eq S5 and carrying out the integrals, we find that the

linear term in eq S6 does not contribute and

FR(n) = N0
R ∆τ ψR(n∆τ)

[
1 + O

(
∆τ

τR

)2
]

, n ≥ 1 (S7)

where, in the quadratic term, we have assumed that ψ′′R(τ) = ψR(τ)/τ 2
R, as for a

Poisson process.

The discretized correlation functions QX(n) are most conveniently expressed, not

in terms of the observed histogram FR(n), but in terms of an ‘ideal’ histogram F 0
R(n)
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defined, for n ≥ 1, as

F 0
R(n) = N0

R

∫ (n+ 1
2

)∆τ

(n− 1
2

)∆τ

dτ ψR(τ) , n ≥ 1 (S8)

and, for n = 0, as

F 0
R(0) = N0

R

∫ ∆τ
2

0

dτ ψR(τ) (S9)

Inserting the Taylor expansion from eq S6 and performing the integrals in eqs S8

and S9, we find

F 0
R(n) = N0

R ∆τ ψR(n∆τ)

[
1 + O

(
∆τ

τR

)2
]

, n ≥ 1 (S10)

and

F 0
R(0) = N0

R ∆τ ψR(0)

[
1 + O

(
∆τ

τR

)]
(S11)

Comparison of eqs S7 and S10 shows that

F 0
R(n) = FR(n)

[
1 + O

(
∆τ

τR

)2
]

, n ≥ 1 (S12)

Thus, for n ≥ 1, F 0
R(n) and FR(n) are equal to first order in ∆τ/τR, that is, if we

neglect terms of order (∆τ/τR)2.

To establish the relation between NR and N0
R, we first note that FR(0) is unde-

fined, since we cannot observe less than one frame. It follows immediately from eqs

S8 and S9 that
∞∑
n=0

F 0
R(n) = N0

R (S13)
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showing that no RTs are lost in this mapping. Thus,

N0
R = F 0

R(0) +
∞∑
n=1

F 0
R(n) ≈ F 0

R(0) +
∞∑
n=1

FR(n) = F 0
R(0) + NR (S14)

where, according to eq S12, the second equality holds to first order in ∆τ/τR and

the last equality follows from eq S1. With eq S11, we then obtain to first order in

∆τ/τR

NR = N0
R [1−∆τ ψR(0)] (S15)

Since ψR(0) is of order 1/τR (at least for a Poisson process), we see that NR and

N0
R differ to first order in ∆τ/τR, whereas FR(n) and F 0

R(n) for n ≥ 1 differ only to

second order in ∆τ/τR.

We now consider the binning error in the RT and ST statistics. The trajectory

length T = NF ∆τ can be expressed either in terms of the observed number NR of

discrete RTs or in terms of the number N0
R of continuous RTs:

T = NF ∆τ = NR τR = N0
R τ

0
R (S16)

where NF is the number of frames or bins in the trajectory. The frames are labeled

k = 1, 2, . . . , NF. There are then NF − 1 intervals ∆τ . But the bins used in

connection with F 0
R(n) include the n = 0 bin, so they also number NF.

The mean of the continuous RTs is

τ 0
R = ∆τ

NF

N0
R

(S17)
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But the mean RT that we compute from the observed RTs is

τR = ∆τ
NF

NR

(S18)

Consequently

τR = τ 0
R

N0
R

NR

=
τ 0

R

1−∆τ ψR(0)
(S19)

where eq S15 was used in the last step. This is a systematic error: τR is slightly

longer than the true mean RT τ 0
R because RTs shorter than ∆τ may escape detection

at a resolution of ∆τ . The mean RT τR computed from eq S18 is therefore accurate

only to zeroth order in ∆τ/τR, that is, it is too long by a relative amount of order

∆τ/τR.

