Sterically Controlled, Palladium-Catalyzed Intermolecular Amination of Arenes

Ruja Shrestha, ${ }^{\dagger}$ Paramita Mukherjee, ${ }^{\dagger, \ddagger}$ Yichen Tan, ${ }^{\dagger \dagger}$ Zachary C. Litman and John F. Hartwig* Department of Chemistry, University of California, Berkeley, CA 94720-1460, U.S.A.

Present Addresses:

${ }^{\ddagger}$ Department of Chemistry, Northwestern University, Evanston, IL USA, 60208-3113
${ }^{\dagger \dagger}$ Department of Chemistry, California Institute of Technology, Pasadena, CA USA, 91125

Author Contributions:

${ }^{\dagger}$ These authors contributed equally

Supporting Information

Table of Contents

I. Chemicals S4
II. Methods S5
III. Procedures S6
IV. Supplementary Results
(A) High-Throughput Experiments S9
(B) Effect of Additives on Yield of Amination Product S12
(C) Probing Premature Depletion of $\mathrm{Phl}(\mathrm{OAc})_{2}$ S13
(D) Stability of ortho-Amination Product S14
(E) Selectivity of Amination With Triphenylphosphine vs Triphenylphosphine oxide as a Ligand S14
(F) Comparison of Yield and Selectivity For Amination of Arenes Using $\mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$-Catalyst, $\mathrm{Pd}(\mathrm{OAc})_{2}$-Catalyst and Without a Palladium Catalyst S16
(G) Comparison of Yield and Selectivity For 1,2- vs 1,3-Disubstituted Arenes S17
(H) Scope of Nitrogen Sources S18
(I) Kinetic Isotope Effect S18
V. Compound Characterization S20
VI. NMR Spectra (separate pdf file available at pubs.acs.org) Compound $1{ }^{1} \mathrm{H}$ NMR S37
Compound $1{ }^{13} \mathrm{C}$ NMR S38
Compound $2{ }^{1} \mathrm{H}$ NMR S39
Compound $2{ }^{13} \mathrm{C}$ NMR S40
Compound $3{ }^{1} \mathrm{H}$ NMR S41
Compound $3{ }^{13} \mathrm{C}$ NMR S42
Compound $3{ }^{19} \mathrm{~F}$ NMR S43
Compound $4{ }^{1} \mathrm{H}$ NMR S44
Compound $4{ }^{13} \mathrm{C}$ NMR S45
Compound $5{ }^{1} \mathrm{H}$ NMR S46
Compound $5{ }^{13} \mathrm{C}$ NMR S47
Compound $6{ }^{1} \mathrm{H}$ NMR S48
Compound $6{ }^{13} \mathrm{C}$ NMR S49
Compound $7{ }^{1} \mathrm{H}$ NMR S50
Compound $7{ }^{13} \mathrm{C}$ NMR S51
Compound $8{ }^{1} \mathrm{H}$ NMR S52
Compound $8{ }^{13} \mathrm{C}$ NMR S53
Compound $9{ }^{1} \mathrm{H}$ NMR S54
Compound $9{ }^{13} \mathrm{C}$ NMR S55
Compound $9{ }^{19} \mathrm{~F}$ NMR S56
Compound $10{ }^{1} \mathrm{H}$ NMR S57
Compound $10{ }^{13} \mathrm{C}$ NMR S58
Compound $11{ }^{1} \mathrm{H}$ NMR S59
Compound $11{ }^{13} \mathrm{C}$ NMR S60
Compound $12{ }^{1} \mathrm{H}$ NMR S61
Compound $12{ }^{13} \mathrm{C}$ NMR S62
Compound $13{ }^{1} \mathrm{H}$ NMR S63
Compound $13{ }^{13} \mathrm{C}$ NMR S64
Compound $14{ }^{1} \mathrm{H}$ NMR S65
Compound $14{ }^{13} \mathrm{C}$ NMR S66
Compound $15{ }^{1} \mathrm{H}$ NMR S67
Compound $15{ }^{13} \mathrm{C}$ NMR S68
Compound $16{ }^{1} \mathrm{H}$ NMR S69
Compound $16{ }^{13} \mathrm{C}$ NMR S70
Compound $17{ }^{1} \mathrm{H}$ NMR S71
Compound $17{ }^{13} \mathrm{C}$ NMR S72
Compound $18{ }^{1} \mathrm{H}$ NMR S73
Compound $18{ }^{13} \mathrm{C}$ NMR S74
Compound $19{ }^{1} \mathrm{H}$ NMR S75
Compound $19{ }^{13} \mathrm{C}$ NMR S76
Compound $20{ }^{1} \mathrm{H}$ NMR S77
Compound $20{ }^{13} \mathrm{C}$ NMR S78
Compound $21{ }^{1} \mathrm{H}$ NMR S79
Compound $21{ }^{13} \mathrm{C}$ NMR S80
Compound $21{ }^{19} \mathrm{~F}$ NMR S81
Compound $22{ }^{1} \mathrm{H}$ NMR S82
Compound $22{ }^{13} \mathrm{C}$ NMR S83
Compound $22{ }^{19} \mathrm{~F}$ NMR S84
Compound $23{ }^{1} \mathrm{H}$ NMR S85
Compound $23{ }^{13} \mathrm{C}$ NMR S86
Compound $24{ }^{1} \mathrm{H}$ NMR S87
Compound $24{ }^{13} \mathrm{C}$ NMR S88
Compound $25{ }^{1} \mathrm{H}$ NMR S89
Compound $25{ }^{13} \mathrm{C}$ NMR S90
Compound $26{ }^{1} \mathrm{H}$ NMR S91
Compound $26{ }^{13} \mathrm{C}$ NMR S92

I. Chemicals.

Palladium and Ligands:

$\mathrm{Pd}(\mathrm{OAc})_{2}$, and ligands; 2,2'-bipyridine, 1,10-phenanthroline, 1,8-Diazafluoren-9-one, 8-hydroxyquinoline, 2,2'-bipyrimidine, 1,2-diaminobenzene, 1,1'-binaphthyl-2,2'-diamine, 1-(2,6-diisopropylphenyl)-3-(2,4,6-trimethylphenyl)-imidazolium chloride, sparteine, 2,6-lutidine, pyridine, 2-phenylpyridine, acridine, quinuclidine, 3,5-dichloropyridine, benzoquinoline and tri-tert-butylphosphine were purchased from commercial sources (Strem, Aldrich, Acros, TCI America as available), stored in an Innovative Technologies nitrogen filled glove box, and used as received.

Oxidants:

Tert-butylperbenzoate, benzoquinone, potassium persulfate, copper (II) acetate, silver oxide, cerium sulfate, cerium ammonium nitrate, p-methoxy-iodosobenzene(diacetate), o-methoxyiodosobenzene(diacetate), o-isopropyl-iodosobenzene(diacetate), iodosobenzene(trifluoroacetate), iodosobenzene(diacetate), $\quad N$-fluoropyridiniumtriflate, selectfluor hexafluorophosphate, N-fluoro-2,4,6trimethylpyridinium triflate, and N-fluorobenzenesulfonimide (NFSI) were purchased from commercial sources and used as received.

Arenes:

Benzene, toluene, isopropylbenzene, tert-butylbenzene, methoxybenzene, trifluoromethylbenzene, fluorobenzene, chlorobenzene, bromobenzene, iodobenzene, acetoxybenzene, 1,2,3-trimethylbenzne, 2,6-dimethylanisole, 2,6-dimethylfluorobenzene, 2,6-dimethylchlorobenzene, 2,6-dimethylbromobenzene, 2,6-dimethyliodobenzene, 1,2-dimethylbenzene, 1,2-dichlorobenzene, 2-fluorotoluene, 2-chlorotoluene, 2bromotoluene, 2-iodotoluene, 2-iodoanisole, 2-fluoroiodobenzene, methyl-2-methylbenzoate, and methyl-3-methylbenzoate were purchased from commercial sources and used as received without further purification.

Nitrogen Sources:

Phthalimide, 4-methylphthalimide, 4-chlorophthalimide, 3,4,5,6-tetrachlorochlorophthalimide, saccharin, maleimide, succinimide, benzamide, thioacetamide, acetamide, N-methyltrifluoroacetamide, and trifluoromethanesulfonamide were purchased from commercial sources and used as received without further purification.

Solvents:

Anhydrous N,N-dimethylformamide (Acros), 1,2-dichloroethane (Aldrich), 1,4-dioxane (Aldrich), 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (Aldrich), acetonitrile (Acros), and cyclopentyl methyl ether (Aldrich) were purchased from commercial sources and used as received.

Other Reagents:

Dodecane (Aldrich), and glacial acetic acid (Mallinckrodt) were purchased commercially and used without further purification.

II. Methods.

NMR Spectroscopy: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker model AM-400 (101 MHz , ${ }^{13} \mathrm{C}$) spectrometer operating at 400.13 proton NMR frequency, and data analysis was performed using the iNMR software package (version 4.2.0, Nucleomatica, September 2011). NMR chemical shifts are reported in ppm and referenced to the residual solvent peak $\mathrm{CDCl}_{3}\left(\delta=7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; \delta=77.16 \mathrm{ppm}\right.$, ${ }^{13} \mathrm{C}$) as an internal standard or $1 \% \mathrm{CFCl}_{3}$ in CDCl_{3} as an external standard ($\delta=0 \mathrm{ppm},{ }^{19} \mathrm{~F}$) unless otherwise noted. Chemical shifts are reported in parts per million (ppm), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz.

