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S1. Spectrum Simulation   
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Figure S1(a).  950 MHz spectrum of I in water showing resonances due to the minor impurity in 

which in one of the equatorial ammines in replaced by a water molecule.  The relative intensities 

allow the assignment of three line indices (i,j,k), which refer to the number of deuterons in (i) the 

axial ammine, (j) the equatorial positions cis to the water molecule, and (k) trans to the water 

molecule. 

This substitution of one ammonia by water in the impurity leads to a Cp proton up-field shift in 

the fully protonated species by 132.5 ppb, to 5.8434 ppm.  Outer sphere solvation in strong donor 

solvents leads to up-field shifts (Fig 5(b)).  Water is a weaker σ-base than ammonia, but the 



presence of an uncoordinated lone-pair makes it a stronger π-donor than ammonia, so that the 

observed shift supports the assertion that it is the characteristics of the Ru-L π interactions that are 

critical in determining the Cp hypefine shifts. 
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Figure S1(b).  As in Figure S1(a) but showing the isotopomeric satellites on the H-15 

resonance of I due to the natural abundance of deuterium. 

 

 

  



S2.  Pulsed EPR Spectrum and Simulation 
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Figure:S2. W-band (93.903067 GHz) echo-detected EPR spectrum (black, absorption) and its 

numerical derivative (black) measured at T = 7.5 K of I in d6-acetone 20% / d6-EtOH 80%  (2.5 

mg in 250µL). The sharp impurity at 335.54 mT is at g = 1.9995. The EPR simulation (red 

dashed) was calculated with Easyspin, and fitted to the experimental spectrum using a least-

squares Newton-gauss Levenberg-Marquart algorithm implemented with a home-written MatLab 

programme. The simulation parameters are g = [2.2537, 2.0315, 1.7565], with a linewidth L = 

[7007, 11453, 21498] MHz. 

  



 

S3. Ammine Resonances and Cp Hyperfine Shifts in various Solvents at 500 MHz 

 

Solvent Cp(δh) δ(ax) δ(eq) δ(ax-eq) 
Nitromethane 1.9490 206.4 128.6 77.8 
Acetonitrile 1.0564 181.5 137.9 43.6 
Acetone 0.4340 165.8 148.8 1 7.0 

H2O 0.6430 170.3 147.9 22.4 
D2O 0.8050 177.3∗ 148.5∗ 28.8 
Dimethylformamide -0.6590 133.6 167.3 -33.7 
Dimethylsulfoxide -1.0641 120.1 174.6 -54.5 

∗
No diamagnetic reference is available in D2O, so these values are relative to TMS.  Their difference  in the fifth 

column is unaffected. 

These values are plotted in Figure 5(a) and 5(b) of the main text.   

Typical linewidths are ~1500 Hz (at 500 MHz) 

 

For reference: 1H NMR (aq) 

Ru(ND3)6 
3+  (CF3SO3)3  in 95D5H; δ = 160.5ppm (at 950MHz; 298K) 

Ru(NH3)6 
3+

  (CF3SO3)3   95H5D; δ = 157.1ppm  (at 950MHz; 298K) 

 

 

Resolution enhancement (exponential line-broadening function of -500 and a Gaussian function of 

0.05) enabled several distinct axial and equatorial isotopic resonances to be identified (Figure 

S3.1) separated by ~ 640 ppb and ~ 500 ppb respectively.  In dry d6-acetone (no exchange) where 

only a single Cp resonance is observed, the ammine resonances are narrower (FWHM ~ 950 Hz) 

than in undried d6-acetone containing residual H2O / D2O (FWHM ~ 1500 Hz).   

Note the resemblance of the equatorial isotopomer structure, near 147 ppm, to that in the Cp 13C 

spectrum having the same isotopic composition (see Figure S4.1 below). 



 
 

Figure S3.1  Isotopic structure in water at 950 MHz under resolution enhancement 

 

S4.  Cp C13 Isotopomer Resonances 

Figure S4.1 shows the 13C spectrum in the Cp region in acetone solution containing ~ 10%D. 

The structure is very similar to that in the Cp proton spectrum.  Where the proton spectrum at 300 

K shows equatorial and axial deuteration shifts of 19.7 and −36.2 ppb, and a linewidth of ~ 12.4 

ppb; the equivalent intervals in the 13C spectrum are  41.0   and −67.9 ppb, with a linewidth of 

17.4 ppb.  The spectrum is fitted to a deuterium content of 10.1%. 

 

Figure S4.1   Cp 13C spectrum of I  at 125.7 MHz in Acetone 
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S5.  Linewidth Data.  No structural data is available for II.  We therefore assume the bond angles 

are the same as in I, and only the bond lengths are modified.  We estimate these using the Fe-C 

distance in ferrocene at 101 K, which is 2.052 Å 1, and the Ru-C distance in ruthenocene at 101 K, 

which is 2.186 Å 2.  The apparent difference in radius of ruthenium and iron in this setting is 

therefore 13.4 pm. With these assumptions the geometric factor for the axial-dipolar coupling 

decreases from 6.434 x 1027 m-3  to 5.518 x 1027 m-3,  so that the deuteration shifts are expected to 

decrease by 14.8%.  This corresponds well with the experimental reduction of 13.3%. 

