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FIG. 1: (a) Hexagon (0% strain) with ZZ edges. The arrows are a schematic representation of the

symmetrically applied tri-axial strain. In the transport calculations the contacts are attached to

the edges under traction as well because the edge atoms are held fixed along the direction transverse

to the tension, which allows us to keep the metallic contacts undeformed. (b) Deformed hexagon

with ZZ edges after 10% of symmetric strain. (c) Deformed hexagon with ZZ edges after 15% of

asymmetric (ramp) strain. (d) Hexagon (0% strain) with AC edges. The arrows are a schematic

representation of the asymmetrical (ramp) strain setup. (e) Deformed hexagon with AC edges

under 15% of symmetric strain. (f) Deformed hexagon with AC edges under 15% of asymmetric

(ramp) strain.

I. DEFORMED HEXAGONS UNDER STRAIN

The graphene hexagon was deformed via molecular mechanics using the open-source

atomistic simulation package LAMMPS [1], where molecular mechanics implies deformation

at 0K. The C-C interactions were modeled using the Adaptive Intermolecular Reactive

Empirical Bond Order (AIREBO) potential [2]
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which consists of three parts: the 2nd generation REBO potential (EREBO
ij ) [3], a standard

Lennard Jones potential (ELJ
ij ), and a many body torsion term (ETORSION

kijl ). As shown in

Eq. (1), EREBO is the 2nd generation Brenner potential which dominates the short-range
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interactions. The Lennard-Jones ELJ term is only switched on for long-range interactions

between 0.2 nm to the cut-off radius of the interatomic potential (0.68 nm), and is switched

off for distances shorter than 0.2 nm to avoid its steep (1/r12
ij ) repulsive wall. Finally, the

ETORSION term depends on dihedral angles which have little effect in this work due to the 2D

nature of graphene. No periodic boundary conditions were used in this work, and the total

numbers of atoms used in the zigzag and armchair sheets are 6144 and 6162, respectively.

We define three edge groups (32 atoms in each group for zigzag, 38 atoms in each group

for armchair) and applied displacement loading to the three edges as shown in Fig. 1(a).

For asymmetric loading cases, one edge was stretched while the other two were fixed, as

illustrated in Fig. 1(d).

Since molecular mechanics simulations are performed at 0K, there is no need for ther-

mostats to control the temperature of the system, and the equilibrium (minimum energy)

positions of the atoms are obtained using the conjugate gradient method with a relative

energy tolerance of 10−7 eV between successive displacement increments. Specifically, the

graphene hexagon is stretched by applying displacement increments of 0.01 Å perpendicular

to the corresponding edges, as illustrated in Fig. 1(a). After the displacement increment is

applied to the three edges, the three edges are held fixed, at which point the unconstrained

atoms in the hexagon are allowed to relax to their corresponding equilibrium positions using

the conjugate gradient algorithm. This stretching and relaxation loop is repeated until the

desired nominal strain (εeff ) is reached. Fracture of the hexagonal sheet is observed when

εeff goes up to ∼19% for the symmetric loading depicted in Fig. 1(a). Fig. 1 shows the

hexagonal quantum dots considered in this study under different loading conditions and for

different lattice orientations with respect to the applied strain. The strategy used to explore

deviations from the symmetric loading is shown schematically in Fig. 1(d). In this case the

traction is applied only to edge 3, and in such a way that the displacement follows a ramp

pattern, being maximal at one end of the edge and linearly decreasing to zero towards the

opposite end. Edges 1 and 2 are held fixed Figs 1c and 1f show the actual relaxed structures

after the molecular mechanics simulation under this ramp traction profile, and for 15% of

nominal strain applied to the lower atoms.

II. ARMCHAIR Y-JUNCTION

The electronic spectrum and transport characteristics of graphene nanostructures is

strongly influenced by the nature of the edges. Strain-induced PMFs also depend on the rela-

tive orientation of the strain with respect to the underlying crystal directions of the graphene

lattice. Here we consider a quantum dot with the same geometry and the same approximate

dimensions as the one discussed in the main text, but for which the graphene lattice has

been rotated so that the edges are now of the armchair (AC) type. This corresponds to a

rotation of the original lattice by π/2, or any other equivalent angle.
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FIG. 2: (Color online) (a) Transmission coefficient T21(T31) vs Fermi Energy for a symmetrically

strained AC Y-junction. (b) LDOS mapping at E = 0.043t0 for the 15% symmetrically strained

AC Y-junction.

