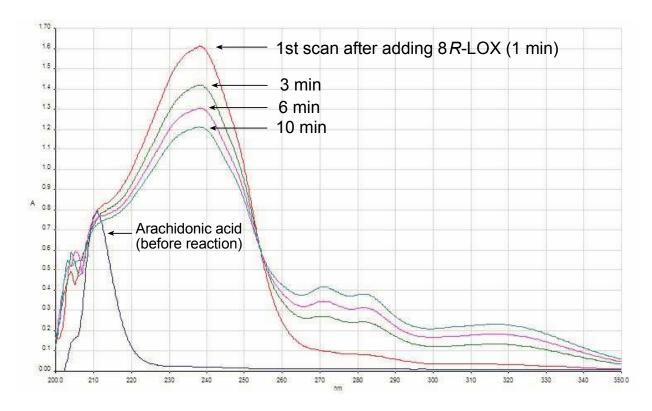
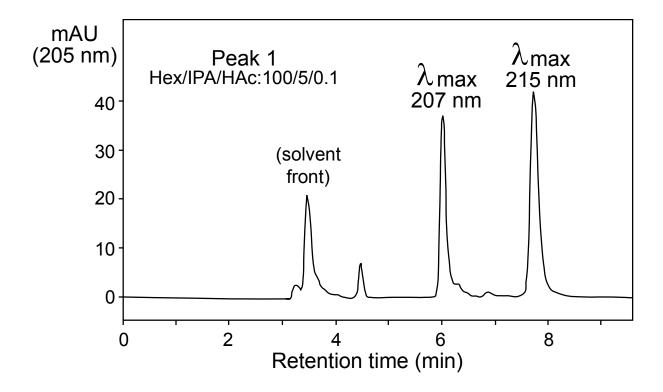
Supplemental Data

Demonstration of HNE-related aldehyde formation via lipoxygenase-catalyzed synthesis of a *bis*-allylic dihydroperoxide intermediate

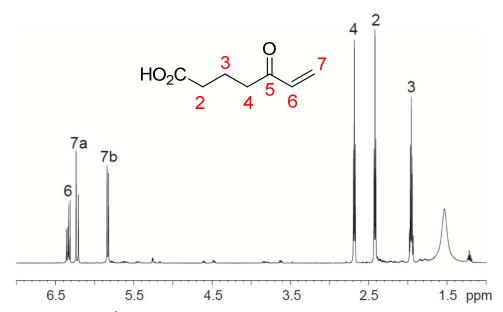

Jing Jin, Yuxiang Zheng¹, and Alan R. Brash*

Department of Pharmacology, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232


*Address correspondence to Alan R. Brash, Department of Pharmacology, Vanderbilt University Medical Center, □Nashville, TN 37232-6602; □Tel. 615-343-4495; Fax: 615-322-4707 Email: □alan.brash@vanderbilt.edu

¹ Present address: Weill Cornell Cancer Center, 1300 York Avenue, New York, NY 10065

Figure S1: Reaction of arachidonic acid (25 μ g/ml) with recombinant 8*R*-LOX (10 μ g/ml) following over time by repetitive UV scanning (200 – 350 nm).


Figure S2: SP-HPLC separation of the two main components of peak 1 in Figure 1 of the main text.

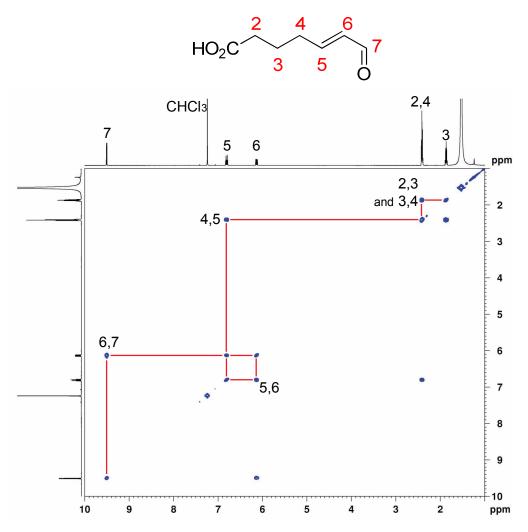
The first of the two peaks was identified as 5-oxo-hept-6-enoic acid (Figure S3); it exhibits a conjugated enone chromophore, λ max 207 nm in the SP-HPLC solvent (and λ max of 212 nm in RP-HPLC solvent, water/CH₃CN/acetic acid, 70:30:0.01).