 

Table S5.  NMR parameters in d6-acetone at 500 MHz and T = 298 K 
 α2 / % D-shift (eq) /ppb T1 /ms FWHM /Hz 

[Cp(CO)2Fe(µ-CN)Ru(NH3)5]
3+, I 0.47 20.20 125 4.23 a 

[Cp(CO)2Ru(µ-CN)Ru(NH3)5]
3+ , II < 0.4* 17.51 171 1.58 a 

[Cp(dppe)Fe(µ-CN)Ru(NH3)5]
3+  2.8 n/a 17.4 25 

* the charge transfer transition is obscured, and too high in energy to identify any smaller values. a 
at 950 MHz 
 
 

The values of α2 in Table S5 show that carbonyl ligands stabilize the low oxidation state 

ruthenium donor in II against the oxidation implicit in the intermetallic charge transfer more 

effectively than in the iron analogue I.  This is a familiar feature of first and second row organo-

transition-metal elements.   

The decrease in linewidth between I and II appears to be too large to be attributed to the increased 

distance between the Cp protons and a point dipole on the Ru(III) centre, because the rate of 

dipole-dipole relaxation scales as 6−r .   

 
  



S6.  Derivation of Expressions for the Hyperfine Shift 

The basis functions are chosen to diagonalize the main components of the Hamiltonian, i.e. the 

ligand field and the spin-orbit interactions.  A residual Hamiltonian 1H  describes perturbations 

operating within this basis and includes interactions of the electronic and nuclear moments with 

the vacuum flux density 0B  (loosely referred to as the field strength in vacuum) as well as the 

electron-nuclear hyperfine interactions.  For a single nucleus with 2
1=I  and gyromagnetic ratio 

Iγ  (in units of radians s-1 T-1), characterised by the spin angular momentum operator I ,  

 IAIBBµ ⋅+⋅−⋅−= IIH γγ hh 001  {1} 

Here the terms are arranged in order of decreasing magnitude and the small diamagnetic screening 

corrections that determine the local flux density are ignored.  We employ the notation of Kurland 

and McGarvey,3 but use SI units.  The electronic magnetic moment operator is ( )SLµ eg+−= β , 

where Bµβ =  is the absolute value of the Bohr Magneton.  Note the opposite signs of electronic 

magnetic moment and the angular momenta.  The magnetic field at the nucleus (i.e. the hyperfine 

field) due to the electronic moments is represented by LDF AAAA ++= .  Its three components 

DF AA ,  and LA  are a Fermi contact term, spin-dipolar, and electron orbital contributions: 
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{The units of these fields are in Tesla because: ≡β  Am2, 0µ  ≡ JA-2m-1 ≡ NA-2, 3−
ir  ≡ m-3 and 

their product has units NA-1m-1 ≡ Tesla.}  In these expressions ir  is the vector between the ith 



electron and the nucleus.  The Dirac delta function )( irδ has the dimensions of a volume density 

(at the nucleus), i.e. m-3. 

 

S6.1 Bases 

The 2T2g ground state of the low-spin octahedral Ru
3+(d5) ion is split by the spin-orbit interaction 

( )-1cm 1000~ζ  into two sets of levels which, in O* double-group representations, are an E ′′  

Kramers doublet ground state and an excited U ′  quartet.  Their separation is 1
2
3 cm 1500 −≈ζ  

which means that the thermal population of the U ′  state is negligible at ambient temperature 

(~0.2%).  With symmetry-determined coupling constants, the electronic wavefunctions are found 

to be: 
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where βα ′′  and  are spin functions with 2
1

2
1  and −+=sm  respectively.  We adopt a contracted 

notation in which the ground state components are labelled by βα ,=i  and those of the excited 

state quartet by νµλκ ,,,=j .  In the cyano-bridged Ruthenium pentammine complexes the 

tetragonal component of the ligand field introduces a first order splitting of the U ′  quartet and 

also leads to the mixing of α with ν and β with κ.  The treatment that follows is restricted to 



properties that can be derived by using these six basis states.  We begin by analysing the 

octahedral case, adding the effect of the tetragonal field later, as a perturbation. 

