Inelastic X-Ray Scattering (IXS) of a Transition Metal Complex (FeCl4)⁻ – A Vibrational Spectroscopy for All Normal Modes

Hongxin Wang&,‡ Weibing Dong,&,† Marilyn M. Olmstead,& James C. Fettinger,& Jay Nix,‡ Hiroshi Uchiyama,¥ Satoshi Tsutsui,¥ Alfred Q. R. Baron,¥, § and Stephen P. Cramer *,&,‡. &

Department of Chemistry, University of California, Davis, CA 95616

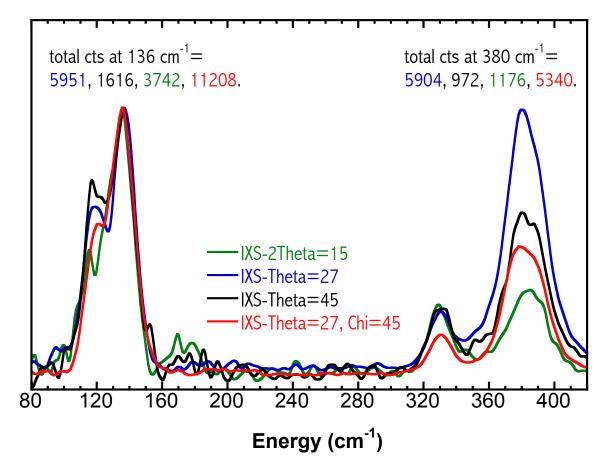
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802

¥

‡

¶


Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo 679-5198, JAPAN §

Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, JAPAN

Supporting Information

Preparation of (NEt₄)(FeCl₄). A stoichiometric quantity of NEt₄Cl in 5mL of ethanol was added to a solution containing 5 mmol (0.81g) of FeCl₃ in 5mL of absolute ethanol. Upon mixing and stirring for 1 hour, an amorphous precipitate of (NEt₄)(FeCl₄) appeared. In this experiment, 1.25 g of (NEt₄)(FeCl₄) in the form of yellow powder was isolated after filtration of the amorphous precipitate. The powders were re-crystallized from a tetrahydrofuran (THF) solution at ambient temperature. After 5 days of re-crystallization, greenish-yellow colored crystals of various sizes were obtained. For this particular experiment, a hexagonal pyramid crystal of ~ 4 mm x 4 mm (base dimensions) x 5 mm height was selected for IXS measurement.

IXS Measurements. IXS spectra were recorded on a (NEt₄)(FeCl₄) single crystal using standard procedures at the SPring-8 high-resolution IXS beamline, BL35-XU¹². The photon flux on the sample was ~10¹⁰ photons/sec in a 0.8 meV bandwidth at 21.75 keV with a spot size of ~0.1 mm diameter (FWHM) from a backscattering (89.8°) Si(11 11 11) monochromator. The scattered radiation was collected by a 2-dimensional array of 12 analyzer crystals. Each analyzer has an independent detector, allowing 12 spectra to be collected simultaneously, and the over-all (analyzer plus monchromator) energy resolution was 1.5 to 1.8 meV (different analyzers behaved differently). The energy scale was determined as discussed in [13] (?) and is expected to be accurate to better then 0.5%. The *Q* resolution was 0.48 nm⁻¹, where $Q = 4\pi /\lambda \sin\theta$, 2 θ is the scattering angle and λ is the wavelength of x-rays. During the IXS measurements, the sample crystal was maintained at ~27K using a closed cycle He cryostat. The inelastically scattered radiation from each of the 12 analyzers was recorded with a separate CdZnTe detector. For (NEt₄)(FeCl₄), the typical total signal count rate on the 380 cm⁻¹ peak was ~0.2-0.9 cps.

The actual counts in each spectrum are shown below.

IXS Data Analysis and Normal Mode Calculations. The IXS signal was extracted from the raw averaged spectra by subtracting a combination of Lorentzian and Gaussian background lineshape functions. No smoothing was used for any of the spectra. Normal mode calculations were done using a modification of the program Vibratz ³ and a Urey-Bradley force field ⁴. The parameters for this force field determine the potential energy V as previously described ⁵. The Vibratz program was used to calculate the relevant phonon polarization eigenvectors (complex phonon polarization) including the Fe and Cl motion in a given normal mode from the normal mode eigenvectors. The calculations used the Evans *et al., Acta Cryst.* 46, 1818 (1990) CSD structure file TABPIV, with a slightly larger force constant for the shorter Fe-Cl bond. To simulate the IXS, Gaussian components were generated at the calculated frequencies, with an amplitude determined by the relative dynamic structure for a particular normal mode and scattering geometry

and a FWHM determined by the 14 cm⁻¹ instrumental resolution. We note that there are no adjustable scale factors in these simulations.