The later eluting product on the SP-HPLC chromatogram was identified by NMR as 7-oxo-hept-5E-enoic acid (Figure S4). It has a conjugated enone chromophore with λ max of 215 nm in SP-HPLC solvent (and 223 nm in RP-HPLC solvent).

Figure S3: ¹H-NMR spectrum of 5-oxo-hept-6-enoic acid (one of the two main components of peak 1 in Figure 1, main text). The spectrum was recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer.

5-oxo-hept-6-enoic acid. ¹H-NMR, 600 MHz, CDCl₃, 283K, δ 6.34, dd, 1H, H6, $J_{6,7a}$ = 17.6 Hz, $J_{6,7b}$ = 10.6 Hz; 6.22, d, 1H, H7a, $J_{6,7a}$ = 17.6 Hz; 5.83, d, 1H, H7b, $J_{6,7a}$ = 10.6 Hz; 2.69, t, 2H, H4, $J_{3,4}$ = 7.2 Hz; 2.42, t, 2H, H2, $J_{2,3}$ = 7.2 Hz; 1.96, p, 2H, H3, J = 7.2 Hz. Assignments were confirmed by HMBC/HSQC.

The molecular weight was confirmed as 142 by LC-MS (Q-TOF, negative-ESI, [M-H] ion, predicted 141.0552, found 141.0557, C₇H₉O₃.


The chemical shifts and coupling constants for the enone moiety are very similar to those reported for the synthetic vinyl ketone analogues, 1-octen-3-one and 1,5-octadien-3-one ¹.

This class of enone has been shown to exhibit adduction with glycine ², and in a recent study exhibit reaction specificity with cysteine ³.

A proposed mechanism of formation involves a cleavage route suggested by Blank and colleagues for 1-alkene-3-one formation in the autoxidation of arachidonic acid ⁴.

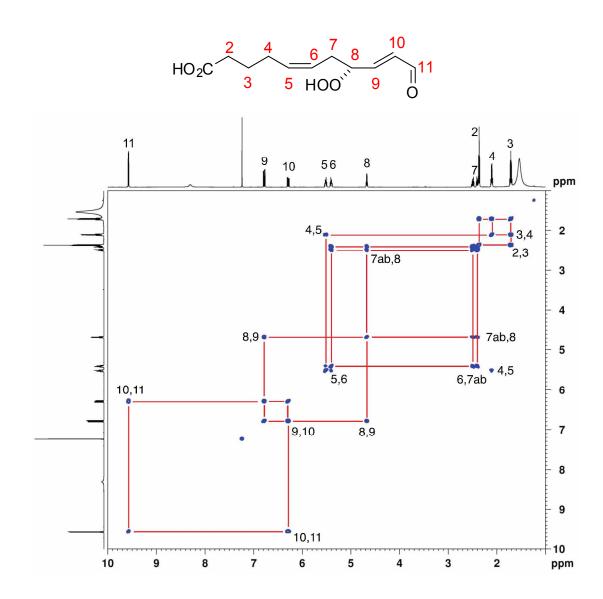

HO₂C
$$OOH$$
 OOH OOH

Figure S4: COSY NMR spectrum of 7-oxo-hept-5*E*-enoic acid (the second main component of peak 1 in Figure 1, main text). The spectrum was recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer.