 

S6.2. Second Order Corrections to the Hamiltonian 

First-order corrections to the ground state wavefunction will have the form,  

 ∑ ∆j ij

ijH

ε
 

in which )( jiij εεε −=∆  is, as implied by the notation, negative, and the sum over j  means all 

excited states.  Correcting the zeroth-order function 0i  for the perturbation introduced by the 

external magnetic field: 
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Using these functions together with {1} gives the energy of the ith Kramers component: 
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S6.3.  The Nuclear Transition Energy 

The energy of the nuclear transition in electronic state i  is given by the difference in the value of 

eqn {4} with 2
1−=I  and 2

1+=I  : 
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where 0h  is a unit vector parallel to the external field, and the small normalization difference 

between i  and 0i  has been ignored.  The sign of ii A 0hA ⋅  is that of the coupling constant 

times the angular momentum operator, when α=i  (which as we will see later is the more 

populated Kramers component), the effect of the second term in {5} is to increase the energy of 

the nuclear spin transition when the coupling constant is positive.  An NMR experiment at fixed 

frequency resonance therefore require a lower field, leading to a resonance at a more positive 

chemical shift (δ).   

 

S6.4. Thermal Population Averaging 

Provided that the electron spin relaxation time (~10-12 s) is very short compared to the period of 

the nuclear Larmor frequency (~2 x10-9 s), the effective fields that determine the nuclear hyperfine 

interaction energies are obtained by averaging those associated with each of the Kramers doublet 

states.  The nuclear transition energy is therefore obtained by weighting its value in each Kramers 

state (as given by {5}) with the thermal population of that state, which is, in turn, determined by 

the energies in {4}.   

The following treatment is less general than that of Kurland and McGarvey3 because it assumes 

that the temperature is low enough to exclude any population of the U ′  excited states.  This is 

easily justified because the fraction of the population in these states at ambient temperature is 



~4*exp(-1500/200) = 2.2 x 10-3 or 0.2% and can be safely ignored.  When the Zeeman energies 

are small compared to kT , the partition function is to a good approximation equal to 2, so that, 
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The factor in the first curly bracket represents the population of each Kramers state, and that in the 

second the resonance energy in that state.  Terms that include the nuclear moments do not 

significantly affect the populations and are omitted from the first bracket.  Similarly the second-

order electronic Zeeman interaction cannot influence the relative energy of the Kramers states and 

is therefore omitted from the temperature dependent part. 

To simplify {6} we note that ααββ 00 BµBµ ⋅−=⋅ , ββββ 00 hAhA ⋅−=⋅ .  It 

follows that products in {6} that are linear in these quantities will be absent from the summation 

over i.  On the other hand for every element jj 0or  hABµ 0 ⋅⋅ αα  there exists an element 

jj ′⋅′⋅ 0or  hABµ 0 ββ  of the same sign and magnitude, so that products linear in these 

elements do not vanish. 

{These conclusions follow from the coupling coefficients.  The angular momentum operators 

transform as T1 so it is straightforward to show that for the z components: 

( ) ( ) ;3100;3100 111111 UTETTETETT ′′′−==′′′′=−= µακβββαα and 

symmetry requires a similar relationship in the orthogonal directions.}   

Eqn {6} can be reduced to two parts, one inversely proportional to the temperature and the other 

independent of it: 
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The hyperfine shift in the resonant frequency, hδ  relative to, and also normalized with respect to, 

the diamagnetic nuclear transition energy, is found by subtracting 0Iγ Bh  from the right hand side 

of Eqn{7} and then dividing by it to give: 

{ }∑ ∑
=

−












⋅⋅−













∆

⋅⋅
=

βα ε
δ

,
00

100

2
1 )(2
i j ij

h iiiikT
ijji

hAhµ
hAhµ

 {8} 

 

S6.5.   Reconciliation with Kurland and McGarvey
3
 

Kurland and McGarvey (in their footnote {1}) define the hyperfine shift as 0BB /0∆  where 

)( 0
000 BBB −=∆  and 0

0B  is the diamagnetic resonance field.  This is also the definition used to 

obtain {8} from {7}.  0BB /0∆  is therefore negative for a downfield shift, so that the 

corresponding chemical shift hδ  attributable to the hyperfine interaction, according to 

conventional definition, is positive.  We should therefore expect opposite signs in the expressions 

for δ  in Eqn {8} and for 0BB /0∆  in Eqn {11} of K and G, which is indeed the case.  Using the 

definitions of K and M Eqns.{10,11} q = 2, 1)exp( =− Γ kTε  and 1−
Γ′Γ ∆= ijQ ε , Eqn{8} seen to be 

identical to K and M Eqns.{11} when it is realized that the double summation in their Eqn {11b} 

ensures that every term labelled by ij occurs twice. 

The terms on the right side of {8} should be dimensionless, a condition that is satisfied because 

the magnetic moment matrix elements have units of JTesla-1 and the hyperfine field operators 

have units of Tesla, and every term has a denominator in units of energy. 

The first temperature independent term in {8} gives the interaction energy of the second-order 

contribution to the electronic moment (that is induced in both Kramers components) with the 

nuclear moment, via the hyperfine field operators.  The second term represents the interaction 



energy of the nuclear moment with the hyperfine field arising from the population-induced 

average moment in the unperturbed ground-state.   