Infrared Spectroscopy (IR): Infrared (IR) spectra were recorded on a Thermo Fisher Scientific Nicolet iS5 Fourier Transform Infrared (FT-IR) spectrophotometer and are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

Gas Chromatography: GC analyses were performed on Hewlett Packard HP 6890 series GC system equipped with Agilent Technologies F693 autosampler, HP-5 columns ($25 \mathrm{~m} \times 200 \mu \mathrm{~m} \times 0.33 \mu \mathrm{~m}$), dual FID detectors, and helium as the carrier gas.

The analysis method for high-throughput experimentation (Procedure A, vide infra) was $1 \mu \mathrm{~L}$ injection of sample, injector temperature of $300^{\circ} \mathrm{C}$, and $50: 1$ split ratio. The initial inlet pressure was 57.7 psi but varied as the column flow was held constant at $1.9 \mathrm{~mL} / \mathrm{min}$ for the duration of the run. The initial oven temperature of $175^{\circ} \mathrm{C}$ was ramped to $300^{\circ} \mathrm{C}$ at $40^{\circ} \mathrm{C} / \mathrm{min}$, and the final temperature was held at $300^{\circ} \mathrm{C}$ for 1.88 min . The total run time was 5 min . The FID temperature was $325^{\circ} \mathrm{C}$.

The analysis method used in all other cases (Procedures B-D, vide infra) was $1 \mu \mathrm{~L}$ injection of sample, injector temperature of $300^{\circ} \mathrm{C}$, and $50: 1$ split ratio. The initial inlet pressure was 41.1 psi but varied as the column flow was held constant at $1.9 \mathrm{~mL} / \mathrm{min}$ for the duration of the run. The initial oven temperature of $100^{\circ} \mathrm{C}$ was held for 3.0 min , followed by a temperature ramp to $300^{\circ} \mathrm{C}$ at $40^{\circ} \mathrm{C} / \mathrm{min}$. The final temperature was held at $300^{\circ} \mathrm{C}$ for 2.5 min . The total run time was 10.5 min . The FID temperature was $325^{\circ} \mathrm{C}$.

Gas Chromatography/Mass Spectrometry: GC/MS analyses were performed on Agilent Technologies 5975C VLMSD equipped with an HP-5MS (5\% Phenyl Methyl Siloxane) column Model 19091S-433 from Agilent ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) with a Triple Axis Detector and helium as the carrier gas. The analysis method used in all cases was $1 \mu \mathrm{~L}$ injection of sample, injector temp of $300^{\circ} \mathrm{C}$, and $10: 1$ split ratio. The initial inlet pressure was 10.0 psi, but varied as the column flow was held constant at 100 $\mathrm{mL} / \mathrm{min}$ for the duration of the run. The interface temperature was held at $300^{\circ} \mathrm{C}$, and the electron impact (EI, 30 eV) ion source was held at $300^{\circ} \mathrm{C}$. The initial oven temperature was held at $45^{\circ} \mathrm{C}$ for 2.25 min with the detector off, followed by a temperature ramp to $300^{\circ} \mathrm{C}$ at $40^{\circ} \mathrm{C} / \mathrm{min}$ with the detector turned on at 3.75 min . The final temperature was held at $300^{\circ} \mathrm{C}$ for 3 min . The total run time was 12.00 min . Data are reported in the form of m / z (intensity relative to the base peak $=100$, ion).

High Resolution Mass Spectrometry: High-resolution mass spectra (HRMS) under electron impact ionization (+ mode) were obtained on a LTQ-FT instrument at the University of California, Berkeley Mass Spectrometry Facility.

Thin Layer / Column Chromatography: Thin layer chromatography was performed on EMD Chemicals TLC Silica Gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with ultraviolet light and p-anisaldehyde or potassium permanganate stain. Flash chromatography was performed with Fisher Scientific silica gel (230-400 mesh, grade 60) following standard methods.

High-Throughput Experiments: High-throughput experiments were performed on V\&P Scientific Inc. 96well plate heating block equipped with a Watlow SD temperature controller and a V \& P Scientific Inc. Magnetic Tumble Stirrer.

III. Procedures.

(A) Procedure for reactions assembled in a glove box and run under nitrogen for high-throughput experimentation:

This procedure was used for high-throughput experimentation (Equation 6)

$$
\mathrm{R}=\mathrm{Me}, t-\mathrm{Bu}, \mathrm{OMe}, \mathrm{CF}_{3}
$$

Reactions were assembled in a nitrogen-filled glove box in a 96-well anodized aluminum parallel synthesis reactor hardware kit. The aluminum plate was filled with 1 mL glass tubes ($6 \times 50 \mathrm{~mm}, \mathrm{~d} \times \mathrm{I}$), and taken into the glove box. These ligands (1.0 mmol) were dosed into the 96 -well reactor $1-\mathrm{mL}$ vial as solutions (50 mL of a 0.02 M solution in THF). Plates of these ligands may be generated in advance of the experiment; the solvent is removed on a JKem-blow-down block, and the plates are stored in the glovebox. The reagent for amination ($10 \mu \mathrm{~mol}, 50 \mathrm{~mL}$ of a 0.20 M solution in THF) was then added to the reaction vials, and the resulting mixture was evacuated under reduced pressure to dryness on a JKem-blow-down block. The oxidant ($20 \mu \mathrm{~mol}, 50 \mathrm{~mL}$ of a 0.40 M solution in MeCN) was then added, and the mixture was again evacuated to dryness on a JKem-blow-down block. A parylene coated VP 711D, 1.98 $\mathrm{mm} \times 4.80 \mathrm{~mm}$ stir bar was added to each reaction vial. $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mu \mathrm{~mol})$ and dodecane ($1.00 \mu \mathrm{~mol}$) were then dosed together in the reaction solvent ($100 \mu \mathrm{~L}$ of a 0.0100 M solution each). The reaction vials were sealed with PFA sheet and bottom rubber mat. The top plate was fixed into place with screws tightened with a screwdriver. This sealed well plate was then removed from the glove box and heated in a V\&P Scientific Inc. 96-well plate heating block on the benchtop at 300 rpm while the temperature was maintained at $100^{\circ} \mathrm{C}$. After 24 h , the reaction assembly was removed from the heating plate, cooled to room temperature and diluted with 1 mL ethyl acetate. The resulting solution was analyzed by gas chromatography, and the reported percent yield was calculated versus the dodecane internal standard.
(B) Procedure for reactions assembled in a glove box and run under nitrogen for optimization experiments and control reactions:
This procedure was used for Equation 5, Figure 1, and Table 1

Reactions were conducted in a nitrogen-filled glovebox in an oven-dried 1-dram vial. $\mathrm{Pd}(\mathrm{OAc})_{2}$ $\left(2.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10\right.$ equiv), $t-\mathrm{Bu}_{3} \mathrm{P}(2.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), phthalimide ($14.7 \mathrm{mg}, 0.100$ mmol, 1.00 equiv) and $\mathrm{Phl}(\mathrm{OAc})_{2}(64 \mathrm{mg}, 0.20 \mathrm{mmol}, 2.0$ equiv) were weighed directly into a 1-dram vial equipped with a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$). Arene (1 mL), and dodecane ($10.0 \mu \mathrm{~L}$ internal standard) were added using an automatic pipet. The vial was then capped with a PTFE-faced silicone septum, removed from the glove box and heated in a reaction block on the benchtop at 1200 rpm while the temperature was maintained at $100^{\circ} \mathrm{C}$.

For reactions in Equation 5 and Figure 1, at desired time points, the reactions were cooled to room temperature, taken back into a nitrogen-filled glovebox, and an aliquot ($10 \mu \mathrm{~L}$) of the reaction mixture was removed using an automatic pipet, and diluted with ethyl acetate (1 mL). The resulting solution was analyzed by gas chromatography. For reactions involving sequential addition of $\mathrm{Phl}(\mathrm{OAc})_{2}$ (Table 1), at 9 and 24 h , the reaction was cooled to room temperature, taken back into a nitrogen-filled glovebox, an aliquot ($10 \mu \mathrm{~L}$) of the reaction mixture was removed using an automatic pipet, diluted with ethyl acetate $(1 \mathrm{~mL})$ for GC analysis, and two portions of additional 2.00 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added.

After 33 h total reaction time, the yield of amination product formed was determined by GC analysis vs dodecane internal standard. The ratios of constitutional isomers were determined by comparison to the authentic products synthesized from condensation of commercially available aniline isomers with phthalic anhydride in acetic acid at $120^{\circ} \mathrm{C}$. (See Procedure D below).

(C) Procedure for reactions assembled in a glovebox and run under nitrogen to isolate amination products.

This procedure was used Schemes 1 and 2

Reactions were conducted in a nitrogen-filled glovebox in oven-dried 20 mL scintillation vials. $\mathrm{Pd}(\mathrm{OAc})_{2}(11.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv $), t-\mathrm{Bu}_{3} \mathrm{P}(10.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv $)$, phthalimide ($73.6 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Phl}(\mathrm{OAc})_{2}(322 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv) were weighed directly into a 20 mL scintillation vial equipped with a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$). Arene (5 mL), and dodecane ($50.0 \mu \mathrm{~L}$ internal standard) were added using an automatic pipet. The vial was then capped with a PTFE-faced silicone septum, removed from the glove box, and heated in a reaction block on the benchtop at 1200 rpm while the temperature was maintained at $100^{\circ} \mathrm{C}$. At 9 and 24 h , the reaction was cooled to room temperature, taken back into a nitrogen-filled glovebox and two portions of additional 2.00 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added. After 33 h total reaction time, the amount of amination product formed was determined by GC analysis. An aliquot $(50 \mu \mathrm{~L})$ of reaction mixture was removed using an automatic pipet and diluted with ethyl acetate (1 mL). The resulting solution was analyzed by gas chromatography. The reaction mixture was purified by silica gel column chromatography (5.5 " $\mid \times 1.5$ " d column) and the selectivity of constitutional isomers of the N-aryl imide product was determined.