The mean continuous ST can be computed from the identity

τ 0
S =

〈τ 2〉0R
2 τ 0

R

=
N0

R

2NF ∆τ

∫ ∞
0

dτ τ 2 ψR(τ) (S20)

where eq S17 was used in the second step. By substituting the Taylor expansion of

ψR(τ) from eq S6 into eq S20 and carrying out the integrals, we find to first order in

∆τ/τR, that is, by neglecting terms of order (∆τ)2/(τR τS) or higher,

τS =
∆τ

2NF

∞∑
n=1

n2 FR(n) (S21)

Because this expression does not involve NR, the mean ST τS computed from eq S21

is, like FR(n) for n ≥ 1, accurate to first order in ∆τ/τR. Discretization introduces a
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second-order error in both τR and τS. However, the resolution error is of first order

in τR but only of second order in τS. The resolution error (loss of short RTs) impacts

less on τS than on τR because short RTs contribute less to τS.

The continuum residence correlation function (RCF) Q0
R(τ) is defined as

Q0
R(τ) =

∫ ∞
τ

dτ ′ ψR(τ ′) (S22)

Thus, Q0
R(τ) is the fraction of continuous RTs that are longer than τ . The discrete

RCF Q0
R(n) is defined as the fraction of bin-based RTs (of length n∆τ , including the

possibility of n = 0) that are longer than n∆τ . Equation S22 yields to first order

Q0
R(n) =

1

N0
R

∞∑
p=n+1

FR(p) (S23)

where we have used eq S12 to replace F 0
R(n) by FR(n), which is also accurate to first

order. But the RCF that we compute is

QR(n) =
1

NR

∞∑
p=n+1

FR(p) (S24)

which has NR rather than N0
R. Therefore, in view of eq S15,

QR(n) =
Q0

R(n)

1−∆τ ψR(0)
(S25)

showing that QR(n) is only accurate to zeroth order in ∆τ/τR.

The continuum survival correlation function (SCF) Q0
S(τ) is related to the RCF

via the identity

dQ0
S(τ)

dτ
= − Q

0
R(τ)

τ 0
R

(S26)
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which integrates to

Q0
S(τ) =

1

τ 0
R

∫ ∞
τ

dτ ′ Q0
R(τ ′) (S27)

The discrete version of this expression, accurate to first order, is

Q0
S(n) =

N0
R

NF

∞∑
p=n

Q0
R(p) (S28)

where we have used eq S17. If we now substitute Q0
R(p) from eq S23, the unknown

quantity N0
R cancels out and we are left with

Q0
S(n) =

1

NF

∞∑
p=n

∞∑
q=p+1

FR(q) (S29)

This expression, which only involves the known quantities NF and FR(q), is also the

one used to compute the approximate QS(n) from the MD data. We thus see that

QS(n) is accurate to first order, whereas QR(n) is only accurate to zeroth order.
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S5. STATISTICAL ERROR

Here we provide more details about the analysis of the statistical uncertainties, or

standard deviations, σ(τX) and σ(QX) in τX and QX (with X = R or S), resulting

from the finite length T of the trajectory at a given sampling resolution ∆τ . Here,

we assume that ∆τ is so small that the binning error is negligible.

Let τX(T ) be the value of τX that we compute from a trajectory of length T . This

value generally deviates somewhat from the value τX(T →∞) that we would compute

from an infinitely long trajectory. The standard deviation σ(τX) is a measure of this

deviation. If the system is ergodic, the infinite trajectory average is equal to the

ensemble average,

〈τX〉 = lim
T→∞

τX(T ) (S30)

The ensemble is an effectively infinite set of finite trajectories. We can choose to

work with either of two ensembles. In the F (frame) ensemble, all trajectories contain

the same number NF of frames and are therefore of the same length T = NF ∆τ .