 

The Angular Average in Solution 

Up to this point it has been assumed that the molecule has a fixed orientation relative to the 

external field.  Note however that each term in Eqn {8} contains the product of the projection of 

two molecule-based vectors onto the external field direction.  As a result we can make a rotational 

average for the three Cartesian directions within the molecule.  This leads to the factor of 1/3 in 

each case.  Eqn {8} therefore can be written in the form: 
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and is identical to that given by Kurland and McGarvey in their eqn {12}, apart from its overall 

sign, as expected from our discussion in the previous section.   

 

The Contact Shift 

Substituting the Fermi contact part of Eqn {2} into {9} gives: 
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where ( )nrδ  is the Dirac delta function for the nth electron at the nucleus, and kŝ is the kth 

component of the spin angular momentum operator for that electron.  The sum is over all electrons 

that have any amplitude at the nucleus.   



 

The Spin Density Operator 

Following K and M we assume that ( ) kk

n

n Ssr ˆˆ ∝∑δ , where kŜ  is evaluated at the metal centre.  

(Since kŝ  returns the value 2
1±  , the conventional definition of the “spin density” is actually 

( ) ( ) k

n

nns srr ˆ2∑= δρ ).  To relate the two a coupling factor 
iK  is defined, which conveys the extent 

to which those molecular orbitals associated with metal-centred spin-angular momentum 

introduce spin-density at the ligand nucleus. This factor therefore reflects the extent of 

delocalization of the spin as well as the effects of spin-polarisation in those orbitals (i.e. 1s) with 

non-zero amplitude at the nucleus.  For example in evaluating the z-component of the contact shift 

for a nucleus on the z-axis, we will require matrix elements such as: 
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in 

which )0()0( 22 mTmTKm = determines the density at the nucleus that is attributable to the spin 

in the mT2  m.o.  Here we have used the orthogonality of the spatial functions and the fact that the 

spin-density operator only operates on the spin part.  The matrix elements of this operator can then 

be tabulated, as follows: 

  



Spin density matrix, zσ) .  (N.B. for comparison with the conventional definition of spin-density 

these quantities should be multiplied by 2). 
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Spin Density matrix, 
xσ) . 
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The matrix elements of the magnetic moment operators kµ
)
 are also required, and can be obtained 

by using the t2g
5 wavefunctions tabulated by Griffith (Table A24).4 For those with α  spin, these 

are: 
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where { } xydi =−−== 2222
2

1
1 ζζ . 

Bringing the above functions into matching order, for any one-electron operator Ô  we have 
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in which 2=eg  has been used.  The magnetic moment matrices are: 
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( )xxx SL ˆ2ˆ +−= βµ) ; in units of β . 
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These matrix elements agree with those of K and M on page 297.   

The first and second order terms in the bracket in Eqn.{10} are dealt with separately.  Summing 

over the Kramers index i, for the vector components of the first order term; we have:  
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β

 for the z component and 0
3
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β
−  for the x component.  Since the y component must 

have the same magnitude as the x component, the first order term is: 
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For the numerator in the second order term, the z component is ( )10
3

2
KK +−

β
, and the x 

component is 10
3

KK −−
β

.  So the sum over k is ( )10 2
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β
 and Eqn {10} becomes: 
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in which we have used the fact that ijε∆  is intrinsically negative and equal to ζ2
3 .  Multiplying 

top and bottom by 3 gives 
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which resembles Eqn {2} of Waysbort and Navon,5 except that the whole expression has the 

opposite sign, which is expected because of our use of the chemical shift cδ  rather than HH /∆ .  

Notice that for -1cm 1000=ζ  and KT 298=  the temperature dependent and temperature 

independent contributions in {12} are almost identical and have the same sign.  The absolute sign 

is determined by the coupling coefficients K0 and K1.   

We now consider the perturbation of these shifts as a result of the influence of the tetragonal field 

perturbation.  It will be helpful to use a dimensionless tetragonal field parameter, xv =ζ . 

 

  



The Tetragonal Field Perturbation. With xv =ζ , (ν  is positive when yzxzxy ,εε > ) 
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As a result of which we may write: 
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Defining 
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So that we may rewrite the magnetic moment matrices in the perturbed basis as: 
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 and applying the same methodology to the spin density matrices. 

 

(c) Perturbed Spin density, zσ) . 
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(d) Perturbed  Spin density, 
xσ) . 
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from which we can deduce that the first order term in Eqn {10} is: 
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and the second order term is: 
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Substituting {14} and {15} in {11}gives: 
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In deriving {15} we have assumed that the tetragonal field is sufficiently small so that a single 

denominator 23ζε −=∆ ij  can be used in the summation of the various excited states in {14}, 

that are in reality split by this perturbation. 