(D) Procedure for reactions assembled on the bench and run under air to synthesize authentic

 amination products ${ }^{1}$This procedure was used for synthesis of authentic products to determine regioisomeric ratios of products formed in Schemes 1 and 2.

No precautions were taken to exclude air or moisture. On the benchtop, the arylamine (0.500 mmol, 1.00 equiv) and phthalic anhydride ($74.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv) were weighed directly into a 1-dram vial equipped with a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$). Glacial acetic acid (3 mL) was added using an automatic pipet. The vial was then capped with a PTFE-faced silicone septum and stirred at 120 ${ }^{\circ} \mathrm{C}$ at 1200 rpm for $3-4 \mathrm{~h}$. The reaction was then cooled to room temperature and added to cold water (10 mL), causing precipitation of the phthalimide protected aniline product. The resulting precipitate was filtered and washed with cold water (10 mL) and hexanes (10 mL), and then dried under high vacuum. The GC retention time of the resulting product was determined and compared to the crude reaction mixtures from Procedures A-C to determine the isomeric ratios of products formed from direct C-H amination reactions. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were acquired.

1. Capitosti, S. M.; Hansen, T. P.; Brown, M. L. Bioorg. Med. Chem. 2004, 12, 327.

IV. Supplementary Results

(A) High-Throughput Experiments (Selected data from reactions that provided the highest yield of products are shown in Table S1)
(i) High-throughput experiment (HTE) \#1 consisted of two 96 -well plates for amination of toluene with phthalimide or saccharin as the amination reagent and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as pre-catalyst under ligandless conditions. Sixteen oxidants in six different solvents were investigated.

$0.1 \mathrm{mmol} \quad 0.01 \mathrm{mmol}$

Oxidants:

Tert-butylperbenzoate, benzoquinone, potassium persulfate, copper (II) acetate, silver oxide, cerium sulfate, cerium ammonium nitrate, p-methoxy-iodosobenzene(diacetate), o-methoxyiodosobenzene(diacetate), o-isopropyl-iodosobenzene(diacetate), iodosobenzene(trifluoroacetate), iodosobenzene(diacetate), N-fluoropyridiniumtriflate, selectfluor hexafluorophosphate, N-fluoro-2,4,6trimethylpyridinium triflate, N-fluorobenzenesulfonimide (NFSI).

Solvents:

N,N-dimethylformamide, 1,2-dichloroethane, 1,4-dioxane, 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (DMPU), acetonitrile, cyclopentyl methyl ether.
(ii) High-throughput experiment (HTE) \#2 consisted of three 96-well plates for amination of anisole, tert-butylbenzene and trifluoromethylbenzene with phthalimide or saccharin as the amination reagent and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as pre-catalyst in the presence and absence of $t-\mathrm{Bu}_{3} \mathrm{P}$ ligand. Four oxidants and six different solvents were investigated.

Oxidants:

selectfluor hexafluorophosphate, iodosobenzene(diacetate), copper (II) acetate, benzoquinone

Solvents:

N,N-dimethylformamide, 1,2-dichloroethane, 1,4-dioxane, 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (DMPU), acetonitrile, cyclopentyl methyl ether.
(iii) High-throughput experiment (HTE) \#3 consisted of six 96-well plates for amination of anisole, tertbutylbenzene and trifluoromethylbenzene with phthalimide or saccharin as the amination reagent and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as pre-catalyst. Seven bidentate nitrogen ligands and one carbene ligand were investigated with three oxidants in four solvents.

Ligands:

2,2'-bipyridine, 1,10-phenanthroline, 1,8-Diazafluoren-9-one, 8-hydroxyquinoline, 2,2'-bipyrimidine, 1,2diaminobenzene, 1,1'-binaphthyl-2,2'-diamine, 1-(2,6-diisopropylphenyl)-3-(2,4,6-trimethylphenyl)imidazolium chloride

Oxidants:

N -fluorobenzenesulfonimide (NFSI), iodosobenzene(diacetate), copper (II) acetate

Solvents:

1,2-dichloroethane, 1,4-dioxane, acetonitrile, neat arene.
(iv) High-throughput experiment (HTE) \#4 consisted of three 96-well plates for amination of anisole, tert-butylbenzene and trifluoromethylbenzene with phthalimide or saccharin as the amination reagent and $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the pre-catalyst. Eight nitrogen ligands were investigated with three oxidants in two solvents.

Ligands:

Sparteine, 2,6-lutidine, pyridine, 2-phenylpyridine, acridine, quinuclidine, 3,5-dichloropyridine, benzoquinoline

Oxidants:
N -fluorobenzenesulfonimide (NFSI), iodosobenzene(diacetate), copper (II) acetate

Solvents:

1,2-dichloroethane, acetonitrile
Table S1. Selected data from reactions that gave product

Entry	Arene	Amine	Ligand	Oxidant	Solvent	Yield ${ }^{\text {a }}$	Selectivity ${ }^{b}$ (o:m:p)
1	t-BuPh	Phthalimide	$1,10-$ phenanthroline	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	28\%	1:4:3
2	t-BuPh	Phthalimide	1,10phenanthroline	$\mathrm{Phl}(\mathrm{OAc})_{2}$	MeCN	9\%	1:4:3
3	t-BuPh	Phthalimide	$1,10$ phenanthroline	$\mathrm{Phl}(\mathrm{OAc})_{2}$	Neat Arene	2\%	1:5:3
4	t-BuPh	Phthalimide	Acridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	29\%	1:6:4
5	t-BuPh	Phthalimide	None	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	10\%	1:6:5
4	t-BuPh	Phthalimide	2,2'-bipyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	6\%	1:6:5
7	t-BuPh	Phthalimide	2,2'-bipyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	MeCN	7\%	1:4:3
8	t-BuPh	Phthalimide	1,8-diaza-fluoren-9-one	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	28\%	1:3:2
9	t-BuPh	Phthalimide	1,2-phenylene diamine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	30\%	1:5:4
10	t-BuPh	Phthalimide	2,6-lutidine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	25\%	1:3:2
11	t-BuPh	Phthalimide	Acridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	32\%	1:4:3
12	t-BuPh	Phthalimide	3,5dichloropyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	26\%	1:4:3
13	t-BuPh	Saccharin	1,10phenanthroline	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	28\%	1:23:22
14	t-BuPh	Saccharin	2,2'-bipyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	28\%	1:3:2
15	t-BuPh	Saccharin	pyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	MeCN	26\%	1:26:24
16	t-BuPh	Saccharin	2,6-lutidine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	26\%	1:12:13
17	t-BuPh	Saccharin	Acridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	25\%	0:12:13
18	t-BuPh	Saccharin	3,5-	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2-DCE	48\%	0:21:27

19	t-BuPh	Saccharin	8-hydroxy quinoline	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2 -DCE	48%	$1: 13: 14$
20	t-BuPh	Saccharin	pyridine	$\mathrm{Phl}(\mathrm{OAc})_{2}$	MeCN	26%	$1: 26: 24$
21	t-BuPh	Saccharin	None	$\mathrm{Phl}(\mathrm{OAc})_{2}$	1,2 -DCE	39%	$0: 16: 23$
22	$\mathrm{CF}_{3} \mathrm{Ph}$	Phthalimide	t-Bu $\mathrm{Br}_{3} \mathrm{P}$	Any oxidant	Any solvent	$<3 \%$	Not determined

${ }^{\text {a }}$ Reactions were run in a nitrogen filled glove box using high-throughput experimentation assembled on 0.01 mmol scale. Yields reported are uncorrected GC yield vs dodecane internal standard. ${ }^{b}$ Selectivity for amination with phthalimide determined based on GC analysis by comparison to authentic products. Selectivity for amination with saccharin determined analogously.
(B) Effect of Additives and Oxidants on Yield of Amination Product

Table S2. Effect of Additives and Oxidants on Yield of Amination Product

Entry	Arene	Additive	\% Yield ${ }^{\text {a }}$
1	MePh	None	30\% (1:13:10)
2	MePh	None, $\mathrm{Phl}\left(\mathrm{OC}(\mathrm{O})^{\prime} \mathrm{Pr}\right)_{2}$ in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	19\% (1:11:8)
3	MePh	None, $\mathrm{Phl}\left(\mathrm{OC}(\mathrm{O})^{t} \mathrm{Bu}\right)_{2}$ in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	14\% (1:8:6)
4	MePh	None, $\mathrm{Phl}\left(\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right)_{2}$ in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	6\% (1:2:2)
5	MePh	None, t - BuOOH in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	0\% (N.D.)
6	MePh	None, t - $\mathrm{BuO}_{3} \mathrm{CPh}$ in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	8\% (1:4:4)
7	MePh	None, BzOOBz in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	0\% (N.D.)
8	MePh	None, Oxone in place of $\mathrm{Phl}(\mathrm{OAc})_{2}$	0\% (N.D.)
9	MePh	4.0 equiv 3-Â molecular sieves	30\%
10	MePh	4.0 equiv 4-Å molecular sieves	33\%
11	MePh	4.0 equiv 5-Â molecular sieves	21\%
12	t-BuPh	None	43\%
13	t-BuPh	$0.25,0.50$ or 1.0 equiv $\mathrm{Cs}_{2} \mathrm{CO}_{3}$	<5\%
14	t-BuPh	$0.25,0.50$ or 1.0 equiv NaOAc	5-10\%
15	PhH	None	35\%
16	PhH	CsOH	NP
17	MePh	1 eq AcOH	25\% (1:17:14)
18	MePh	10 eq AcOH	21\% (1:16:14)
19	MePh	100 eq AcOH	6\% (1:4:5)
20	MePh	$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ added at 2 or 5 h reaction time	37\%
21	MePh	$10 \mathrm{~mol} \% t-\mathrm{Bu}_{3} \mathrm{P}$ added at 2 or 5 h reaction time	20\%
22	PhH	$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ added at 5 h reaction time	34\%
23	PhH	1.0 equiv phthalimide added at 5 h reaction time	18\%
24	PhH	2.0 equiv $\mathrm{Phl}(\mathrm{OAc})_{2}$ added at 2 h reaction time	35\%
25	PhH	2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ added at 5 h reaction time	53\%
26	PhH	Three portions of 2.0 equiv of $\mathrm{Ph}(\mathrm{OAc})_{2}$ added at 5 h intervals	83\% (Figure S1)

[^0]

Figure S1. \%Yield of benzene amination product with sequential addition of $\mathrm{Phl}(\mathrm{OAc})_{2}$ at 5 h intervals (\square^{-}) vs with only 2 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ added at the beginning of the reaction $\left({ }^{\bullet}\right)$.

