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Figure S1: Reaction of arachidonic acid (25 µg/ml) with recombinant 8R-LOX (10 µg/ml) 

following over time by repetitive UV scanning (200 – 350 nm). 
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Figure S2:
 
SP-HPLC separation of the two main components of peak 1 in Figure 1 of the main 

text. 

 

 

 

 

 

The first of the two peaks was identified as 5-oxo-hept-6-enoic acid (Figure S3); it exhibits a 

conjugated enone chromophore, λmax 207 nm in the SP-HPLC solvent (and λmax of 212 nm in 

RP-HPLC solvent, water/CH3CN/acetic acid, 70:30:0.01). 

 

The later eluting product on the SP-HPLC chromatogram was identified by NMR as 7-oxo-hept-

5E-enoic acid (Figure S4). It has a conjugated enone chromophore with λmax of 215 nm in SP-

HPLC solvent (and 223 nm in RP-HPLC solvent). 
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Figure S3: 
1
H-NMR spectrum of 5-oxo-hept-6-enoic acid (one of the two main components of 

peak 1 in Figure 1, main text). The spectrum was recorded in d6-benzene at 298K using a Bruker 

600 MHz spectrometer. 

 

 

 

 

 

  

 

 

 

 

 

 

 

5-oxo-hept-6-enoic acid. 
1
H-NMR, 600 MHz, CDCl3, 283K, δ6.34, dd, 1H, H6, J6,7a = 17.6 Hz, 

J6,7b = 10.6 Hz; 6.22, d, 1H, H7a, J6,7a = 17.6 Hz; 5.83, d, 1H, H7b, J6,7a = 10.6 Hz; 2.69, t, 2H, 

H4, J3,4 = 7.2 Hz; 2.42, t, 2H, H2, J2,3 = 7.2 Hz; 1.96, p, 2H, H3, J = 7.2 Hz. Assignments were 

confirmed by HMBC/HSQC. 

The molecular weight was confirmed as 142 by LC-MS (Q-TOF, negative-ESI, [M-H]
-
 ion, 

predicted 141.0552, found 141.0557, C7H9O3. 

The chemical shifts and coupling constants for the enone moiety are very similar to those 

reported for the synthetic vinyl ketone analogues, 1-octen-3-one and 1,5-octadien-3-one 
1
. 

This class of enone has been shown to exhibit adduction with glycine 
2
, and in a recent study 

exhibit reaction specificity with cysteine 
3
.  

A proposed mechanism of formation involves a cleavage route suggested by Blank and 

colleagues for 1-alkene-3-one formation in the autoxidation of arachidonic acid 
4
. 
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Figure S4: COSY NMR spectrum of 7-oxo-hept-5E-enoic acid (the second main component of 

peak 1 in Figure 1, main text). The spectrum was recorded in d6-benzene at 298K using a Bruker 

600 MHz spectrometer. 

 

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7-oxo-hept-5E-enoic acid. 
1
H-NMR, 600 MHz, CDCl3, 283K, δ9.50, d, 1H, H7, J6,7 = 7.8 Hz; 

6.81, dt, 1H, H5, J4,5 = 6.7 Hz, J5,6 = 15.7 Hz; 6.13, dd, 1H, H6, J5,6 = 15.7 Hz, J6,7 = 7.8 Hz; 

2.38-2.44, m, 4H, H2, H4; 1.86, p, 2H, H3, J2,3 = 7.4 Hz, J3,4 = 7.4 Hz. 
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Figure S5: COSY NMR spectrum of 8-hydroperoxy-11-oxo-undeca-5Z,9E-dienoic acid. The 

spectrum was recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer. 
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8-hydroperoxy-11-oxo-undeca-(5Z,9E)-dienoic acid. 
1
H-NMR, 600 MHz, CDCl3, 283K, 

δ9.57, d, 1H, H11, J10,11 = 7.7 Hz; 6.78, dd, 1H, H9, J8,9 = 6.0  Hz, J9,10 = 16.0 Hz; 6.29, dd, 1H, 

H10, J9,10 = 16.0 Hz, J10,11 = 7.7 Hz; 5.52, dt, 1H, H5, J4,5 = 7.2 Hz, J5,6 = 10.9 Hz; 5.41, dt, 1H, 

H6, J5,6 = 10.9 Hz, J6,7 = 7.3 Hz; 4.67, q, 1H, H8, J7,8 = 6.0  Hz,  J8,9 = 6.0  Hz; 2.49, m, 1H, H7a; 

2.41, m, 1H, H7b; 2.36, t, 2H, H2, J2,3 = 7.2 Hz; 2.10, q, 2H, H4, J3,4 = 7.2 Hz, J4,5 = 7.2 Hz; 

1.71, p, 2H, H3, J2,3 = 7.2 Hz, J3,4 = 7.2 Hz. 
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Scheme S1: Mechanism of formation of 8R,15-diHETE (t,t,t) and 8R,15-diHPETE (t,c,t & t,t,t) 
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Figure S6: GC-MS analysis of 6-hydroperoxy-(2E,4E)-undecenal TPP-reduced TMS ether 

methoxime derivative. 
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Figure S7: COSY NMR spectrum of 6-hydroperoxy-(2E,4E)-undecenal. The spectrum was 

recorded in d6-benzene at 298K using a Bruker 600 MHz spectrometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6-hydroperoxy-(2E,4E)-undecenal. 
1
H-NMR, 600 MHz, C6D6, 283K, δ9.35, d, 1H, H1, J1,2 = 

7.7 Hz; 6.34, dd, 1H, H3, J2,3 = 15.4 Hz, J3,4 = 11.0 Hz; 5.86-5.98, m, 2H, H2,H4; 5.65, dd, 1H, 

H5, J4,5 = 15.4 Hz, J5,6 = 7.3 Hz; 4.09, dt, 1H, H6, J5,6 = 7.3 Hz; J6,7 = 6.7 Hz.



 

 

10

Figure S8: GC-MS analysis of 8-hydroperoxy-(2,4,6)-tridecenal TPP-reduced TMS ether 

methoxime derivative 
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Figure S9: RP-HPLC of the reaction of [1-
14
C]arachidonic acid with recombinant 8R-LOX after 

TPP treatment. Column: Waters Symmetry C18, 25 x 0.46 cm; solvent, CH3CN/H2O/HAc 

(10/90/0.01, by volume); flow rate, 1 ml/min; radioactive monitoring (Radiomatic Flo-One). 
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Figure S10: RP-HPLC analyses of room temperature reactions of 15S-HPETE with mouse 

platelet-type 12S-LOX (top) and human 15-LOX-1 (below). Column: Waters Symmetry C18, 

25x 0.46 cm; solvent, CH3CN/H2O/HAc (45/55/0.01, by volume); flow rate, 1 ml/min; on-line 

diode array detection. (The retention time difference between the two chromatograms is due to 

the use of different columns). 
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Figure S11: Overlay of the UV spectra of 8R,11R-HPETE and 12S,15S-diHPETE 
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