Because the unpaired spin associated with the 02T  wavefunction is localized in the xyd  orbital, 

any density communicated through a bridge on the z axis to the remote proton,, should be 

negligible, and with 00 =K  equation {15} simplifies to: 

 
















+−








+=
kT

sK
kT

K
g e

c

4

9

81

3

16

9
113

2

2
0

ζζ
βµ

δ  {16} 

Eqn {15} can also be used to predict the effect of the contact shift of the axial and equatorial 

ammine protons.  Eqn {16} is suitable for the axial case.  The density in xz (or yz) is half of that 

associated with that in a 12 ±T  function, so for the equatorial case the 0K  contribution is retained, 

but the replacement 2/11 KK →  is used in order to account for the contribution from the 12 ±T  in 

the e.g. the x direction.  It also seems reasonable to assume that, for the ammine ligands, the axial 

and equatorial overlap integrals and MO coefficients are effectively identical, in which case 

KKK == 01  so that the contact shift for the equatorial ammines is given by: 
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Note that for axial ligands positive values of s in Eqn {16} lead to a reduction of cδ  relative to 

octahedral case, and this is consistent with the concentration of spin in the xyd orbital, and a 

reduction in the density in the yzxzd ,  orbitals, from which spin can propagate across the bridge.  



For the equatorial ammines the contact shift (Eqn 16a) occurs in the opposite direction, for a given 

value of s, and is of half the magnitude. 

 

The Pseudo-Contact Shift 

Following K and M Eqn{16} for a molecule fixed in orientation, the dipolar component of the 

hyperfine field parallel to 0B  is given by:  
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D π
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 {17} 

where r is the distance between the origin of the electronic magnetic moment (taken as a point) 

and the nucleus, in the direction of the unit vector σ .  In the diagram below, γcos0 =⋅σh , the 

molecular z axis is parallel to the unit vector and makes an angle α to 0h , x  is a unit vector is 

perpendicular to 0h  in the zh0  plane, and y  is a unit vector perpendicular to this plane.  We can 

use this choice of x and y axes because 00 =⋅hyµ , and in axial symmetry yx µµ =  so that any 

angular average is invariant to a rotation about z.  

We now write the components of µ  as zzz µµ =
v

and xxx µµ =
v

 where xµ  and yµ  are used 

generically to indicate the magnitude of a matrix element of a component of the magnetic moment 

operator. 
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Now θcos=⋅σz , Ω−=⋅ cossinθσx , αcos0 =⋅hz , αsin0 −=⋅hx  and 

( ).cossinsincoscoscos Ω+==⋅ θαθαγσh0  



.   

In Eqn {8} the quantities of interest are products of the form ijji 00 hAhµ ⋅⋅  and have the 

units of energy.  We therefore define ijjiEij 00 hAhµ ⋅⋅= .  It is the sum over the various 

components of ijE  for which an angular average is required, so explicitly:  
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In which we have used Eqn {18}, and which can be simplified to: 
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This is the solid-state result, which must then be averaged over all possible orientations of the 

molecular axes relative to the external field.  This is done in two stages.  The first is an average 

over all orientations of the x and y axes, i.e. with respect to the angle Ω, and the second over all 

orientations of z with respect to the external field, i.e. with respect to α.   

We first require the integrals: ∫∫ =ΩΩ=ΩΩ
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So that {34} is reduced to: 
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The result, which is well known, is: 
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When this expression is substituted into Eqn {8} we obtain: 
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The sum over the two Kramers states yields two terms of equal magnitude so this expression is 

simply: 
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It is conventional in a Spin Hamiltonian to take S as a dummy angular momentum quantum 

number for a ground state with 2S+1 components and to use kkgβ  to indicate the proportionality 



between the magnetic moment and the eigenvalues of the angular momentum operator.  In this 

form 22
4
12222

zzzzzz gisigii ββµ ==
)

 (when S = ½) and the first term in {21} is: 
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The second part of this equation is rearranged to make clear that it is identical to Bertini {2.18}6 

(when S = ½).  It is also the same as K and M Eqn {20} (after allowing for inclusion of the factor 

πµ 40  due to our use of the SI convention).  In what follows it {21} will be evaluated using 

explicit values of the angular momentum matrix elements. 

 

The Ru(III)-centred contribution to the Pseudo-Contact Shift 

In {21} it is assumed that ζε 2
3−=∆ ij  for all excited states, i.e. the tetragonal field splitting of the 

Kramers quartet is ignored.  In general 1<<s  so terms in 2s  are ignored. 
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The Bridge centred contribution to the Pseudo-Contact Shift 

Here we follow K and M, in assuming that in a typical term ijji 00 hAhµ ⋅⋅  the matrix 

element ji 0hµ ⋅  is associated with the average value of the moment induced by the external 

field, and that its value will thus well approximated by the ruthenium centred contribution.  

However, in so far as the molecular orbitals extend over the cyanide bridge, there is a contribution 

to the element ij 0hA ⋅  associated with atomic orbitals centred on the bridge (and even on the 

donor metal), for which the angular momentum operators need to be evaluated locally.  Only 

those bridge orbitals that matching the symmetry of 12 ±T  components of the metal-centred bases 

need to be considered, and we assume (along with K and M) that a covalency coefficient f  

represents the appropriate contribution on a bridging atom.  We then find modified magnetic 

moment matrices, as follows: 
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In which terms in 2s  have been ignored.  
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Summarising all these results: 

Contact Shift (cf. Eqn{17}: 
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Pseudo-Contact Shift(Metal): 
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Pseudo-Contact Shift(Bridge): 
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Notice that when 0=s  the metal-centred pseudo contact term vanishes.  However this is not true 

of the contribution from the bridge, within which the angular momentum is intrinsically 

anisotropic.   