In the R (residence time) ensemble, all trajectories contain the same number NR

of residence time (RT) intervals. The trajectory length is then more conveniently

expressed as T = NR τR. Because τR fluctuates somewhat among the different tra-

jectories, it follows that the trajectories in the NR ensemble are not of precisely the

same length.
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Our primary data is a sequence of NR RT intervals. The number NR is thus a

measure of the amount of information at our disposal. If we sample the trajectory

more densely by decreasing ∆τ , we increase NF but we do not gain more information

since NR is unchanged. The statistical error should therefore depend on NR, but not

on NF. Specifically, if the RTs are mutually independent, we expect the statistical

error to be proportional to 1/
√
NR. The statistical error must therefore be evaluated

in the NR ensemble. In the following, we denote R ensemble averages by 〈· · ·〉,

whereas F ensemble averages, in the few cases where they occur, are denoted by

〈· · ·〉F.

Let n be the RT in units of ∆τ . The ensemble-averaged mean RT is then

〈n〉 =
∞∑
n=1

nFR(n) (S31)

where FR(n) is the equilibrium RT probability distribution. Neither FR(n) nor 〈n〉

can be obtained from a trajectory of finite length. From the trajectory, we obtain

a chronological series of a finite number NR of RTs. If the simulated system is in

equilibrium, the series {nα}α=1...NR
represents a stationary stochastic process. Sta-

tionarity implies, among other things, that the nα are identically distributed, but

not necessarily independent, random variables. Therefore, the mean 〈nα〉 ≡ 〈n〉 does

not depend on α. An unbiased estimator of the mean RT 〈n〉 is provided by the
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trajectory average

n(NR) =
1

NR

NR∑
α=1

nα (S32)

This estimator is unbiased because

〈n(NR)〉 =
1

NR

NR∑
α=1

〈nα〉 = 〈n〉 (S33)

Note that NR is not ensemble-averaged since it is a constant in the R ensemble. To

simplify the notation, we will write n instead of n(NR) in the following.

The trajectory average nmay be regarded as a random variable with a probability

density Ψ(n). If NR is large, the central limit theorem leads us to expect that Ψ(n)

is approximately Gaussian and hence fully characterized by the mean 〈n〉 = 〈n〉 and

the variance

σ2(n) ≡
〈
[n− 〈n〉]2

〉
=
〈
n2
〉
− 〈n〉2 (S34)

The desired measure of the statistical error in the estimator n of the mean RT is

the standard deviation σ(n). However, eq S34 involves ensemble averages, which we

cannot obtain from a finite trajectory. We can only obtain an estimator s2(n) of the

variance σ2(n). To be reliable, this should be an unbiased estimator.

Substituting n from eq S32 into eq S34, we obtain

σ2(n) =
1

N2
R

NR∑
α=1

NR∑
β=1

Cαβ (S35)
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with the covariance Cαβ of the random variables nα and nβ defined as

Cαβ ≡ 〈nα nβ〉 − 〈nα〉 〈nβ〉 = 〈nα nβ〉 − 〈n〉2 (S36)

If the random variables nα and nβ are uncorrelated, we have 〈nα nβ〉 = 〈nα〉 〈nβ〉 =

〈n〉2 and, therefore, Cαβ = 0. Moreover, Cαα = σ2
n is the variance of the random

variable nα,

σ2
n ≡

〈
n2
α

〉
− 〈nα〉2 =

〈
n2
〉
− 〈n〉2 (S37)

In general, |Cαβ| ≤ σ2
n.

It is convenient to split σ2(n) in two parts, corresponding to the diagonal and

off-diagonal terms of the double sum in eq S35. Thus,

σ2(n) = σ2
0(n) + ∆c(n) (S38)

σ2
0(n) =

σ2
n

NR

(S39)

∆c(n) =
1

N2
R

NR∑
α=1

NR∑
β=1

′
Cαβ (S40)

where the prime on the second sum signifies omission of diagonal (β = α) terms.

Whereas σ2(n) and σ2
0(n) are necessarily non-negative, the quantity ∆c may be

negative.

If all the random variables {nα}α=1...NR
are mutually uncorrelated, it follows from

the foregoing that ∆c(n) = 0 and that σ2(n) = σ2
0(n) with

σ2
0(n) =

σ2
n

NR

=
〈n2〉 − 〈n〉2

NR

(S41)
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This is a well-known result: the standard error of the mean of N independent mea-

surements of a random variable equals the standard deviation of the random variable

itself divided by the square root of the number of measurements.