(C) Probing the consumption of $\mathrm{Phl}(\mathrm{OAc})_{2}$

In a nitrogen-filled glove box, $\mathrm{Phl}(\mathrm{OAc})_{2}(64.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.00$ equiv), benzene ($950 \mu \mathrm{~L}$) and a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$) were added to an oven-dried 1-dram vial. The vial was then capped with a PTFE-faced silicone septum cap 0.75 ", removed from the glove box and heated in a reaction block on the benchtop at 1200 rpm while the temperature was maintained at $100{ }^{\circ} \mathrm{C}$ for 5 h . After 5 h , the reaction was cooled to room temperature and taken back into the glove box. The vial was uncapped, and a $50 \mu \mathrm{~L}$ solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(11.0 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv $), t-\mathrm{Bu}_{3} \mathrm{P}$ (10.0 mg , $0.0500 \mathrm{mmol}, 0.100$ equiv) in $250 \mu \mathrm{~L}$ of benzene and phthalimide ($14.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and $10.0 \mu \mathrm{~L}$ of dodecane were added to the vial. The vial was recapped, removed from the glove box, and heated at $100{ }^{\circ} \mathrm{C}$. After an additional 2 h of reaction time, the reaction was complete. The reaction vial was removed from heat, $50 \mu \mathrm{~L}$ of the reaction was removed from the vial (keeping the septum intact) and injected onto a 1 cm long plug of silica in a Pasteur pipet. The plug was then washed with 1 mL of ethyl acetate, and the filtrate was collected for GC analysis. The yield of the amination product was determined by GC analysis vs dodecane internal standard. The same procedure was repeated with t-butylbenzene in place of benzene. The yield of product from the amination of benzene was 35%.

The 35% yield for this experiment is comparable to that observed for the same reaction without heating the oxidant prior to addition of the catalyst. Thus, thermal decomposition of the oxidant $\mathrm{Phl}(\mathrm{OAc})_{2}$
is not responsible for its consumption. Instead, competitive acetoxylation of the arene is observed. ${ }^{2}$ The product from acetoxylation is observed when the reaction is run with t-butylbenzene in place of benzene.

Under the standard reaction conditions with 2 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$, the ratio of amination : acetoxylation product was observed to be 1:2 based on yield of amination product with respect to phthalimide versus acetoxylation product with respect to the oxidant. The regioselectivity of the acetoxylation product was 2.4:1:2.4 o:m:p. The selectivity was determined by comparison to the authentic products synthesized according to literature protocol. However, the relative amounts of product from amination vs acetoxylation vary with substrate and reaction time.

(D) Evaluation of the Stability of the ortho-Amination Product

0.1 mmol

The reaction was conducted in a nitrogen-filled glovebox in an oven-dried 1-dram vial. $\mathrm{Pd}(\mathrm{OAc})_{2}$ $\left(2.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10\right.$ equiv), $t-\mathrm{Bu}_{3} \mathrm{P}(2.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), phthalimide ($14.7 \mathrm{mg}, 0.100$ mmol, 1.00 equiv), $\mathrm{Phl}(\mathrm{OAc})_{2}(64.4 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.00$ equiv) and ortho-phthalimido(toluene) (23.7 $\mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) were weighed directly into a 1-dram vial equipped with a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$). t-Butylbenzene (1 mL), and dodecane ($10.0 \mu \mathrm{~L}$ internal standard) were added using an automatic pipet. The vial was then capped with a PTFE-faced silicone septum, removed from the glove box, and heated in a reaction block on the benchtop at 1200 rpm while the temperature was maintained at $100^{\circ} \mathrm{C}$.

At 9 and 24 h , the reaction was cooled to room temperature, taken back into a nitrogen-filled glovebox. An aliquot ($10 \mu \mathrm{~L}$) of the reaction mixture was removed using an automatic pipet, diluted with ethyl acetate (1 mL) for GC analysis, and two additional portions of 2.00 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added.

After 33 h total reaction time, the yield of the amination product, as well as the percentage of ortho-phthalimido(toluene) remaining after 33 h reaction time, was determined by GC analysis vs dodecane internal standard.
(E) Selectivity of Amination With a Phosphine vs a Phosphine Oxide Ligand

2. For Pd-catalyzed acetoxylation of arenes with $\mathrm{Phl}(\mathrm{OAc})_{2}$ see: (a) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A. 1996, 108, 35. (b) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127,
12790. (c) Emmert, M. H.; Cook, A. K.; Xie, Y. J.; Sanford, M. S. Angew. Chem., Int. Ed. 2011, 50, 9409.
$\mathrm{L}=\mathrm{Ph}_{3} \mathrm{P}(\mathrm{O}) ; 46 \%(1: 21: 16)$
$(o: m: p)$

Entry	Ligand	\% Yield	Selectivity $(o: m: p)^{b}$
1	None	23%	$1: 12: 9$
2	$\mathrm{P}^{t} \mathrm{Bu}_{3}$	30%	$1: 13: 10$
3	$\mathrm{P}^{\prime} \mathrm{Pr}_{3}$	29%	$1: 12: 11$
4	PCy_{3}	29%	$1: 13: 11$

Reactions were conducted in a nitrogen-filled glovebox in oven-dried 1-dram vial. $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2$ $\mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), ligand (0.010 mmol 0.10 equiv) phthalimide ($14.7 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Phl}(\mathrm{OAc})_{2}(64.4 \mathrm{mg} 0.200 \mathrm{mmol}, 2.00$ equiv) were weighed directly into a 1 -dram vial, and a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$) was added. t-Butylbenzene $(1 \mathrm{~mL})$ and dodecane ($10.0 \mu \mathrm{~L}$) were added using an automatic pipet. The vial was then capped with open PTFE-faced silicone septum caps 0.75 ", removed from the glove box, and heated in a reaction block on the benchtop at 1200 rpm while the temperature was maintained at $100^{\circ} \mathrm{C}$. At various reaction times, $50 \mu \mathrm{~L}$ of the reaction was removed from the vial (keeping the septa intact) and injected onto a 0.5 cm long plug of silica in a Pasteur pipet. The plug was then washed with 1 mL of ethyl acetate, and the filtrate was collected for GC analysis. After approximately 9 h , the reaction was removed from the heat and considered complete. The yields of the amination product were determined by GC analysis vs dodecane internal standard. The ratios of constitutional isomers were determined by comparison to the authentic products synthesized from condensation of commercially available aniline isomers with phthalic anhydride in acetic acid at $120^{\circ} \mathrm{C}$. (See Procedure D above)

Similar selectivities were observed for reactions conducted with $\mathrm{Ph}_{3} \mathrm{P}$ or $\mathrm{Ph}_{3} \mathrm{P}(\mathrm{O})$ as ligand, suggesting that the decrease in selectivity for reactions conducted on the benchtop cannot be attributed to ligand oxidation. Consistent with this conclusion, the selectivity of the reaction conducted without added ligand also decreases when air is introduced into the reaction vial.
(F) Comparison of Yield and Selectivity For Amination of Arenes Using Pd(OAc) $)_{2} / t-\mathrm{Bu} u_{3} \mathrm{P}$-Catalyst, $\mathrm{Pd}(\mathrm{OAc})_{2}$-Catalyst and Without a Palladium Catalyst

${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 20 mL scintillation vials on 0.5 mmol scale with $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ in 5 mL arene as a solvent and 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ at the beginning of the reaction. Another 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added at 9 , and 24 h of the reaction. The reactions were run for 33 h total. Yield represents uncorrected GC yield vs dodecane internal standard observed for a crude reaction mixture after 33 h reaction time. Selectivities are reported based on GC analysis.
(G) Comparison of Yield and Selectivity For 1,2-vs 1,3-Disubstituted Arenes ${ }^{\text {a }}$

${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 20 mL scintillation vials on 0.5 mmol scale with $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ in 5 mL arene as a solvent and 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ at the beginning of the reaction. Another 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added at 9 , and 24 h of the reaction. The reactions were run for 33 h total. Yield represents GC yield vs dodecane internal standard observed for a crude reaction mixture after 33 h reaction time. Selectivities are reported based on GC analysis.

(H) Scope of Nitrogen Sources ${ }^{\text {a }}$

0.5 mmol

${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 20 mL scintillation vials on 0.5 mmol scale with $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ in 5 mL arene as a solvent and 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ at the beginning of the reaction. Another 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ were added at 9 , and 24 h of the reaction. The reactions were run for 33 h total. Yield represents GC yield vs dodecane internal standard observed for a crude reaction mixture after 33 h reaction time. Selectivities are reported based on GC analysis.