In the limit that 1/ <<= ζvx , we may write sx 3≈  and the above expressions become: 

Contact Shift (cf. Eqn{11}: 
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Pseudo-Contact Shift(Metal): 
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Pseudo-Contact Shift(Bridge): 
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N.B. in the main text the tetragonal field parameter variable x is replaced by t. 
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S7.  Computational Data 

Table S7.1 Geometry Optimisations 

[(η5
-C5H5)Fe(CO)2(µ-CN)Ru(NH3)5]

3+
 Cs symmetry B3LYP/SDD  

 
44       0.069594000     -2.560305000      0.000000000 
1        2.604940000     -2.040317000      0.821873000 
7        0.096911000     -0.574994000      0.000000000 
1       -2.454994000     -1.970471000      0.820791000 
7        0.075515000     -2.617242000      2.177994000 
1       -0.481826000     -5.125269000      0.822202000 
1       -0.806568000     -2.954541000     -2.583737000 
6        0.072545000      0.624150000      0.000000000 
26      -0.079267000      2.491893000      0.000000000 
6       -1.334304000      2.514215000     -1.321031000 
8       -2.126349000      2.502016000     -2.170682000 
6       -1.334304000      2.514215000      1.321031000 
8       -2.126349000      2.502016000      2.170682000 
1        2.542121000      2.314817000      1.363056000 
6        1.933402000      2.937838000     -0.722108000 
6        1.036723000      3.970898000     -1.165366000 
6        0.455863000      4.595265000      0.000000000 
6        1.036723000      3.970898000      1.165366000 
6        1.933402000      2.937838000      0.722108000 
1        2.542121000      2.314817000     -1.363056000 
1        0.844028000      4.249436000     -2.194298000 
1       -0.233816000      5.429899000      0.000000000 
1        0.844028000      4.249436000      2.194298000 
7       -2.112352000     -2.484405000      0.000000000 
1       -2.454994000     -1.970471000     -0.820791000 
1       -2.580308000     -3.399391000      0.000000000 
7        0.011323000     -4.752485000      0.000000000 
1       -0.481826000     -5.125269000     -0.822202000 
1        0.941821000     -5.189838000      0.000000000 
7        2.253195000     -2.545751000      0.000000000 
1        2.704041000     -3.469178000      0.000000000 
1        2.604940000     -2.040317000     -0.821873000 
7        0.075515000     -2.617242000     -2.177994000 
1        0.221022000     -1.663447000     -2.531098000 
1        0.825083000     -3.203522000     -2.566739000 
1        0.825083000     -3.203522000      2.566739000 
1        0.221022000     -1.663447000      2.531098000 
1       -0.806568000     -2.954541000      2.583737000 
 
 
[(η5

-C5H5)Fe(CO)2(µ-CN)Ru(NH3)5]
3+
 No symmetry B3LYP/SDD  

 
44       0.286006000      0.018729000     -0.051774000 
1        0.915762000      2.105422000     -1.620579000 
7        2.277139000      0.182671000     -0.031827000 
1        1.442690000     -2.259460000      0.742881000 
7        0.371745000     -0.750094000     -2.087418000 
1       -2.287838000     -0.250725000     -1.012362000 
1       -0.358431000      0.217395000      2.624956000 
6        3.478301000      0.224695000     -0.039049000 
26       5.336858000      0.169832000     -0.097200000 
6        5.415834000     -1.447252000      0.700541000 
8        5.447443000     -2.483345000      1.232005000 
6        5.367112000     -0.429730000     -1.799276000 
8        5.366612000     -0.800424000     -2.903610000 
1        4.704125000      2.845691000      1.002347000 
6        6.177252000      1.252087000      1.588602000 
6        7.257541000      0.644461000      0.833775000 
6        7.234130000      1.183742000     -0.490998000 
6        6.139128000      2.132470000     -0.573625000 



6        5.520104000      2.193142000      0.722611000 
1        5.973575000      1.092590000      2.638916000 
1        7.974319000     -0.072925000      1.213391000 
1        7.929855000      0.943789000     -1.285284000 
1        5.901043000      2.748737000     -1.430153000 
7        0.452394000     -1.985051000      0.781888000 
1        0.166583000     -2.053316000      1.766872000 
1       -0.077550000     -2.703807000      0.271417000 
7       -1.895799000     -0.143932000     -0.067230000 
1       -2.242537000     -0.940213000      0.484185000 
1       -2.337200000      0.694550000      0.335323000 
7        0.173577000      2.014590000     -0.915616000 
1       -0.718507000      2.237091000     -1.375884000 
1        0.344536000      2.754287000     -0.222862000 
7        0.219340000      0.779285000      1.987020000 
1        1.180259000      0.768122000      2.352381000 
1       -0.119417000      1.747005000      2.066210000 
1       -0.051514000     -0.122861000     -2.783247000 
1        1.360897000     -0.860784000     -2.345938000 
1       -0.072973000     -1.669170000     -2.211388000 
 