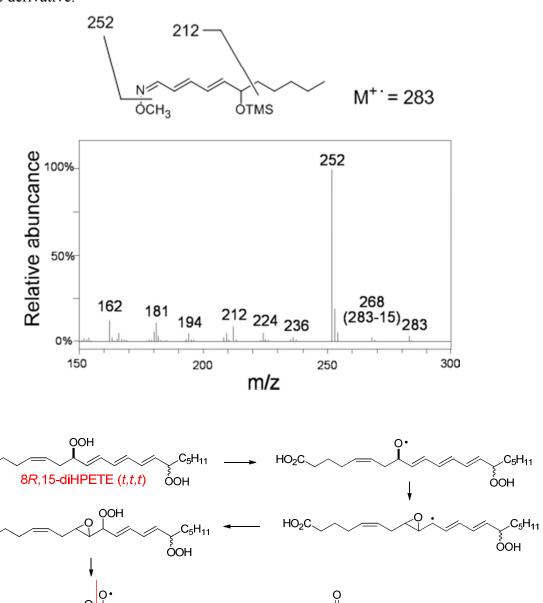
7-oxo-hept-5*E***-enoic acid.** 1 H-NMR, 600 MHz, CDCl₃, 283K, δ 9.50, d, 1H, H7, $J_{6,7}$ = 7.8 Hz; 6.81, dt, 1H, H5, $J_{4,5}$ = 6.7 Hz, $J_{5,6}$ = 15.7 Hz; 6.13, dd, 1H, H6, $J_{5,6}$ = 15.7 Hz, $J_{6,7}$ = 7.8 Hz; 2.38-2.44, m, 4H, H2, H4; 1.86, p, 2H, H3, $J_{2,3}$ = 7.4 Hz, $J_{3,4}$ = 7.4 Hz.

Figure S5: COSY NMR spectrum of 8-hydroperoxy-11-oxo-undeca-5*Z*,9*E*-dienoic acid. The spectrum was recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer.

8-hydroperoxy-11-oxo-undeca-(5*Z***,9***E***)-dienoic acid.** ¹H-NMR, 600 MHz, CDCl₃, 283K, 89.57, d, 1H, H11, $J_{10,11} = 7.7$ Hz; 6.78, dd, 1H, H9, $J_{8,9} = 6.0$ Hz, $J_{9,10} = 16.0$ Hz; 6.29, dd, 1H, H10, $J_{9,10} = 16.0$ Hz, $J_{10,11} = 7.7$ Hz; 5.52, dt, 1H, H5, $J_{4,5} = 7.2$ Hz, $J_{5,6} = 10.9$ Hz; 5.41, dt, 1H, H6, $J_{5,6} = 10.9$ Hz, $J_{6,7} = 7.3$ Hz; 4.67, q, 1H, H8, $J_{7,8} = 6.0$ Hz, $J_{8,9} = 6.0$ Hz; 2.49, m, 1H, H7a; 2.41, m, 1H, H7b; 2.36, t, 2H, H2, $J_{2,3} = 7.2$ Hz; 2.10, q, 2H, H4, $J_{3,4} = 7.2$ Hz, $J_{4,5} = 7.2$ Hz; 1.71, p, 2H, H3, $J_{2,3} = 7.2$ Hz, $J_{3,4} = 7.2$ Hz.

Scheme S1: Mechanism of formation of 8R, 15-diHETE (t,t,t) and 8R, 15-diHPETE (t,c,t & t,t,t)

1. 8R,15-diHETE (t.t.t)


HO₂C
$$C_5H_{11}$$
 C_5H_{11} C_5H_{11}

2. 8R, 15-diHETE (t, c,t & t,t,t)

8R, 15-diHETE (t.c.t & t.t.t)

$$OOH$$
 OOH
 OOH

Figure S6: GC-MS analysis of 6-hydroperoxy-(2*E*,4*E*)-undecenal TPP-reduced TMS ether methoxime derivative.