The calculation of the transmission is done now by attaching three unstrained semi-

infinite zig-zag (ZZ) graphene nanoribbons, which act as ideal contacts. As in the main text,

the contacts are connected to the sides of the hexagon where the load is applied, creating

an AC Y-junction. In Fig. 2(a) we can see the transmission coefficient for 0% strain (red).

As discussed in the main text for the ZZ case, the onset of transmission in the unstrained

structure is characterized by a very broad hump, that is associated with the fundamental

mode of the cavity. The different nature of the AC edges manifests itself by the wider and

deeper resonances and anti-resonances that develop as the energy increases, in comparison

with the transmission fingerprint of the unstrained ZZ junction discussed in the main text.

When strain is applied up to the nominal value of 10% the transmission coefficient mostly

resembles the unstrained case, and the case of εeff = 15%, represented by the black curve in

Fig. 2(a) is still qualitatively similar to the unstrained situation. More specifically, despite

the additional structure, there are no isolated resonant peaks in contrast to the case of the

ZZ junction, and transmission is never zero after the initial onset at around E ' 0.02. In

clear contrast with the case analyzed in the main text, the transmission signature of this

junction is not compatible with the presence of a significant pseudomagnetic field within

the central region of the hexagon. Direct inspection of the real-space LDOS distribution at

the transmission peaks confirms this. Fig. 2(b) represents a density plot of the LDOS for

the transmission peak at E = 0.043t0, revealing a LDOS distribution qualitatively similar

to any resonance in the unstrained structure.

The inference that there is no significant homogeneous magnetic field within the junction

from the transport fingerprint alone is compatible with the expectation for the pseudomag-

netic field distribution anticipated in this case. Despite the generic relevance of the edge
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FIG. 3: (Color online) Sections of Bs and LDOS for a strained ZZ Y-junction with εeff = 10%. Panel

(a) shows a density plot of Bs in the entire system obtained with the “displacement approach”. In

panels (b)-(d) we plot the profile of Bs (black) and LDOS (red) at E = 0.018t0 along the directions

defined in the text: θ = π/2, θ = π/6, and θ = −π/6, respectively.

chirality in small graphene structures, the crucial detail in the context of generating suitable

PMF distributions is the orientation of the lattice with respect to the strain directions. On

the basis of the results derived in reference 4 we can expect the magnitude of the PMF

near the center of the hexagon to vary with the lattice orientation as ∝ cos(3ϕ), where

ϕ = 0 corresponds to a lattice with a ZZ direction along the horizontal axis. Since the AC

case studied in Fig. 2 corresponds to ϕ = π/6, π/2 , etc. we expect the magnitude of the

pseudomagnetic field to be mostly suppressed in the central region.

III. PROFILE OF Bs AND LDOS (ZZ JUNCTION)

In the main text we studied in detail the case of a ZZ junction under εeff = 10 %. From

the nature of the resonant transmission at low energies, and from the equidistant spacing

between resonances, we extracted an average pseudomagnetic field Bav
s determining the

behavior of transmission. Moreover, we stated that the resonant transmission occurs only

through the assistance of those edge states whose radius is such that they effectively couple
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FIG. 4: Sections of Bs and LDOS for a strained AC Y-junction with εeff = 15%. Panel (a) shows

a density plot of Bs in the entire system obtained with the “displacement approach”. In panels

(b)-(d) we plot the profile of Bs (black) and LDOS (red) at E = 0.043t0 along the directions defined

in the text: θ = π/2, θ = π/6, and θ = −π/6, respectively.

to the contacts at the border.

To clarify these points, the values of Bs and LDOS at E1 = 0.018t0 in the ZZ junction

with εeff = 10%, are extracted along transverse sections equivalent by symmetry. The origin

of coordinates is set at the center of the strained hexagon, with the x and y axes along the

conventional horizontal and vertical directions. The direction of the transverse section with

respect to the horizontal axis is defined by the angle θ, and the position of a point in the

lattice along this section is identified by R̃ = sign(y)
√
x2 + y2. We shall consider the three

equivalent transverse sections along θ = π/2 and ±π/6. For example, contact 1 appears at

R̃ ≈ 74 Å in a section taken along θ = π/2. These three sections are chosen to confirm and

highlight the isotropy of both Bs and the LDOS in the interior of the structure.

The overall distribution of Bs within the hexagon is shown in Fig. 3(a). The value of

Bs shown here is extracted using the “displacement” approach discussed in the main text.