[(η5

-C5H5)Fe(CO)2(µ-CN)Ru(NH3)5]
3+
.5H2O Cs symmetry B3LYP/TZP  

 
44      -0.337746000     -1.708646000      0.000000000 
1        2.176699000     -1.658896000      0.842080000 
7       -0.018366000      0.303193000      0.000000000 
1       -2.722536000     -0.710286000      0.822124000 
7       -0.291872000     -1.668811000      2.166935000 
1       -1.518869000     -3.965975000      0.809880000 
1       -0.866917000     -0.899687000     -2.528585000 
6        0.013247000      1.501521000      0.000000000 
26      -0.105622000      3.388253000      0.000000000 
6       -1.314722000      3.384441000     -1.323543000 
8       -2.094542000      3.363514000     -2.194592000 
6       -1.314722000      3.384441000      1.323543000 
8       -2.094542000      3.363514000      2.194592000 
1        2.491755000      3.107620000      1.361276000 
6        1.908946000      3.757734000     -0.724454000 
6        1.063799000      4.827442000     -1.165036000 
6        0.503258000      5.470233000      0.000000000 
6        1.063799000      4.827442000      1.165036000 
6        1.908946000      3.757734000      0.724454000 
1        2.491755000      3.107620000     -1.361276000 
1        0.876261000      5.111461000     -2.192687000 
1       -0.152894000      6.330339000      0.000000000 
1        0.876261000      5.111461000      2.192687000 
7       -2.469981000     -1.270137000      0.000000000 
1       -2.722536000     -0.710286000     -0.822124000 
1       -3.077895000     -2.125842000      0.000000000 
7       -0.918718000     -3.767811000      0.000000000 
1       -1.518869000     -3.965975000     -0.809880000 
1       -0.194054000     -4.527937000      0.000000000 
7        1.754159000     -2.082692000      0.000000000 
1        2.057868000     -3.085208000      0.000000000 
1        2.176699000     -1.658896000     -0.842080000 
7       -0.291872000     -1.668811000     -2.166935000 
1        0.687089000     -1.495264000     -2.475049000 
1       -0.618433000     -2.531437000     -2.616232000 
1       -0.618433000     -2.531437000      2.616232000 
1        0.687089000     -1.495264000      2.475049000 
1       -0.866917000     -0.899687000      2.528585000 
8        2.492268000     -1.285004000      2.832861000 
8        2.492268000     -1.285004000     -2.832861000 
1        2.956197000     -1.972008000     -3.355039000 
1        2.828713000     -0.405453000     -3.101047000 
1        2.828713000     -0.405453000      3.101047000 



1        2.956197000     -1.972008000      3.355039000 
8       -4.100951000     -3.572301000      0.000000000 
8        3.143330000     -4.526008000      0.000000000 
8        0.236569000     -6.282542000      0.000000000 
1       -4.609876000     -3.833690000      0.795238000 
1       -4.609876000     -3.833690000     -0.795238000 
1        3.520622000     -4.951842000     -0.794613000 
1        3.520622000     -4.951842000      0.794613000 
1        0.319317000     -6.842194000     -0.797673000 
1        0.319317000     -6.842194000      0.797673000 
 



Table 7.2 Experimental and calculated structural parameters (Å and °) for 
[(η5

-C5H5)Fe(CO)2(µ-CN)Ru(NH3)5]
3+
  

 

 Exp. Cs B3LYP/SDD No sym B3LYP/SDD 

Ru-Neq (av 2-5) 2.108(2) 2.18 2.18 

Ru-Nax (6) 2.100(2) 2.19 2.19 

Ru-N(1) 2.019(2) 1.99 1.99 

Fe-C(1) 1.889(3) 1.87 1.86 

Fe-C(2) 1.794(3) 1.82 1.81 

Fe-C(3) 1.791(4) 1.82 1.81 

Fe-Ccp(av 4-8)  2.18 2.18 

N(1)-C(1) 1.142(4) 1.20 1.20 

C(2)-O(1) 1.129(4) 1.16 1.17 

C(3)-O(2) 1.135(4) 1.16 1.17 

Fe-C(1)-N(1) 177.5 177 176 

Ru-N(1)-C(1) 179.6 178 177 

C(1)-Fe-C(2) 92.55(14) 94 93 

C(1)-Fe-C(3) 93.31(15) 94 93 

C(2)-Fe-C(3) 93.31(15) 93 97 

 