OOH
6-hydroperoxy-(2*E*,4*E*)-undecenal

OOH

HO₂C

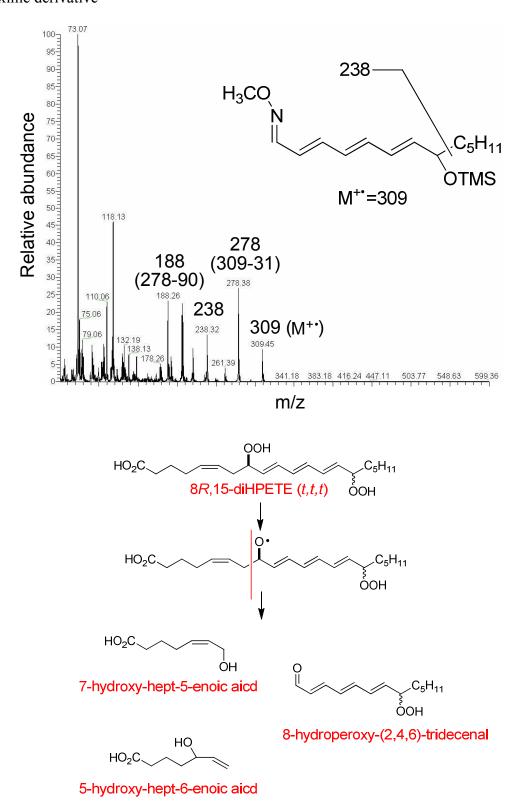
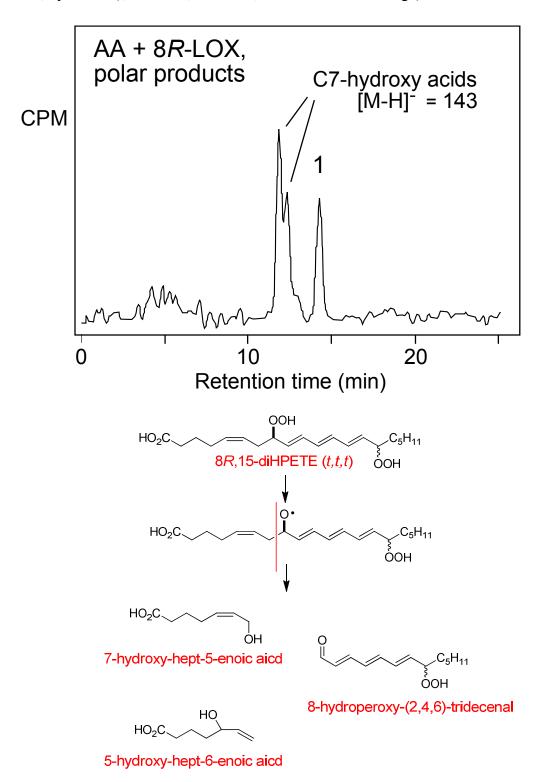

HO₂C

Figure S7: COSY NMR spectrum of 6-hydroperoxy-(2*E*,4*E*)-undecenal. The spectrum was recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer.



6-hydroperoxy-(2*E***,4***E***)-undecenal.** ¹H-NMR, 600 MHz, C₆D₆, 283K, δ 9.35, d, 1H, H1, J_{1,2} = 7.7 Hz; 6.34, dd, 1H, H3, J_{2,3} = 15.4 Hz, J_{3,4} = 11.0 Hz; 5.86-5.98, m, 2H, H2,H4; 5.65, dd, 1H, H5, J_{4,5} = 15.4 Hz, J_{5,6} = 7.3 Hz; 4.09, dt, 1H, H6, J_{5,6} = 7.3 Hz; J_{6,7} = 6.7 Hz.

Figure S8: GC-MS analysis of 8-hydroperoxy-(2,4,6)-tridecenal TPP-reduced TMS ether methoxime derivative

Figure S9: RP-HPLC of the reaction of [1-¹⁴C]arachidonic acid with recombinant 8*R*-LOX after TPP treatment. Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, CH₃CN/H₂O/HAc (10/90/0.01, by volume); flow rate, 1 ml/min; radioactive monitoring (Radiomatic Flo-One).