(I) Kinetic Isotope Effect

Average of H-product: D-product three runs
4.1:1

Reactions were conducted in a nitrogen-filled glovebox in oven-dried 1-dram vials in triplicates. $\mathrm{Pd}(\mathrm{OAc})_{2}\left(2.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10\right.$ equiv), $t-\mathrm{Bu}_{3} \mathrm{P}(2.0 \mathrm{mg}, 0.010 \mathrm{mmol} 0.10$ equiv) phthalimide (14.7 $\mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Phl}(\mathrm{OAc})_{2}(64.4 \mathrm{mg} 0.200 \mathrm{mmol}, 2.00$ equiv) were weighed directly into a 1 -dram vial, and a Teflon-coated stir bar ($10 \mathrm{~mm} \times 3 \mathrm{~mm}$) was added. Benzene ($500 \mu \mathrm{~L}$), deuterated benzene ($500 \mu \mathrm{~L}$) and dodecane ($10.0 \mu \mathrm{~L}$) were added using an automatic pipet. The vial was then capped with PTFE-faced silicone septum cap, removed from the glove box and heated in a reaction block on the benchtop at 1200 rpm , while the temperature was maintained at $100^{\circ} \mathrm{C}$. After 2 h reaction time,
the vial was cooled to room temperature, and $50 \mu \mathrm{~L}$ of the reaction mixture was removed using an automatic pipet and diluted with ethyl acetate (1 mL) for GC/MS analysis. The ratio of protonated product versus deuterated product was determined, based on the relative abundance of isotopomers observed (Table S3).

Table S3. Study on isotope effect for amination. ${ }^{a}$

Entry	Trial \#	Ratio of H-product : D- product based on C-12 isotope	Ratio of H-product : D- product based on C-13 isotope
1	1	3.57	3.76
2	2	4.29	4.28
3	3	4.30	4.30
Average			4.05
Average of averages			4.11
Standard deviation			

${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 1-dram vials on 0.1 mmol scale with 10 mol $\% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ in 1 mL arene and 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ and run for $2 \mathrm{~h} . \mathrm{H} / \mathrm{D}$ ratios are reported based on relative abundance of isotopomers observed by GC-MS.

Isotope Effect for Acetoxylation Under Oxidative Amination Conditions

Table S4. Study on isotope effect for acetoxylation under oxidative amination conditions. ${ }^{a}$

Entry	Trial \#	Ratio of H-product : D- product based on C-12 isotope	Ratio of H-product : D- product based on C-13 isotope
1	1	5.91	5.42
2	2	5.73	5.64
3	3	5.82	5.50
Average		5.82	5.52
Average of averages			
Standard deviation		5.67	

${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 1-dram vials on 0.1 mmol scale with 10 mol $\% \mathrm{Pd}(\mathrm{OAc})_{2} / t-\mathrm{Bu}_{3} \mathrm{P}$ in 1 mL arene and 2.0 equiv of $\mathrm{Phl}(\mathrm{OAc})_{2}$ and run for $2 \mathrm{~h} . \mathrm{H} / \mathrm{D}$ ratios are reported based on relative abundance of isotopomers observed by GC-MS.

Isotope Effect of Disubstituted Arene

V. Compound Characterization.

Amination of 1,2,3-trimethylbenzene (1)

1a

1b

General procedure (III)(C) was followed with 5 mL of 1,2,3-trimethylbenzene (1). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer 1b was confirmed by the synthesis of authentic product.
Data for 1a, 1b
GC Yield (Selectivity; 1a:1b): 50\% (1:15)
Isolated Yield (Selectivity; 1a:1b): 122 mg white solid, $46 \%(0: 1)$
TLC: $\mathrm{R}_{\mathrm{f}} 0.41$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
1b: $\delta 7.94$ (dd, J = 5.5, 3.0 Hz, 2H), 7.77 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (s, 2H), 2.34 (s, 6H), 2.21 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
1b: $\delta 167.7,137.6,135.9,134.3,132.0,128.4,125.9,123.7,20.8,15.4$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2922, 2865, 1763, 1715, 1589, 1487, 1465, 1378, 1272, 1237, 1194, 1109, 1084, 1008, 959, 912, 886, 856, 817, 792 779, 764, 749, 714, 699, 662, 646.
HRMS (El+):
Calc. for $\mathrm{C}_{1} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 265.1103; Found: 265.1105

Amination of 2,6-dimethylanisole (2)

General procedure (III)(C) was followed with 5 mL of 2,6-dimethylanisole (2). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer $\mathbf{2 b}$ was confirmed by the synthesis of authentic product.
Data for 2a, 2b
GC Yield (Selectivity; 2a:2b): 56\% (1:10)
Isolated Yield (Selectivity; 2a:2b): 129 mg off-white solid, 46% (0:1)
TLC: $R_{f} 0.35$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2b: $\delta 7.94(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
2b: $\delta 167.7,156.9,134.4,132.09,131.91,127.3,126.8,123.8,59.8,16.4$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2948, 1720, 1604, 1486 1420, 1387, 1280, 1225, 1192, 1163, 1111, 1086, 1010, 953, 889, 866, 853, 791, 749, 716, 648, 605.
HRMS (EI+):
Calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}]^{+}$: 281.1052; Found: 281.1059

Amination of 2,6-dimethylfluorobenzene (3)

3a

3b

General procedure (III)(C) was followed with 5 mL of 2,6-dimethylfluorobenzene (3). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The identity of the major isomer determined by analogy to compounds $\mathbf{1 b}$ and $\mathbf{2 b}$.
Data for 3a, 3b
GC Yield (Selectivity; 3a:3b): 50\% (1:15)
Isolated Yield (Selectivity; 3a:3b): 124 mg white solid, 46% ($0: 1$)
TLC: $\mathrm{R}_{\mathrm{f}} 0.42$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3b: $\delta 7.95$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (d, $J=$ 2.2 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3b: $\delta 167.6,134.5,131.9,128.3,127.44(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}), 125.7(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}), 123.9,14.9(\mathrm{~d}, \mathrm{~J}$
$=4.2 \mathrm{~Hz}$.
${ }^{19}$ F NMR ($376 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
3b: δ-120.2
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2956, 1769, 1730, 1593, 1470, 1437, 1416, 1376, 1279, 1197, 1110, 1086, 1035, 956, 892, 856, 788,
749, 711, 669
HRMS (EI+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FNO}_{2}[\mathrm{M}]^{+}$: 269.0852 ; Found: 269.0850
Amination of 2,6-dimethylchlorobenzene (4)

4a

4b

General procedure (III)(C) was followed with 5 mL of 2,6-dimethylchlorobenzene (4). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The identity of the major isomer determined by analogy to compounds $\mathbf{1 b}$ and $\mathbf{2 b}$.
Data for $4 \mathrm{a}, \mathbf{4 b}$
GC Yield (Selectivity; 4a:4b): 66\% (1:16)
Isolated Yield (Selectivity; 4a:4b): 197 mg off-white solid, 69\% (1:19)
TLC: $R_{f} 0.49$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4a: Not detected
4b: $\delta 7.94-7.92$ (m, 2H), 7.79-7.77 (m, 2H), 7.15 (s, 2H), 2.42 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
4a: Not detected
4b: $\delta 167.3,137.4,134.7,134.5,131.8,129.3,126.6,123.8,21.0$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2957, 1768, 1721, 1647, 1596, 1472, 1438, 1420, 1379, 1323, 1279, 1197, 1110, 1085, 1065, 1041, 956, 890, 856, 789, 764, 749, 711, 670, 648.
HRMS (El+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{CINO}_{2}[\mathrm{M}]^{+}$: 285.0557 ; Found: 285.0559

Amination of 2,6-dimethylbromobenzene (5)

5a
5b
General procedure (III)(C) was followed with 5 mL of 2,6-dimethylbromobenzene (5). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The identity of the major isomer determined by analogy to compounds $\mathbf{1 b}$ and $\mathbf{2 b}$.
Data for 5a, 5b
GC Yield (Selectivity; 5a:5b): 46\% (1:12)
Isolated Yield (Selectivity; 5a:5b): 172 mg pale yellow solid, 52% (1:24)
TLC: $\mathrm{R}_{\mathrm{f}} 0.44$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
5a: Not detected
5b: $\delta 7.94$ (dd, J = 5.4, $3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (s, 2H), 2.46 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)

5a: Not detected
5b: $\delta 167.3,139.5,134.6,131.8,130.0,127.6,126.3,123.9,24.2$
IR ($v, \mathrm{~cm}^{-1}$):
2955, 2361, 1770, 1751, 1717, 1590, 1468, 1436, 1414, 1374, 1278, 1197, 1169, 1110, 1099, 1086, 1030, 955, 893, 857, 787, 750, 711, 668.
HRMS (EI+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{2}[\mathrm{M}]^{+}$: 329.0051 ; Found: 329.0053

Amination of 2,6-dimethyliodobenzene (6)

6a

6b

General procedure (III)(C) was followed with 5 mL of 2,6-dimethyliodobenzene (6). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The identity of the major isomer determined by analogy to compounds $\mathbf{1 b}$ and $\mathbf{2 b}$.
Data for 6a, 6b
GC Yield (Selectivity; 6a:6b): 51\% (1:12)
Isolated Yield (Selectivity; 6a:6b): 245 mg pale yellow solid, 65\% (1:19)
TLC: $R_{f} 0.44$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
6a: Not detected
6b: $\delta 7.95$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (s, 2H), 2.53 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
6a: Not detected
6b: $\delta 167.2,143.2,134.5,131.7,131.1,124.9,123.8,108.1,29.9$
IR ($v, \mathrm{~cm}^{-1}$):
3059, 2948, 1769, 1719, 1581, 1485, 1465, 1409, 1375, 1277, 1193, 1110, 1085, 1007, 950, 887, 857, 791, 735, 718, 663, 648.
HRMS (El+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{INO}_{2}[\mathrm{M}]^{+}: 376.9913$; Found: 376.9911

Amination of 1,2-dimethylbenzene (7)

7a

7b

General procedure (III)(C) was followed with 5 mL of 1,2, dimethylbenzene (7). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer 7b was confirmed by the synthesis of authentic product.