X-Ray Crystallography. The tetrahedral [FeCl₄]⁻ ion was chosen for its extremely simple set of well-studied normal modes , as well as the straightforward arrangement of the (FeCl₄)⁻ ions in the crystal with (NEt₄)⁺ counterions . An additional complication discovered *ex post facto* is that, with flash cooling, NEt₄FeCl₄ undergoes a first order phase transition at ~229 K that changes the space group from $P6_{3}mc$ (Phase I) to P31c (Phase III). In Phase I there is one Fe in the asymmetric unit and the Fe resides on a site with crystallographic 3m symmetry. In Phase III there are five Fe's in the asymmetric unit, two of which have no crystallographic symmetry and three of which have 3-fold symmetry. As a consequence of the low temperature phase, the structure is not as simple, although the structure bears the same relationship with respect to the *c* axis as in the room temperature phase. The most noticable change is that two of the (FeCl₄)⁻ units are tipped by 6.7° and 8.0°, respectively, with respect to *c*. With slow cooling, an intermediate phase is observed (Phase II) both Phase II and Phase III show less disorder in the (NEt₄)⁺ group than in Phase I.

	Phase I ^{ref[1]}	Phase II ^{slow cooling}	Phase III ^{flash cooling}
Crystal system	hexagonal	orthorhombic	trigonal
Space group	<i>P6₃mc</i> (No. 186)	<i>Pca2</i> ₁ (No. 29)	<i>P</i> 31 <i>c</i> (No. 159)
a, Å	8.198(1)	13.9690(3)	24.3337(9)
b, Å		8.1116(3)	
<i>c</i> , Å	13.183(3)	12.7889(5)	12.8909(5)
$V, Å^3$	767.3(2)	1449.12(10)	6610.4(6)
Ζ	2	4	18
Т, К	295(2)	90(2)	90(2)
		3 component twin	inversion twin
$R_1 \left[I > 2\sigma(I) \right]$	0.053	0.015	0.031

Table S1. Crystal data for three phases of (NEt₄)(FeCl₄)

Fe cryst symm, tilt to <i>c</i> axis, °			
Fe1	$3m \cdot (C_{3v}), 0$	1 (<i>C1</i>), 4.0	1 (<i>C1</i>), 6.7
Fe2			1 (<i>C1</i>), 8.0
Fe3			3 (<i>C3</i>), 0
Fe4			3 (<i>C3</i>), 0
Fe5			3 (<i>C3</i>), 0

[1] Warnke, Z.; Styczeń, E.; Wyrzykowski, D.; Sikorski, A.; Kłak, J.; Mroziński, J. *Struct. Chem.* 2010, 21, 285-289.

1. Baron, A. Q. R., Phonons in Crystals using Inelastic X-Ray Scattering. *Journal of the Spectroscopical Society of Japan* **2009**, 58, (5), 205-214 (Japanese) arXiv 0910.5764 (English).

2. Baron, A. Q. R.; Tanaka, Y.; Goto, S.; Takeshita, K.; Matsushita, T.; Ishikawa, T., An X-ray scattering beamline for studying dynamics. *Journal of Physics and Chemistry of Solids* **2000**, 61, 461-465.

3. Dowty, E., Vibrational interactions of tetrahedra in silicate glasses and crystals: 2. Calculations on melilites, pyroxenes, silica polymorphs and feldspars. *Physics and Chemistry of Minerals* **1987**, 14, 122-138.

4. Simanouti, T., The Normal Vibrations of Polyatomic Molecules as Treated by Urey-Bradley Field. *Journal of Chemical Physics* **1949**, 17, (3), 245-248.

5. Smith, M. C.; Xiao, Y.; Wang, H.; George, S. J.; Coucovanis, D.; Koutmos, M.; Sturhahn, W.; Alp, E. E.; Zhao, J.; Cramer, S. P., Normal Mode Analysis of [FeCl₄]⁻ and [Fe₂S₂Cl₄]²-*via* Vibrational Mössbauer, Resonance Raman, and FT-IR Spectroscopy. *Inorganic Chemistry* **2005**, 44, (16), 5562-5570.