Figure S10: RP-HPLC analyses of room temperature reactions of 15*S*-HPETE with mouse platelet-type 12*S*-LOX (top) and human 15-LOX-1 (below). Column: Waters Symmetry C18, 25x 0.46 cm; solvent, CH₃CN/H₂O/HAc (45/55/0.01, by volume); flow rate, 1 ml/min; on-line diode array detection. (The retention time difference between the two chromatograms is due to the use of different columns).

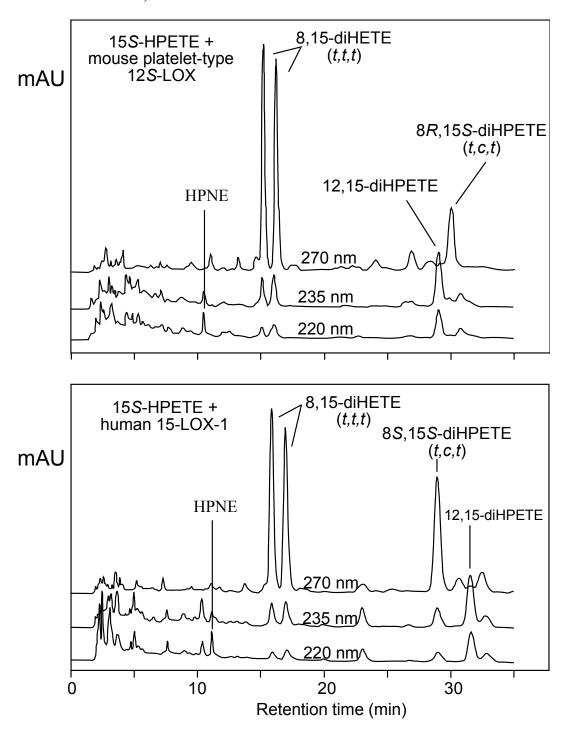
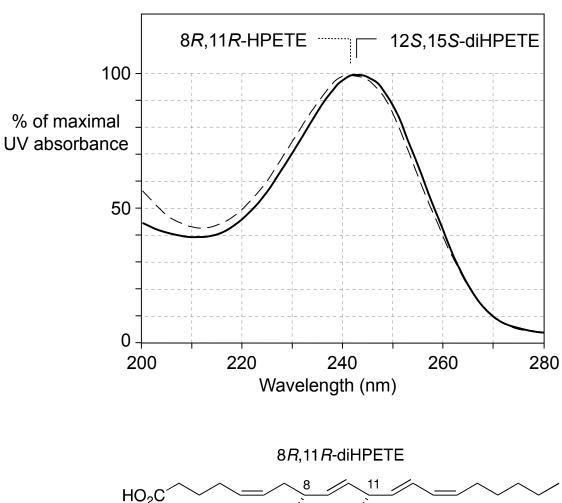



Figure S11: Overlay of the UV spectra of 8R,11R-HPETE and 12S,15S-diHPETE

$$8R,11R$$
-diHPETE

 HO_2C
 8
 11
 HOO
 HOO
 $12S,15S$ -diHPETE

Supplementary References

- (1) Lin, J., Welti, D. H., Vera, F. A., Fay, L. B., and Blank, I. (1999) Synthesis of deuterated volatile lipid degradation products to be used as internal standards in isotope dilution assays. 2. Vinyl ketones. *J. Agric. Food Chem.*, 47, 2822-2829.
- (2) Cheng, Y., Huynh-Ba, T., Blank, I., and Robert, F. (2008) Temporal changes in aroma release of Longjing tea infusion: interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. *J. Agric. Food Chem.*, 56, 2160-2169.
- (3) Weerapana, E., Simon, G. M., and Cravatt, B. F. (2008) Disparate proteome reactivity profiles of carbon electrophiles. *Nature Chem. Biol.*, *4*, 405-407.
- (4) Lin, J., Fay, L. B., Welti, D. H., and Blank, I. (2001) Quantification of key odorants formed by autoxidation of arachidonic acid using isotope dilution assay. *Lipids*, *36*, 749-756.