Data for 7a, 7b

GC Yield (Selectivity; 7a:7b): 83\% (1:40)
Isolated Yield (Selectivity; 7a:7b): 181 mg white solid, 72% (1:87)
TLC: $R_{f} 0.40$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
7a: Not detected
7b: $\delta 7.94$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~s}),, 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}$, 3H), 2.31 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
7a: Not detected
7b: $\delta 167.6,137.7,137.1,134.4,131.9,130.4,129.2,127.8,124.2,123.7,20.0,19.7$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3464, 3065, 2977, 1770, 1719, 1607, 1583, 1505, 1467, 1414, 1379, 1274, 1261, 1239, 1209, 1180, 1131, 1109, 1085, 1028, 1007, 940, 890, 873, 814, 791, 749, 715, 691.
HRMS (EI+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right.$: 251.0946; Found: 251.0947

Amination of 1,2-dichlorobenzene (8)

8a

8b

General procedure (III)(C) was followed with 5 mL of 1,2, dichlorobenzene (8). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer 8b was confirmed by the synthesis of authentic product.

Data for 8a, 8b

GC Yield (Selectivity; 8a:8b): 46\% (1:7)
Isolated Yield (Selectivity; 8a:8b): 166 mg white solid, 57% ($0: 1$)
TLC: $R_{f} 0.34$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
8a: Not detected
8b: $\delta 7.97$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$
$8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
8a: Not detected
8b: $\delta 166.8,134.9,133.2,132.3,131.6,131.2,130.8,128.3,125.7,124.1$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
$1766,1715,1478,1465,1382,1257,1221,1202,1150,1134,1115,1096,1083,1031,886,860,821$, 785, 710, 688, 680.
HRMS (EI+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 290.9854 ; Found: 290.9857

Amination of 2-fluorotoluene (9)

General procedure (III)(C) was followed with 5 mL of 2-fluorotoluene (9). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 9c and 9d were confirmed by the synthesis of authentic products.
Data for 9a-d
GC Yield (Selectivity; 9a:9b:9c:9d): 59\% (1:1:37:20)
Isolated Yield (Selectivity; 9a:9b:9c:9d): 191 mg white solid, 75% (1:1:50:29)
TLC: $R_{f} 0.33$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
9c: $\delta 7.96$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H})$.
9d: $\delta 7.95(\mathrm{dd}, J=5.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H})$, 2.33 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
9c: $\delta 167.4,160.7(\mathrm{~d}, J=242 \mathrm{~Hz}), 134.5,131.7,129.84(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 127.21,127.18,126.07(\mathrm{~d}, J=19$ $\mathrm{Hz}), 125.88(\mathrm{~d}, J=8 \mathrm{~Hz}), 123.8,115.8(\mathrm{~d}, J=30 \mathrm{~Hz}), 14.72(\mathrm{~d}, J=4 \mathrm{~Hz})$.
9d: $\delta 167.1,161.0(d, J=242 \mathrm{~Hz}), 134.6,131.63(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}), 130.45(\mathrm{~d}, J=10 \mathrm{~Hz}), 125.08(\mathrm{~d}, \mathrm{~J}=17$ $\mathrm{Hz})$, 123.9, 121.97, 121.94, $113.6(\mathrm{~d}, J=30 \mathrm{~Hz}) 14.45(\mathrm{~d}, J=3 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
9c: $\delta-116.3$
9d: ठ-114.15, -114.17, -114.20
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
1772, 1719, 1588, 1503, 1466, 1419, 1380, 1287, 1247, 1180, 1106, 1085, 943, 889, 872, 822, 792, 759, 714, 604, 579.
HRMS (El+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FNO}_{2}[\mathrm{M}]^{+}$: 255.0696; Found: 255.0697
Amination of 2-chlorotoluene (10)

General procedure (III)(C) was followed with 5 mL of 2-chlorotoluene (10). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 10c and 10d were confirmed by the synthesis of authentic products.

Data for 10a-d

GC Yield (Selectivity; 10a:10b:10c:10d): 71\% (1:1:16:16)
Isolated Yield (Selectivity; 10a:10b:10c:10d): 182 mg white solid, 67% (1:1:19:19)
TLC: $R_{f} 0.34$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
10c: $\delta 7.93(\mathrm{dd}, J=5.4, \overline{3} .1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
10d: $\delta 7.95$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dt, $J=5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
10c: $\delta 167.1,137.2,134.64,134.58,134.2,131.69,131.2,130.3,129.7,128.9,125.3,123.86,20.3$
10d: $\delta 167.1,136.3,134.64,134.58,134.2,131.7,131.2,130.3,127.1,124.8,123.9,123.86,19.9$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3026, 1715, 1499, 1483, 1465, 1391, 1274, 1261, 1232, 1205, 1098, 1083, 1050, 887, 862, 806, 764, 750, 709, 703, 682.
HRMS (EI+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{CINO}_{2}[\mathrm{M}]^{+}: 271.0407$; Found: 271.0405

Amination of 2-bromotoluene (11)

General procedure (III)(C) was followed with 5 mL of 2-bromotoluene (11). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 11c and 11d were confirmed by the synthesis of authentic products.

Data for 11a-d

GC Yield (Selectivity; 11a:11b:11c:11d):79\% (0:0:1:1)
Isolated Yield (Selectivity; 11a:11b:11c:11d): 269 mg off-white solid, $85 \%(0: 0: 1: 2)$
TLC: $R_{f} 0.32$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
11c: $\delta 7.92$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
11d: $\delta 7.94$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.29$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{{ }_{3}} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
11c: $\delta 167.1,139.0,134.6,133.0,131.6,130.8,128.7,125.4,124.7,123.8,23.2$
11d: $\delta 167.0,138.0,134.6,131.64,131.0,130.3,125.4,124.7,124.022 .8,20.9$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2922, 1768, 1716, 1603, 1488, 1466, 1407, 1381, 1272, 1205, 1099, 1084, 1028, 888, 817, 749, 711.
HRMS (EI+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrNO}_{2}[\mathrm{M}]^{+}: 314.9895$; Found: 314.9894, 316.9868

Amination of 2-iodotoluene (12)

General procedure (III)(C) was followed with 5 mL of 2-iodotoluene (12). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 12c and 12d were confirmed by the synthesis of authentic products.
Data for 12a-d
GC Yield (Selectivity; 12a:12b:12c:12d): 46\% (0:0:1:1)
Isolated Yield (Selectivity; 12a:12b:12c:12d): 185 mg pale yellow solid, $51 \%(0: 0: 1: 1)$
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.34$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
12c: $\delta 7.91-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, 1H), 2.45 (s, 3H)
12d: $\delta 7.94(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=$ $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
12c: $\delta 166.9,142.5,139.5,134.5,131.6,127.5,125.4,123.77,123.74,100.4,28.3$
12d: $\delta 167.1,141.7,136.7,134.6,131.7,130.1,129.8,126.4,123.9,100.5,27.9$
IR (v, cm^{-1}):
1770, 1724, 1595, 1564, 1491, 1474, 1465, 1404, 1382, 1275, 1261, 1217, 1102, 1083, 889, 867, 818, 787, 764, 749, 716, 665, 645.
HRMS (El+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{INO}_{2}[\mathrm{M}]^{+}: 362.9756$; Found: 362.9763

Amination of 2-iodoanisole (13)

General procedure (III)(C) was followed with 5 mL of 2-iodoanisole (13). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer 13d was confirmed by the synthesis of authentic product.
Data for 13a-d
GC Yield (Selectivity; 13a:13b:13d:13c): 72\% (1:1:5:0)

Isolated Yield (Selectivity; 13a:13b:13d:13c): 315 mg off-white solid, $83 \%(1: 1: 5: 0)$
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $R_{f} 0.30(20 \%$ EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
13d: $\delta 7.95$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7,2.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.93$ (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
13d: $\delta 167.4,158.1,137.6,134.6,131.8,128.0,125.5,123.9,110.7,85.8,56.8$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2956, 1770, 1600, 1491, 1460, 1407, 1275, 1261, 1219, 1111, 1083, 889, 867, 787, 749, 716, 645
HRMS (EI+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{INO}_{3}[\mathrm{M}]^{+}: 378.9705$; Found: 378.9711

Amination of 2-fluoroiodobenzene (14)

14a

14b

14c

14d

General procedure (III)(C) was followed with 5 mL of 2-fluoroiodobenzene (14). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structure of the major isomer 14d was determined by analogy to compound 13d.
Data for 14a-d
GC Yield (Selectivity; 14a:14b:14c:14d): 45\% (0:0:1:7)
Isolated Yield (Selectivity; 14a:14b:14c:14d): 209 mg pale yellow solid, 57% (0:0:1:7)
TLC: $R_{f} 0.35$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
14d: $\delta 7.96$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$
(ddd, $J=8.8,4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.8,7.4 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
14d: $\delta 167.0,137.39,137.37,134.8,131.6,128.41(\mathrm{~d}, J=8 \mathrm{~Hz}), 124.1,115.9(\mathrm{~d}, J=20.2 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2925, 1771, 1717, 1590, 1489, 1466, 1423, 1408, 1377, 1276, 1260, 1236, 1192, 1099, 1085, 1007, 951,
886, 869, 906, 784, 764, 749, 713, 662, 647.
HRMS (El+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{FINO}_{2}[\mathrm{M}]^{+}: 366.9505$; Found: 366.9511

Amination of methyl-2-methylbenzoate (15)

15a

15b

15c

15d

General procedure (III)(C) was followed with 5 mL of methyl-2-methylbenzoate (15). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers $\mathbf{1 5 c}$ and $15 d$ were confirmed by the synthesis of authentic products.
Data for 15a-d
GC Yield (Selectivity; 15a:15b:15c:15d): 61\% (0:1:4:1)
Isolated Yield (Selectivity; 15a:15b:15c:15d): 177 mg white solid, 60% (1:1:50:15)
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.34$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
15c: $\delta 8.03$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (dd, $J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (dd, $J=$ 8.2, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H})$.

