Supporting Information

Monodisperse $M_xFe_{3-x}O_4$ (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction

Huiyuan Zhu, [†] Sen Zhang, [†] Yu-Xi Huang, ^{†,‡} Liheng Wu, [†] and Shouheng Sun^{*†}

[†]Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA.

^{*}Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China

*To whom correspondence should be addressed. Email: ssun@brown.edu

Experimental Section

Chemicals and Materials. Fe(acac)₃, Cu(acac)₂, Co(acac)₂, Mn(acac)₂ (acac = acetylacetonate), oleylamine (OAm, >70%), oleic acid (OA), benzyl ether (BE, >98%), 1,2-tetradecanediol, hexane, ethanol and Nafion (5%) were all purchased from Sigma Aldrich. C-Pt catalyst (20% mass loading with Pt particle diameter of 2.5-3.5 nm) was obtained from Fuel Cell Store.

Instrumentation. TEM and HRTEM samples were prepared by depositing a drop of diluted nanoparticle (NP) dispersion in hexane on amorphous carbon coated copper grids. TEM images were obtained from a Philips CM 20 operating at 200 kV. High-resolution TEM (HRTEM) images were obtained from a JEOL 2010 with an

accerating voltage of 200 kV. X-ray diffraction (XRD) patterns were collected from a Bruker AXS D8-Advanced diffractometer with Cu K α radiation (λ =1.5418 Å). Metal components within NPs were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) on a JY2000 Ultrace ICP Atomic Emission Spectrometer equipped with a JY AS 421 autosampler and 2400g/mm holographic grating, and the mass ratios were converted into atomic ratios. Electrochemical measurements were carried out on a Autolab potentiostat from Metrohm Instrument Company (Autolab 302). A three-electrode system consisting of a glassy carbon (GC) working electrode (5-mm in diameter), an Ag/AgCl reference electrode (in 4 M KCl) and a platinum wire counter electrode, was used. Magnetic properties were measured on a Lakeshore 7404 high sensitivity vibrating sample magetometer (VSM) with fields up to 1.5 T.

Synthesis of $M_xFe_{3-x}O_4$ NPs. A solution of 25 ml BE, 0.96 ml OA, 1 ml OAm, 1.15 g 1,2-tetradecandiol and 1 mmol Fe(acac)₃ in a four-necked flask was heated to 120 °C under nitrogen flow and magnetic stirring and was kept at this temperature for 1 h. The solution was heated up to 210 °C at a rate of 8 °C/min and kept at this temperature for 2 h. Under a blanket of nitrogen atmosphere and at a slow heating rate (3 °C/min), the solution was further heated to 300 °C and kept at this temperature for 1 h. After cooled down to room temperature, the NPs were collected and washed by addition of ethanol (20 ml) and subsequent centrifugation at 10000 rpm for 8 min. The product was redispersed into hexane and precipitated out by addition of ethanol

and centrifugation to remove all residual impurities. Final product, 7 nm Fe_3O_4 NPs, was dispersed in hexane for further use.

Similarly, other $M_xFe_{3-x}O_4$ NPs with M = Cu, Co, or Mn were synthesized by adding 0.5 mmol $Cu(acac)_2/Co(acac)_2/Mn(acac)_2$ in the beginning of the reaction. Specifically, 5 nm $Mn_xFe_{3-x}O_4$ NPs with different x were synthesized by varying the amount of $Mn(acac)_2$, OA and OAm. To synthesize $Mn_{0.4}Fe_{2.6}O_4$ NPs, 0.35 mmol $Mn(acac)_2$, 1 ml OA and 1.1 ml OAm were added in the reaction mixture. To prepare $MnFe_2O_4$ NPs, 0.67 mmol $Mn(acac)_2$, 0.92 ml OA and 1 ml OAm were added. However, our efforts in preparing $M_xFe_{3-x}O_4$ with x > 1 failed. For example, when 1 mmol $Mn(acac)_2$ was used in the synthesis, we obtained $Mn_{1.4}Fe_{1.6}O_4$ NPs. But these NPs were irregular in shape and had an average size larger than 10 nm (**Figure S2**).

Catalyst Preparation. The as-synthesized NPs were mixed with Ketjen-300 J carbon at a weight ratio of 4:6 in 20 ml mixture of hexane and acetone (V/V=1:1) and sonicated for 1 h. The C-NPs were separated from the solvents by centrifugation and washed with hexane. The C-NPs were annealed in air at 165 °C for 12 h to remove the surfactant.¹ The C-NPs (both as-made C-NPs and commercial C-Pt) were suspended in a mixture of deionized water, isopropanol and Nafion (V/V/V=4/1/0.05) to form a catalyst ink (2 mg/ml) for electrochemistry measurements.

GC electrode was polished by 0.1 μ m and 0.05 μ m alumina powder and rinsed with deionized water, followed by sonication first in ethanol and then in deionized water. 20 μ l catalyst ink was deposited on the GC working electrode and dried at ambient condition.