It consists in using the coordinates of the relaxed atoms directly to interpolate the strain

tensor, after which the vector potential As is extracted. This method has the potential

disadvantage of requiring a sequence of three numerical derivatives to obtain the value of
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Bs at a given lattice point, given the relaxed atomic coordinates, and also overestimates

Bs at large deformations, as shown in Fig. 3 of the main text. However it is much more

expedite than the mapping of the LDOS, and extraction of the local LL spectrum from the

tight-binding calculation, which was the method used to plot Bs in Fig. 1 of the main text.

Correcting for the overestimate in magnitude discussed and shown in Fig. 3 of the main

text, the distribution of Bs obtained with either method in the interior of the structure is

equivalent.

The values of Bs and LDOS along the three sections mentioned above are plotted in

Figs. 3(b)-(d), represented by the black traces. The LDOS is plotted together with the

pseudomagnetic field along the three sections, represented by the red traces. First, we

notice that the large peaks located at boundary R̃ = −65 Å (θ = π/2), R̃ = 68 Å (θ = π/6),

and R̃ = 68 Å (θ = −π/6) are due to ZZ edge states. At the opposite boundary (where the

contacts are attached) the LDOS is small, signaling that this state is well confined within

the interior of the structure, and that the probability of transmission through it is small.

The most interesting detail of the LDOS distribution, however, is its distribution in the

interior of the structure. It is clear that the wave function does not follow local features in

Bs, such as changes of strength or sign of Bs [5]. In contrast, the LDOS intensity is almost

completely confined to an annular region inside the junction, fully resembling the LDOS

of an edge state in a magnetic quantum dot, as described by Lent [6]. From the LDOS

profile we obtain `Bs ≈ 2 nm, which corresponds to the average field Bav
s = ~/el2Bs

' 164 T

extracted in the main text.

IV. PROFILE OF Bs AND LDOS (AC JUNCTION)

The procedure described in the previous section is applied to the analysis of the AC

junction with εeff = 15%. As expected, the magnitude of Bs is roughly zero in the interior

region of the junction. Sharp features appear only around small regions near the corners

and edges, where the field is strong and alternates in sign. Figs. 4(b)-(d) show the profile of

Bs together with the LDOS at E = 0.043t0, the same energy used in Fig. 2 above.

V. EDGE ROUGHNESS AND ASYMMETRIC STRAIN

In order to simulate the effect of edge roughness, vacancies were added with a probability

of 0.4 to the edges of the two types of Y-junction. These vacancies were added in the strained

electronic Hamiltonian neglecting the relaxation of local strain in the vicinity of the vacancy.

This simplification should not modify our results since the main ingredient is that edge

roughness reduces the transmission through pseudo-magnetic edge states (standing waves in

the strain barrier) for ZZ edged Y-junctions, as can be seen in Fig. 5(a). In these structures

the Bs in the interior of the junction behaves like a barrier, pushing the current towards the
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FIG. 5: Transmission coefficient for: (a) 10% strained ZZ Y-junction with and without edge

disorder; (b) 15% strained AC Y-junction with and without edge disorder; (c) 15% asymmetrically

strained ZZ Y-junction; (d) 15% asymmetrically strained ZZ Y-junction with edge disorder. In

panels (e) and (f) we display the distribution of Bs generated by the asymmetric traction illustrated

in Fig. 1(d) for the case of, respectively, the ZZ and AC edged hexagon nanostructures considered

in this work.

edges. This current is effectively suppressed at low energies by the strong backscattering

induced by the vacancies. This creates the gap in transmission at low energies that can be

seen in Fig. 5(a). In the AC-edged hexagonal dot, since the average Bs ≈ 0 in the center of

the Y-junction, current flows easily through the central region, and there is no transmission
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gap.

To address the problem of asymmetry in the traction (and consequently in the overall

strain distribution), we consider the extremely asymmetric situations illustrated in Figs. 1(c)

and (f). The transmission data is shown in Fig. 5(c), for a structure where a ramp displace-

ment is applied only to the hexagon side where the third contact is attached. An asymmetric

strain pattern ensures that T21 6= T31, and can potentially be explored to channel the cur-

rent between specific pairs of contacts by suitable asymmetric traction conditions. The ramp

strain considered here creates a Bs that is not uniform in the center of the hexagon, but

has a strong maximum in the vicinity of the third contact. Although the values of Bs in

that region are large (`Bs < L0), and of the same order of magnitude as the ones found in

the symmetric junction, the transmission and LDOS signatures are rather different from the

signatures of a symmetrically strained hexagon. In particular the resonant peaks in T31 at

E = 0.042t0 and E = 0.072t0 are due to states having a LDOS distribution of two distorted

standing waves, rather than the magnetic edge state profiles seen in the symmetric case in

Fig. 3. The reason for the different behavior is mostly due to the non-uniform nature of Bs

in the interior of the system, in comparison with the symmetrically strained situation. This

means that the electrons don’t feel a quantum dot with a nearly constant magnetic field

everywhere in this case, but instead are scattered from the regions of higher field.