15d: $\delta 8.06$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-$ 7.37 (m, 2H), 3.92 (s, 3H), 2.67 (s, 3H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
15c: $\delta 167.24,167.04,140.7,134.6,132.6,131.8,130.2,130.0,129.5,128.9,123.9,52.1,21.7$
15d: ठ 167.4, 167.0, 141.8, 134.88, 134.75, 131.77, 131.69, 129.5, 129.2, 129.0, 124.0, 123.6, 52.1, 22.1 IR $\left(v, \mathrm{~cm}^{-1}\right)$:
2948, 1774, 1724, 1607, 1575, 1506, 1466, 1431, 1387, 1303, 1289, 1258, 1216, 1186, 1160, 1122, 1105, 1081, 980, 912, 880, 827, 778, 713, 677, 605.
HRMS (EI+):
Calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{4}\left[\mathrm{M}^{+}\right.$: 298.0845 ; Found: 298.0844

Amination of methyl-3-methylbenzoate (16)

General procedure (III)(C) was followed with 5 mL of methyl-3-methylbenzoate (16). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The identity of the major isomer 16d was determined by splitting pattern on ${ }^{1} \mathrm{H}$ NMR.
Data for 16a-d
GC Yield (Selectivity; 16a:16b:16c:16d): 50\% (1:1:2:8)

Isolated Yield (Selectivity; 16a:16b:16c:16d): 153 mg white solid, 52\% (1:1:4:17)
Single isomer could be recrystallized from MeOH/hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.28$ ($20 \% \mathrm{EtOAc}$ in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
16d: $\delta 7.97$ (dd, J = 5.5, $3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.92 (s, 2H), 7.81 (dd, J = 5.5, 3.0 Hz, 2H), 7.45 (s, 1H), 3.92 (s, $3 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
16d: $\delta 167.2,166.5,139.6,134.7,131.88,131.79,131.77,131.3,130.1,125.2,124.0,52.4,21.5$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3206, 2952, 1773, 1719, 1604, 1466, 1435, 1377, 1294, 1224, 1107, 1084, 1053, 888, 867, 792, 769, 715, 676, 647
HRMS (El+):
Calc. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}]^{+}$: 298.0845; Found: 298.0851

Amination of toluene (17)

General procedure (III)(C) was followed with 5 mL of toluene (17). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 17b and 17c were confirmed by the synthesis of authentic products.
Data for 17a-c
GC Yield (Selectivity; 17a:17b:17c): 80\% (1:9:9)
Isolated Yield (Selectivity; 17a:17b:17c): 185 mg white solid, 78% (1:10:9)
TLC: $R_{f} 0.41$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
17b: $\delta 7.94$ (dd, $J=3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
17c: $\delta 7.94$ (dd, $J=3,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=3.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~s}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
17b: $\delta 167.2,138.9,134.2,131.8,131.5,128.9,128.8,127.1,123.7,123.6,21.4$.
17c: $\delta 167.3,138.0,134.2,131.8,129.6,128.9,126.3,123.7,21.2$.
IR (v, cm^{-1}):
2923, 1770, 1715, 1606, 1587, 1517, 1492, 1465, 1376, 1284, 1211, 1110, 1080, 904, 883, 817, 784, 750, 713, 697, 687, 630
HRMS (El+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right.$: 237.0790; Found: 237.0795

Amination of isopropylbenzene (18)

General procedure (III)(C) was followed with 5 mL of isopropylbenzene (18). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 18b and 18c were confirmed by the synthesis of authentic products.

Data for 18a-c

GC Yield (Selectivity; 18a:18b:18c): 77\% (1:6:5)
Isolated Yield (Selectivity; 18a:18b:18c): 207 mg white solid, 78\% (1:13:13)
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.44$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
18b: $\delta 7.96$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.27 (m, 2H), 7.24 (ddd, $J=7.8,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
18c: $\delta 7.96$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.98(\mathrm{dt}, J=$
$13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz; CDCl_{3})
18b: $\delta 167.4,150.0,134.3,131.8,131.5,129.0,126.4,124.9,124.0,123.7,71.8,34.0,23.9$
18c: $\delta 167.6,149.0,134.5,132.0,129.3,127.4,126.6,123.8,34.1,24.1$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3055, 2964, 2929, 2870, 1766, 1740, 1705, 1606, 1589, 1516, 1490, 1466, 1448, 1379, 1265, 1231, 1196, 1114, 1082, 884, 831, 790, 737, 716, 631.
HRMS (EI+):
Calc. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 265.1103; Found: 265.1108

Amination of tert-butylbenzene (19)

General procedure (III)(C) was followed with 5 mL of tert-butylbenzene (19). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 19b and 19c were confirmed by the synthesis of authentic products.
Data for 19a-c
GC Yield (Selectivity; 19a:19b:19c): 118\% (1:28:22)

Isolated Yield (Selectivity; 19a:19b:19c): 251 mg white solid, 90% (1:40:30)
TLC: $R_{f} 0.45$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
19b:
$\delta 7.94(\mathrm{dd}, \mathrm{J}=3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.24$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$.
19c:
$\delta 7.94$ (dd, $J=3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
19b:
б 167.2, 138.9, 134.2, 131.8, 131.5, 128.9, 128.8, 127.1, 123.7, 123.6, 21.4.
19c:
ठ 167.3, 138.0, 134.2, 131.8, 129.6, 128.9, 126.3, 123.7, 21.2.
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
$3479,3061,2963,2869,1782,1724,1605,1517,1492,1467,1431,1379,1287,1269,1216,1114$, 1099, 1082, 1021, 885, 874, 830, 788, 716, 699, 631, 557, 530.
HRMS (EI+):
Calc. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}\left[\mathrm{M}^{+}\right.$: 279.1259 ; Found: 279.1260

Amination of methoxybenzene (20)

General procedure (III)(C) was followed with 5 mL of methoxybenzene (20). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 20b and 20c were confirmed by the synthesis of authentic products.
Data for 20a-c
GC Yield (Selectivity; 20a:20b:20c): 53\% (1:1:5)
Isolated Yield (Selectivity; 20a:20b:20c): 154 mg off-white solid, 61% (1:1:5)
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $R_{f} 0.25(20 \%$ EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
20b: $\delta 7.95$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.94(\mathrm{~m}$, 3H), 3.84 (s, 3H)
20c: $\delta 7.95$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H})$, 3.85 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
20b: $\delta 167.3,160.2,134.5,132.8,131.9,129.9,123.9,119.0,114.2,112.5$
20c: $\delta 167.7,159.4,134.4,132.0,128.1,124.4,123.8,114.6,55.7$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3204, 3060, 2838, 1773, 1745, 1703, 1606, 1513, 1466, 1384, 1304, 1276, 1257, 1214, 1113, 1082,
1054, 1028, 883, 886, 827, 750, 715, 782, 715.
HRMS (El+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3}\left[\mathrm{M}^{+}\right.$: 253.0739; Found: 253.0745

Amination of trifluoromethylbenzene (21)

General procedure (III)(C) was followed with 5 mL of trifluoromethylbenzene (21). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 21b and 21c were confirmed by the synthesis of authentic products.

Data for 21a-c

GC Yield (Selectivity; 21a:21b:201c): 66\% (1:16:5)
Isolated Yield (Selectivity; 21a:21b:21c): 210 mg off-white solid, 72% (1:30:11)
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.36$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
21b: $\delta 7.97$ (dd, J = 5.3, 3.1 Hz, 2H), 7.83-7.78 (m, 3H), 7.70-7.61 (m, 3H).
21c: $\delta 7.99$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
21b: $\delta 166.7,134.7,132.3,131.4(q, J=24.2 \mathrm{~Hz}), 129.62,129.57,124.9(q, J=272.2 H z), 124.6$
(q, $J=4 \mathrm{~Hz}$), 123.9, 122.3 (q, $J=4 \mathrm{~Hz}$).
21c: $\delta 176.9,134.9,131.6,126.6,126.2(q, J=3 H z), 124.2,77.5,77.2,76.8,20.8$ (quartets for the $C F_{2}$ carbon could not be located).
${ }^{19}$ F NMR ($376 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
21b: $\delta-61.8$
21c: $\delta-61.8$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3479, 3107, 1774, 1752, 1715, 1610, 1494, 1467, 1467, 1455, 1375, 1323, 1314, 1265, 1217, 1178, 1166, 1112, 1069, 1021, 954, 920, 891, 876, 836, 805, 785, 736, 710, 694, 658, 628.
HRMS (El+):
Calc. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}]^{+}$: 291.0507; Found: 291.0508

Amination of fluorobenzene (22)

General procedure (III)(C) was followed with 5 mL of fluorobenzene (22). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 22b and 22c were confirmed by the synthesis of authentic products.