Electrochemical Measurements. Cyclic voltammograms (CVs) were obtained by scaning between 0.2 V to -0.8 V vs Ag/AgCl at a scan rate of 50 mV/s in N₂-saturated 0.1 M KOH solution. CVs were also obtained by scaning between 0 V to -0.8 V vs Ag/AgCl at a scan rate of 50 mV/s in O₂-saturated 0.1 M KOH solution. ORR polarization curves were obtained by linear sweep voltammetry scanning from 0.2 V to -0.8 V vs Ag/AgCl at a scan rate of 10 mv/s in O₂-saturated 0.1 M KOH with RDE at different rpms (400-2500 rpm). Chronoamperometric was performed to evaluate the catalyst durability at -0.3 V vs Ag/AgCl with the electrode rotating at 200 rpm in O₂-saturated 0.1 M KOH. The electron transfer number (n) was calculated from the slopes of the Koutecky-Levich plots² according to:

$$\frac{1}{I} = \frac{1}{I_L} + \frac{1}{I_K} = \frac{1}{I_K} + \frac{1}{B\omega^{1/2}}$$
$$B = 0.62nAFC_{\rho_2} D_{\rho_2}^{2/3} v^{-1/6}$$

where I, I_K and I_L are measured current, kinetic current and diffusion-limiting current respectively, \Box is the angular velocity, F is the Faraday constant (96485 C•mol⁻¹), A is the electrode surface area, CO₂ is the concentration of dissolved O₂ (1.2×10⁻⁶ mol•cm⁻³), DO₂ is the diffusion coefficient of O₂ (1.9×10⁻⁵ cm²•s⁻¹) and \Box is kinetic viscosity of the electrolyte (0.01cm²•s⁻¹).³ The constant 0.62 is applied when the rotation speed is expressed in radius per second (rad/s).²

References

 Wang, C.; Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang. G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2011, 11, 919-926. 2. Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. J. Am. Chem.

Soc. 2012, 134, 3517-3523.

3. Wang, S.; Yu, D.; Dai, L.; Chang, D.; Baek, J. ACS Nano. 2011, 5, 6202-6209.

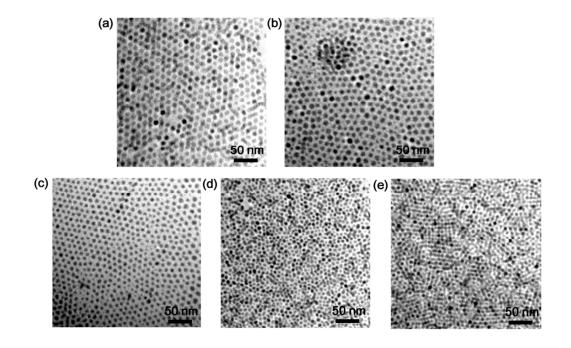


Figure S1. TEM images of the as-synthesized (a) 7 nm Fe₃O₄, (b) 8 nm Cu_{0.7}Fe_{2.3}O₄, (c) 5 nm Co_{0.8}Fe_{2.2}O₄ and (d) 5 nm Mn_{0.4}Fe_{2.6}O₄ NPs and (e) $Mn_{0.6}Fe_{2.4}O_4$ NPs.

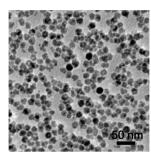
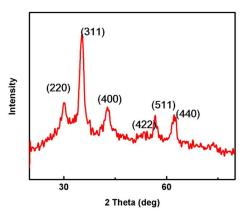
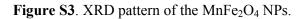
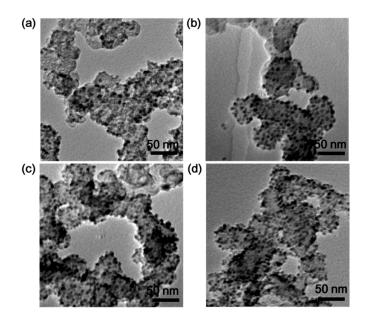
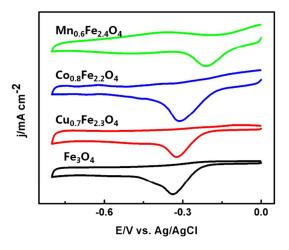
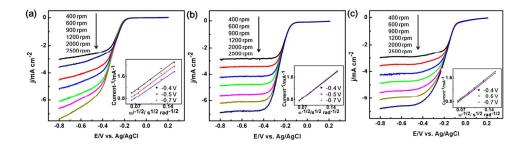




Figure S2. TEM image of as-synthesized Mn_{1.4}Fe_{1.6}O₄ NPs

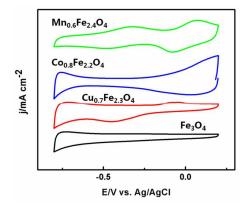

Figure S4. TEM images of (a) C-Fe₃O₄, (b) C-Cu_{0.7}Fe_{2.3}O₄, (c) C-Co_{0.8}Fe_{2.2}O₄, (d) C-Mn_{0.6}Fe_{2.4}O₄ NPs after air annealing at 165 °C for 12 h.

Figure S5. CV's of the C-Fe₃O₄, C-Cu_{0.7}Fe_{2.3}O₄, C-Co_{0.8}Fe_{2.2}O₄ and C-Mn_{0.6}Fe_{2.4}O₄ NPs in O₂-saturated 0.1 M KOH at a scan rate of 50 mV/s.

Figure S6. ORR polarization curves of (a) $C-Cu_{0.7}Fe_{2.3}O_4$, (b) $C-Co_{0.8}Fe_{2.2}O_4$ and (c) $C-Mn_{0.6}Fe_{2.4}O_4$ NPs at different rpm (400 rpm -2500 rpm) in O₂-saturated 0.1 M KOH at a scan rate of 10 mV/s. **Insets**: Koutecky-Levich plots at different potentials (-0.4 V, -0.5 V and -0.7 V).

Figure S7. CV's of the C-Fe₃O₄, C-Cu_{0.7}Fe_{2.3}O₄, C-Co_{0.8}Fe_{2.2}O₄ and C-Mn_{0.6}Fe_{2.4}O₄ NPs in N₂-saturated 0.1 M KOH at a scan rate of 50 mV/s.