To obtain an unbiased estimator s2
0(n) of σ2

0(n), we need an unbiased estimator

s2
n of the variance σ2

n. This is

s2
n =

1

(NR − 1)

NR∑
α=1

(
n2
α − n2

)
(S42)

with the denominator NR − 1 rather than NR. In the absence of correlations, the

unbiased estimator s2
0(n) of the variance σ2

0(n) of the unbiased estimator n of the

mean RT 〈n〉 can, according to eqs S32, S41 and S42, be computed from

s2
0(n) =

1

(NR − 1)

( 1

NR

NR∑
α=1

n2
α

)
−

(
1

NR

NR∑
α=1

nα

)2
 (S43)

The desired statistical uncertainty in τR/∆τ is the square root of this.

We now return to the general case with correlations. If the set {nα}α=1...NR
of

random variables represents a stochastic process with the index α increasing mono-

tonically with time, then the covariance Cαβ in eq S36 can be regarded as a serial

correlation function. If the process is stationary, the correlation function can only

depend on the difference γ = β − α. The double sum in eq S40 can therefore be

reduced to a single sum as

∆c(n) =
2

NR

NR−1∑
γ=1

(
1− γ

NR

)
Cγ (S44)
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Cγ ≡ 〈nα nα+γ〉 − 〈nα〉 〈nα+γ〉 = 〈nα nα+γ〉 − 〈n〉2 (S45)

where 〈nα nα+γ〉 is independent of α. In our case, the ‘time’ point α is simply

the serial number of a RT in the chronological RT list. Hence, we refer to Cγ

as a serial correlation function rather than a time correlation function. The serial

correlation function Cγ measures the correlation of two RTs that are separated by

γ − 1 intervening RTs.

Without a priori knowledge about the serial correlation function Cγ, eq S44 is of

limited utility. Probably the most robust and computationally efficient approach to

this problem is the block renormalization (BR) method proposed by Flyvbjerg and

Petersen.1 In this method, we select the longest sequence of N = 2k (k is an integer)

RTs contained in the original RT series. For this pruned series, we compute the σ(n)

estimator from eq S43 (which is valid in the absence of correlations)

s =

 1

(N − 1)

( 1

N

N∑
α=1

n2
α

)
−

(
1

N

N∑
α=1

nα

)2


1/2

(S46)

We then perform the first blocking transformation by averaging pairwise values

n′α =
n2α−1 + n2α

2
(S47)

so that N ′ = N/2. We then compute a new value for the estimator,

s′ =

 1

(N ′ − 1)

( 1

N ′

N ′∑
α=1

n′ 2α

)
−

(
1

N ′

N ′∑
α=1

n′α

)2


1/2

(S48)
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This process is repeated until N ′ = 2, yielding a series of k values for the estimator.

The relative standard deviation in these estimators is [2 (N ′ − 1)]−1/2.1 Whereas

the mean n is invariant under the blocking transformation, the standard deviation

estimator s increases until a so-called fixed point is reached and then remains constant

upon further transformations. Of course, such a plateau will only be observed if the

correlation ‘time’ on which Cγ decays is much smaller than NR.

Figure S2 shows estimates of σ(τR) after successive blocking transformations for

site W113 in all states. Here, NR = 37, 499, so that k = 15 (215 = 32, 768). Equation

S43 yields s0(τR) ≈ 2 ns, but the BR estimate increases to ∼ 10 ns without reaching

a well-defined plateau. The source of the problem is evident from the RT vector in

Fig. 2 of the main text: small and large RTs tend to cluster in alternating segments

with a correlation ‘time’ of the same order of magnitude as NR. In Fig. S3, the BR

method is applied to the RTs of site W113 in state M1 after omission of short RTs.