Data for 22a-c

GC Yield (Selectivity; 22a:22b:22c): 48\% (1:7:4)
Isolated Yield (Selectivity; 22a:22b:22c): 149 mg white solid, 62% (1:10:6)
TLC: $R_{f} 0.40$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
22b: $\delta 7.96$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=8.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ 7.23 (m, 2H), 7.11 (td, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H})$

22c: $\delta 7.95$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
22b: $\delta 167.0,162.7(\mathrm{~d}, J=252.5 \mathrm{~Hz}), 134.4(\mathrm{~d}, J=11 \mathrm{~Hz}), 133.14,131.7,130.33(\mathrm{~d}, J=9 \mathrm{~Hz})$,
124.0, 122.14, 122.11, 115.1 (d, $J=20.2 \mathrm{~Hz}), 114.1$ (d, $J=30.3 \mathrm{~Hz})$.

22c: $\delta 167.3,162.05(\mathrm{~d}, \mathrm{~J}=252.5 \mathrm{~Hz}), 134.6,131.8,128.50(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}), 127.7,123.9,116.2(\mathrm{~d}$,
$J=30.3 \mathrm{~Hz}$).
${ }^{19}$ F NMR $\left(376 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
22b: $\delta-110.33,-110.36,-110.38,-110.40$
22c: $\delta-112.21,-112.22,-112.23,-112.24,-112.26,-112.26,-112.28,-112.24$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
$3065,2361,1752,1714,1604,1591,1516,1466,1397,1381,1286,1184,1111,1084,885,832,785$, 714, 680.
HRMS (EI+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{FNO}_{2}[\mathrm{M}]^{+}$: 241.0539 ; Found: 241.0540
Amination of chlorobenzene (23)

23a

23b

23c

General procedure (III)(C) was followed with 5 mL of chlorobenzene (23). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 23b and 23c were confirmed by the synthesis of authentic products.

Data for 23a-c

GC Yield (Selectivity; 23a:23b:23c): 65\% (1:6:6)
Isolated Yield (Selectivity; 23a:23b:23c): 196 mg white solid, 76% (1:6:6)
TLC: $R_{f} 0.41$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
23b: $\delta 7.95(\mathrm{dd}, \mathrm{J}=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$, $1 \mathrm{H}), 7.38(\mathrm{dd}, J=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.
23c: δ 7.96-7.94 (m, 2H), 7.81-7.79 (m, 2H), 7.48-7.46 (m, 2H), 7.43-7.40 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
23b: $\delta 166.9,134.72,134.70,132.9,131.6,130.1,128.3,126.8,124.7,124.0$
23c: $\delta 167.1,134.7,133.9,131.7,130.3,129.4,127.8,124.0$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:

3063, 2962, 1743, 1707, 1592, 1497, 1483, 1465, 1432, 1395, 1374, 1274, 1265, 1202, 1171, 1120, 1109, 1083, 1015, 942, 885, 869, 852, 823, 784, 763, 749, 714, 683, 627.
HRMS (EI+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{CINO}_{2}[\mathrm{M}]^{+}$: 257.0244; Found: 257.0249

Amination of bromobenzene (24)

General procedure (III)(C) was followed with 5 mL of bromobenzene (24). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 24b and 24c were confirmed by the synthesis of authentic products.

Data for 24a-c

GC Yield (Selectivity; 24a:24b:24c): 84\% (1:5:4)
Isolated Yield (Selectivity; 24a:24b:24c): 247 mg off-white solid, 82% (1:5:5)
Single isomer could be recrystallized from $\mathrm{MeOH} /$ hexanes
TLC: $\mathrm{R}_{\mathrm{f}} 0.38$ (20\% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
24b: $\delta 7.96(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$.
24c: $\delta 7.96$ (dd, $J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
24b: $\delta 166.9,134.7,133.1,131.6,131.2,130.4,129.6,125.2,124.0,122.5$
24c: $\delta 167.0,134.7,132.4,131.7,130.9,128.0,124.0,121.9$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3489, 3064, 2925, 1716, 1587, 1577, 1494, 1478, 1427, 1377, 1286, 1270, 1214, 1172, 1120, 1108, 1080, 1011, 942, 886, 868, 851, 819, 782, 715, 669, 677, 625.
HRMS (El+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{BrNO}_{2}[\mathrm{M}]^{+}: 300.9738$; Found: 300.9739, 302.9179

Amination of iodobenzene (25)

General procedure (III)(C) was followed with 5 mL of iodobenzene (25). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers $\mathbf{2 5 b}$ and $\mathbf{2 5 c}$ were confirmed by the synthesis of authentic products.

Data for 25a-c

GC Yield (Selectivity; 25a:25b:25c): 64\% (1:4:3)
Isolated Yield (Selectivity; 25a:25b:25c): 251 mg pale yellow solid, 72% (1:4:3)
TLC: $R_{f} 0.35$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
25b: $\delta 7.95$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (td, $J=4.9,2.8 \mathrm{~Hz}, 3 \mathrm{H}$), 7.73 (ddd, $J=8.0,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, $J=8.1,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

25c: $\delta 7.95$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{tt}, J=8.8,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz; CDCl_{3})
25b: $\delta 166.9,137.2,135.3,134.7,132.9,131.6,130.6,125.9,124.0,93.8$
25c: $\delta 167.0,138.4,134.7,131.7,128.2,124.0,93.4$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
3061, 1742, 1712, 1585, 1475, 1423, 1395, 1371, 1262, 1204, 1120, 1081, 1061, 1007, 885, 849, 818, 783, 750, 713, 678, 657, 626.
HRMS (El+):
Calc. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{INO}_{2}[\mathrm{M}]^{+}: 348.9600$; Found: 348.9601

Amination of acetoxybenzene (26)

General procedure (III)(C) was followed with 5 mL of acetoxybenzene (26). After 33 h , the reaction mixture was purified by silica gel column chromatography to afford yellow solid. The structures of the major isomers 26b and 26c were confirmed by the synthesis of authentic products.

Data for 26a-c

GC Yield (Selectivity; 26a:26b:26c): 62\% (1:8:9)
Isolated Yield (Selectivity; 26a:26b:26c): 163 mg white solid, $58 \%(1: 8: 9)$
TLC: $R_{f} 0.30$ (20% EtOAc in hexanes)
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
26b: $\delta 7.96$ (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.80(\mathrm{td}, J=5.8,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15$ (ddd, $J=8.2,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$
26c: $\delta 7.96(\mathrm{dd}, J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.31$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
26b: $\delta 169.1,167.0,150.9,148.7,137.1,134.7,132.7,131.6,129.7,124.2,124.0,123.6,121.2,119.7$, 21.3

26c: $\delta 169.3,167.2,150.1,134.6,131.8,129.3,127.6,124.0,122.4,21.3$
IR $\left(v, \mathrm{~cm}^{-1}\right)$:
$2973,1767,1724,1605,1466,1387,1292,1237,1101,1089,1061,888,867,796,766,725,686,647$
HRMS (El+):
Calc. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}]^{+}$: 281.0688; Found: 281.0694

1b

$$	○ベMNーがー ○のмのオのヘ ベナーがゥ mmmmNNN		$\begin{array}{ll} N & \sigma \\ \infty & \bar{\tau} \\ 0 & \dot{\sim} \\ \end{array}$

2b

ppm 200	180	160	140	120	100	80	60	40	20	0
					S42					

3b

| 20 | 0 | -20 | -40 | -60 | -80 | -100 | -120 | -140 | -160 | -180 | -200 |
| :--- |
| 543 | | | | | | | | | | | |

4b

5b

\circ $\stackrel{\circ}{n}$ $\stackrel{0}{0}$	
	$1]$

5b

6b

7b

 $000 \infty \infty$ NNNNNNNNNNNNNN

8b
(
 F N N N N N N

 も

9c

9d

20	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200
						S56					

10	9	8	7	6	5	4	3	2	1	0

ppm 200	180	160	140	120	100	80	60	40	20	0
					S60					

NOMルNのル

13d

14c

14d

15c

		$0.986 \quad 2.02$	1.02
10	9	8	

 NNNNNNNNNN

16d

d

$\begin{array}{ccc} 4.02 & 4.49 \\ 4.17 & 1.27^{4} & 3.31 \end{array}$						$\begin{gathered} 3.07 \\ 4.81 \end{gathered}$				
10	9	8	7	6	5	4	3	2	1	0
					S71		3			

18c

18c

ppm 200

$\begin{array}{ccc} 2.05 & 1.67 & 0.531 \\ 2 & 0.96 & 0.948 \end{array}$										
10	9	8	7	6	5	4	3	2	1	0
					S75					

20c

20c
-NN6 Mn $\infty \rightarrow 1$

 NNハNNNNNNNNNNNNNNNNNNNNNNNNN

 O－O． ベベベベベベベベベベベベベベベベベバベベベベベ

22b

22c

$$
\begin{array}{ccc}
2.03 & 1.56 & 1.6 \\
2^{\top} & 0.244 .281 & 0.272
\end{array}
$$

22b

22c

20	0	－20	－40	－60	－80	－100	－120	－140	－160	－180	－200
						584					

23b

23c
$60 \quad 40$

24c

$\begin{aligned} & N \\ & \dot{J} \\ & \hat{O} \end{aligned}$	のロONMNM ステNすへO～に ナ゙ヘージャデー mmmmNNN	NO NO
		V／

24c

ppm 200

25b

25c
$5.73 \quad 0.944$
$3.39 \quad 0.931 \quad 2.36$

| 1 | 5 | 4 |
| :--- | :--- | :--- | :--- |

ppm 200	180	160	140	120	100	80	60	40	20	0
					S90					

[^0]: ${ }^{a}$ Reactions were assembled in a nitrogen-filled glove box in 1 -dram vial on 0.1 mmol scale.
 Yields reported are uncorrected GC yield vs dodecane internal standard