Table. 7.3  Calculated spin densities on metal atoms in [(η5
-C5H5)Fe(CO)2(µ-CN)Ru(NH3)5]

3+
  

 

Method Solvent Ru Fe 

B3LYP/SDD Cs None 0.62 0.48 

B3LYP/SDD Nosym None 0.88 0.16 

BP/TZ2P  Cs None 0.54 0.45 

SAOP/TZ2P  Cs None 0.59 0.48 

LB94/TZ2P  Cs None 0.49 0.41 

B3LYP/TZ2P  Cs None 0.78 0.27 

B1PW91 None 0.61 0.47 

BP/TZ2P  Cs Water 0.79 0.19 

BP/TZ2P  Nosym Water 0.82 0.16 

BP/TZ2P Cs DMF 0.79 0.2 

BP/TZ2P Cs DMSO 0.79 0.2 

BP/TZ2P Cs Nitromethane 0.78 0.2 

B3LYP/TZP Cs +5H2O Water  0.93 0.05 

 



Table 7.4 

 Calculation File Number  #19 #20 #21 #22 #24 #26 #23 #25 

 
Conditions/S
ymmetry   

Vac Cs 
SO 

Vac No 
sym SO 

Vac Cs 
ZORA 

Vac No 
sym ZORA 

Water 
Cs SO 

Water No 
Sym SO 

Water Cs 
ZORA 

Water No 
Sym ZORA 

 
g-tensor 
elements  

G
a 2.637 2.835     2.949 3.259     

   
G
b 2.211 2.253    2.500 2.644    

   
G
c 1.903 1.857    1.819 1.819    

                     

    
a(iso)/
MHz 

a(iso)/M
Hz 

Spin 
Density 

Spin 
Density 

a(iso)/
MHz 

a(iso)/MH
z 

Spin 
Density Spin Density 

Geometrical 
Numbering  

Calculation 
Numbering                   

Ru  1 Ru    0.5359 0.5605    0.7886 0.8207 

N1 CN Bridge 3 N    0.0727 0.0723    0.0221 0.0193 

C1 CN Bridge 8 C    -0.0302 -0.0289    0.0313 0.0317 

Fe  9 Fe    0.4505 0.4212    0.1936 0.1649 

C4 
Cp ring In-
plane 17 C  0.826 2.27 -0.0077 -0.0130 0.284 -0.027 -0.0033 -0.0052 

H4 Far from Ru 22 H  0.528 0.737 0.0002 0.0007 0.311 0.403 0.0001 0.0002 

C5 
Cp ring - off 
plane 16 C  0.097 -0.305 -0.0033 -0.0130 0.101 -0.062 -0.0009 -0.0053 

H5 Intermediate 21 H  0.049 0.742 0.0003 0.0009 0.030 0.413 0.0001 0.0000 

C6 Near Ru 15 C  0.475 -0.305 0.0081 0.0243 0.402 1.005 0.0035 0.0111 

H6 Near Ru 20 H  -0.232 -0.673 -0.0006 -0.0012 -0.187 -0.273 -0.0003 -0.0005 

C7 Near Ru 19 C  0.097 2.29 0.0081 -0.0172 0.396 -0.587 0.0035 -0.0070 

H7 Near Ru 14 H  -0.232 0.872 -0.0006 0.0014 -0.184 0.380 -0.0003 0.0007 

C8 Intermediate 18 C  0.826 -1.56 -0.0033 0.0244 0.102 1.004 -0.0009 0.0104 

H8 Intermediate 23 H  0.049 -0.676 0.0003 -0.0010 0.029 -0.288 0.0001 -0.0005 

N2 
cis parallel to 
Cs 30 N  -1.103 -1.394 -0.0048 -0.0046 -1.6848 -2.313 -0.0081 -0.0078 

N3 

cis 
perpendicula
r to Cs 33 N  -1.086 -1.393 -0.0054 -0.0051 -2.2276 -2.307 -0.0098 -0.0088 

N4 
cis parallel to 
Cs 24 N  -1.120 -1.543 -0.0050 -0.0074 -1.6888 -2.416 -0.0082 -0.0117 

N5 

cis 
perpendicula
r to Cs 5 N  -1.086 -1.403 -0.0054 -0.0068 -2.2279 -2.311 -0.0098 -0.0113 

N6 Trans 27 N  -2.511 -2.747 -0.0087 -0.0101 -3.3475 -3.657 -0.0131 -0.0155 

                      

   
Average 
a(iso)/MHz    Average a(iso)/MHz   

    Protons    Protons    

    0.032 0.200   0.000 0.127   

   
Average (Sym+No 
Sym)/MHz   

Average (Sym+No 
Sym)/MHz   

    0.116    0.063    

    C-13    C-13    

    0.464 0.478   0.257 0.267   

    
Average (Sym+No 
Sym)/MHz   

Average (Sym+No 
Sym)/MHz   

    0.471    0.262    

    
Ratioi 
C-13/H 4.05   

Ratioi 
C-13/H 4.13   

 