Here the problem is the small number of RTs, NR = 60, only half of which can be

used in the BR method (25 = 32). Because of this reduction in the number of RTs,

the initial error in Fig. S3 is larger than the one computed from eq S43 with all

60 RTs. Although the uncertainty in s(τR) is large, the BR method indicates that

correlations are unimportant, as is also suggested by the RT vector in Fig. 6 of the

main text. The uncorrelated error s0(τR) should then be a good estimate.
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Figure S2: BR estimation of statistical error in τR for site W113 in all states.
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Figure S3: BR estimation of statistical error in τR for site W113 in M1 state with

exclusion of short (< 50 ns) RTs.
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We now turn to the mean ST. Let mk be the number of remaining frames in the

current RT, of length nα, beginning at, and including, an arbitrary frame k. This

is the time to the next exchange event from an arbitrary starting time. From a

finite-length trajectory, we obtain a chronological series of NF STs. If the simulated

system is in equilibrium, the series {mk}k=1...NF
represents a stationary stochastic

process and the trajectory average

m =
1

NF

NF∑
k=1

mk (S49)

is an unbiased estimator of the mean ST 〈m〉F in the F ensemble.

Since the RT series {nα}α=1...NR
contains all information about the underlying

stochastic process, it must be possible to express m in terms of the RTs nα. Indeed,

it is readily shown that (see eq 7 of the main text)

m =
n2

2n
=

1

2

∑NR

α=1 n
2
α∑NR

α=1 nα
(S50)

We seek the variance

σ2(m) ≡
〈
[m− 〈m〉]2

〉
=
〈
m2
〉
− 〈m〉2 (S51)

We can choose to evaluate the ensemble averages either in the F ensemble or in the

R ensemble. In the former case, we can substitute m from eq S49 and proceed as

for τR. But we want an expression that involves the RTs nα, since the RT series
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constitutes our data. We must therefore work with the R ensemble, where NR is

constant. Our starting point must therefore be eq S50, which expresses the random

variable m as a nonlinear function of two other (correlated) random variables n and

n2. The conventional procedure for computing the variance of a function of random

variables is to Taylor expand the function. Expanding eq S50 to first order, we obtain

m = 〈m〉 − 〈n2〉
2 〈n〉2

[
n− 〈n〉

]
+

1

2 〈n〉
[
n2 −

〈
n2
〉]

+ · · · (S52)

where we have noted that 〈n〉 = 〈n〉 and
〈
n2
〉

= 〈n2〉 in the R ensemble. This

expansion shows that 〈m〉 = 〈m〉 to first order in the R ensemble, whereas this is an

exact result in the F ensemble.

Forming the difference m−〈m〉 from eq S52, squaring it, and taking the ensemble

average, we obtain the variance

σ2(m) =

(
〈n2〉

2 〈n〉2

)2〈[
n− 〈n〉

]2
〉

+

(
1

2 〈n〉

)2〈[
n2 −

〈
n2
〉]2
〉

− 〈n2〉
2 〈n3〉

〈[
n− 〈n〉

][
n2 −

〈
n2
〉]〉 (S53)

Since we have neglected terms of higher than second order, this result is accurate

only if the relative variances in n and n2, as well as their relative covariance, are

small. In other words, the Taylor expansion method only predicts σ(m) accurately

if σ(m)/m is small. Furthermore, the estimator obtained by replacing all ensemble

averages in eq S53 by trajectory averages is not unbiased.
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Rather than pursuing the general case, we shall assume that the RTs nα are

mutually uncorrelated. This seems to be approximately true if we omit the short

RTs. In any case, σ2
0(m) provides a useful lower bound on σ2(m). For uncorrelated

RTs, we have 〈[
n− 〈n〉

]2〉
=
〈n2〉 − 〈n〉2

NR〈[
n2 −

〈
n2
〉]2
〉

=
〈n4〉 − 〈n2〉2

NR〈[
n− 〈n〉

][
n2 −

〈
n2
〉]〉

=
〈n3〉 − 〈n〉 〈n2〉

NR

(S54)

which is inserted into eq S53 to yield

σ2
0(m) =

1

NR

〈n〉2〈n4〉+ 〈n2〉3 − 2 〈n〉〈n2〉〈n3〉
4 〈n〉4

(S55)

As expected, the error σ0(m) decreases as the inverse square root of NR, just as for

σ0(n). However, the estimator s2
0(m) obtained by replacing the ensemble averages

in eq S55 by trajectory averages (and perhaps NR by NR − 1) is not unbiased.