In essence, this extreme asymmetric case results in a distribution of Bs that acts as a

barrier for current flow only in certain regions inside the Y-junction. Since that barrier is

higher in the region of contact 3 the current is scattered to contact 2 and, consequently,

T31 < T21. This imbalance in T31 vs T21 becomes even more evident at higher energies.

Inside the ZZ Y-junction, for low energies, the current flows through the regions of low Bs,

as shown in more detail the next section of this supporting information.

The effect of edge disorder in the asymmetric ZZ junction is presented in Fig. 5(d), where

we see that the effect is not as marked as in the symmetric case shown in Fig. 5(a). This

is consistent with the above description of the transmission process in this case, whereby

electronic current flows through the large portions of the hexagon that are not under a

significant Bs.

VI. Bs AS A BARRIER

The current between neighboring sites m and n can be expressed as [7, 8]

Imn =
2e

h

∫ +∞

−∞
dE[tnmG

<
mn − tmnG

<
nm], (2)

where the lesser Green’s function in the absence of interactions can be written as G<(E) =

Gr(E)[Γ1f1+Γ2f2+Γ3f3]Ga(E). f1(2)(3) is the Fermi distribution in the respective electrodes.

We mapped the current density for different energies for the ZZ and AC Y-junction with

symmetric and asymmetric strain. For reference, we shown in Fig. 6 the current maps for

9



a) 

c) d) 

b) 

FIG. 6: Current density mapping in real space for selected transmission features discussed in the

main text and above: (a) E = 0.126t0 for the symmetric ZZ Y-junction with εeff = 10%; (b) for

the asymmetrically strained ZZ Y-junction with εeff = 15% at E = 0.1t0; (c) at E = 0.033t0 for

the symmetric AC Y-junction with εeff = 15%; (d) for the asymmetrically strained AC Y-junction

at E = 0.095t0. In all plots, the length of the arrow is proportional to the value of the density

current in that point.

some of the cases discussed in the main text, as well as in the previous sections of this

supporting information.

The case plotted in Fig. 6(a) pertains to a symmetrically strained ZZ Y-junction, at the

energy E = 0.126t0 that corresponds to one of the isolated transmission resonances. Since
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Bs is strong in most of the interior region the current path exhibits the intuitively expected

behavior by flowing through the regions of smallest field towards the edges. Due to the

microscopic details of Bs the current density distribution is not perfectly symmetric between

contacts 1–2 and contacts 1–3. A higher density of current flows between 1–3, and part of it

is scattered from contact 3 to contact 2 ensuring final transmissions of T21(0.126t0) = 0.31 ≈
T31(0.126t0) = 0.32.

For the asymmetrically strained ZZ Y-junction in Fig. 6(b) the bulk of the current flows

directly through the center of the junction, exiting predominantly via contact 2. Most of the

current near contact 3 is scattered towards 2, since in the asymmetric ZZ case the magnetic

barrier induced by Bs is displaced to the vicinity of 3. This explains the quantitative

imbalance in the respective transmissions: T21(0.1t0) = 1.37 > T31(0.1t0) = 0.47 [cfr.

Fig. 5(c). The qualitative picture is similar for the AC Y-junction asymmetrically strained

by 15% in Fig. 6(d). The main point is that under asymmetric traction conditions the

distribution of Bs is no longer nearly homogeneous in the central region, and a strong

maximum appears towards one of the pulling arms. This restricts the magnetic barrier to

a particular portion of the system, but does not lead to the Landau level assisted tunneling

resonances seen in the symmetric ZZ case, and discussed in the main text. The asymmetric

cases can be understood intuitively by considering the regions of strong Bs as barriers

that divert the electronic current, and lead to an asymmetry in the conductance measured

between contacts 1–2 and 1–3.

For completeness in Fig. 6(c) we show the current density in a 15% symmetrically strained

AC Y-junction, extracted at a maximum in the transmission at E = 0.033t0.
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