Moreover, we cannot use the BR method to obtain σ2(m) (including the effect of

correlations), because the trajectory average m in eq S50 is not invariant under

blocking transformation. Nevertheless, we can hope that eq S55 yields a reasonable

estimate if the relative error is small and if the correlations are insignificant.

If the nα are not only mutually independent but also exponentially distributed,
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they constitute a Poisson process and

〈
nk
〉

= k! 〈n〉k (S56)

In this special case, eq S55 reduces to

σ2
0(m) =

2 〈n〉2

NR

(S57)

whereas the corresponding result in eq S41 for the variance of the mean RT becomes

σ2
0(n) =

〈n〉2

NR

(S58)

Whereas τS = τR (or m = n) for a Poisson process, the standard deviation is thus a

factor
√

2 larger for τS.

The trajectory-based estimator of the residence correlation function (RCF) QR(n)

is denoted by h(n). This may be expressed as a trajectory average

h(n) =
1

NR

NR∑
α=1

hα(n) (S59)

of the indicator function hα(n), which equals 1 if nα > n and 0 otherwise. The

ensemble-averaged RCF is

〈h(n)〉 =
∞∑

p=n+1

FR(p) (S60)

where FR(p) is the equilibrium RT probability distribution. The trajectory average

h(n) is an unbiased estimator of the ensemble average 〈h(n)〉, because

〈
h(n)

〉
=

1

NR

NR∑
α=1

〈hα(n)〉 = 〈h(n)〉 (S61)
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where we have made use of the stationarity of the stochastic process {nα}α=1...NR
.

The error analysis for τR carries over directly to the RCF if we replace nα by

hα(n). To simplify the notation, we shall omit the argument n in most of what

follows. Because hα can only take the values 0 or 1, the expressions can be further

simplified by using the identity h2
α = hα. The variance of hα is thus given by

σ2
h ≡

〈
h2
α

〉
− 〈hα〉2 = 〈h〉 [1− 〈h〉] (S62)

If the RTs are mutually uncorrelated, the variance of h is, in analogy with eq S41,

σ2
0(h) =

σ2
h

NR

=
〈h〉 [1− 〈h〉]

NR

(S63)

and the unbiased estimator (see eq S43) for the standard deviation is

s0(h) =

[
h (1− h)

NR − 1

]1/2

(S64)

Since h(0) ≡ 1, eq S64 predicts a vanishing error for n = 0, as expected.

The trajectory-based estimator of the survival correlation function (SCF) QS(n)

is denoted by g(n). This may be expressed as a trajectory average

g(n) =
1

NF

NF∑
k=1

gk(n) (S65)

of the indicator function gk(n), which equals 1 if mk > n and 0 otherwise.

The ensemble-averaged SCF is

〈g(n)〉 =
∞∑

p=n+1

FS(p) (S66)
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where FS(p) is the equilibrium ST probability distribution. The trajectory average

g(n) is an unbiased estimator of the ensemble average 〈g(n)〉F in the F ensemble,

because the stochastic process is stationary so that

〈g(n)〉F =
1

NF

NF∑
k=1

〈gk(n)〉F = 〈g(n)〉F (S67)

As for τS, we want to express the trajectory average in eq S65 in terms of the

random variables nα, so we can take ensemble averages in the R ensemble. We

therefore write

g(n) =

NR∑
α=1

pα gα(n) (S68)

where gα(n) is the mean of the indicator function gk(n) for the RT interval α and

pα = nα/NF = nα/(NR n) is the probability that the randomly chosen frame k lies

in this interval. Furthermore,

gα(n) =
1

nα

nα∑
i=1

gi(n) =
1

nα
(nα − n)hα(n) (S69)

where the indicator function hα(n), introduced in connection with the RCF, acts as

a step function that ensures that gα(n) = 0 for n > nα. Combining eqs S68 and S69

and the expression for pα, we obtain

g(n) =
1

NR n

NR∑
α=1

(nα − n)hα(n) (S70)

Note that, in eqs S69 and S70, n is not a random variable, but merely an integer.
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We seek the variance

σ2(g) ≡
〈
[g − 〈g〉]2

〉
=
〈
g2
〉
− 〈g〉2 (S71)

Now eq S70 expresses the random variable g as a nonlinear function of 2NR + 1

other (correlated) random variables, namely nα, hα and n. Taylor expanding g(n)

in eq S70 to first order in the fluctuations of these variables around their ensemble

averages, we can proceed along the same lines as in the error analysis of τS. However,

this leads to a rather complicated result, so we shall pursue a different approach that

yields a simpler, albeit approximate, result that is likely to be a slight overestimate

of the true (uncorrelated) error in QS(τ).

The starting point is eq S27, which we now write as

QS(τ) = 1 − 1

τR

∫ τ

0

dτ ′ QR(τ ′) (S72)

The discrete version of this expression is

QS(n) = 1 − ∆τ

τR

n−1∑
p=0

QR(p) = 1 − ∆τ

τR

[
n∑
p=0

QR(p) − QR(n)

]
(S73)

or, in terms of dimensionless trajectory averages,

g(n) = 1 − 1

n

[
n∑
p=0

h(p) − h(n)

]
(S74)

In view of eq S59, this can be expressed as

g(n) = 1 − 1

NR

NR∑
α=1

Gα(n) (S75)
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where we have defined

Gα(n) ≡ 1

n

[
n∑
p=0

hα(p) − hα(n)

]
(S76)

We now introduce the approximation, which consists in neglecting the fluctuations

in n so eq S76 becomes a linear combination of random variables,

Gα(n) ≈ 1

〈n〉

[
n∑
p=0

hα(p) − hα(n)

]
(S77)

As before, we shall only consider the uncorrelated case, where 〈nα nβ〉 = 〈nα〉〈nβ〉

and therefore 〈hα(n)hβ(p)〉 = 〈hα(n)〉 〈hβ(p)〉 and 〈Gα(n)Gβ(p)〉 = 〈Gα(n)〉 〈Gβ(p)〉.

It then follows immediately that

σ2
0(g) =

σ2
G

NR

(S78)

where σ2
G is the variance of Gα(n),

σ2
G =

〈
[Gα(n)]2

〉
− 〈Gα(n)〉2 (S79)

Ensemble averaging eq S77, we obtain

〈Gα(n)〉 =
1

〈n〉

[
n∑
p=0

〈h(p)〉 − 〈h(n)〉

]
(S80)

Similarly,〈
[Gα(n)]2

〉
=

1

〈n〉2

[
n∑
p=0

n∑
q=0

〈hα(p)hα(q)〉 − 2
n∑
p=0

〈hα(n)hα(p)〉 +
〈
h2
α(n)

〉]

=
1

〈n〉2

[
n∑
p=0

(2p+ 1) 〈h(p)〉 − (2n+ 1) 〈h(n)〉

]

(S81)

28



where we have made use of the identities

h2
α(n) = hα(n) (S82)

hα(n)hα(p) = hα(n) if p ≤ n (S83)

Combining eqs S78 – S81, we obtain

σ2
0(g) =

1

〈n〉2NR


n∑
p=0

(2p+ 1) 〈h(p)〉 − (2n+ 1) 〈h(n)〉 −

[
n∑
p=0

〈h(p)〉 − 〈h(n)〉

]2


(S84)

The estimator for the standard deviation of g(n) is thus

s0(g) =
1

nN
1/2
R


n∑
p=0

(2p+ 1)h(p)− (2n+ 1)h(n) −

[
n∑
p=0

h(p)− h(n)

]2


1/2

(S85)

As for h(n), eq S85 shows that the error in g(n) has the expected property of vanishing

for n = 0.
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