Supporting Information for: # Kinetic Mechanism of Translocation and dNTP Binding in Individual DNA Polymerase Complexes Kate R. Lieberman, Joseph M. Dahl, Ai H. Mai, Ashley Cox, Mark Akeson and Hongyun Wang #### Supporting Information Text ## Derivation of $1/\langle \Delta T_{post} \rangle$ at high [dGTP] As shown in Figure 3B, the transition rates between the two post-translocation states are $k_{\rm on}[{\rm dGTP}]$ and $k_{\rm off}$. The time scale of relaxing to the equilibrium between two states is given by the reciporocal of the sum of the transition rates. At high dGTP conentration, $k_{\rm on}[{\rm dGTP}] + k_{\rm off}$ is large and as a result, the two post-translocation states are effectively in equilibrium. Thus, we treat the two post-translocation states as one composite state with the probability of each substate given by $$p_{\text{E-DNA}} = k_{\text{off}} / (k_{\text{on}}[\text{dGTP}] + k_{\text{off}})$$ $p_{\text{E-DNA-dNTP}} = k_{\text{on}}[\text{dGTP}] / (k_{\text{on}}[\text{dGTP}] + k_{\text{off}})$ The overall transition rate from the composite post-translocation state to the pre-translocation state is $$r_{\text{post-pre}} = r_4 \, p_{\text{E-DNA-dNTP}} + r_2 \, p_{\text{E-DNA}}$$ $= (r_4 \, k_{\text{on}} [\text{dGTP}] + r_2 \, k_{\text{off}}) / (k_{\text{on}} [\text{dGTP}] + k_{\text{off}})$ $= r_4 + (r_2 - r_4) \, k_{\text{off}} / (k_{\text{on}} [\text{dGTP}] + k_{\text{off}})$ $= r_4 + (r_2 - r_4) \, K_{\text{d}} / [\text{dGTP}] - (r_2 - r_4) \, K_{\text{d}}^2 / [\text{dGTP}]^2 + O(1/[\text{dGTP}]^3)$ $\approx r_4 + \alpha / [\text{dGTP}]$ where $$K_d = k_{\text{off}} / k_{\text{on}}$$ and $\alpha = (r_2 - r_4) K_d$. In the measured time traces of ionic current amplitude, the composite post-translocation state is detected as the lower amplitude state since the two post-translocation states yield the same amplitude level. The mean dwell time of the composite post-translocation state satisfies $$1/\langle \Delta T_{\text{post}} \rangle = r_{\text{post} \rightarrow \text{pre}} \approx r_4 + \alpha/[\text{dGTP}]$$ ### The three-state model and the method for estimating transition rates from measured time traces of amplitude As shown in Figure 3, the 3 states are pre-translocation state (upper amplitude) State 2: post-translocation state (lower amplitude) State 2B: post-translocation state with dGTP bound (lower amplitude) Based on the analysis shown in Figure 4, we eliminated the direct transitions between the pretranslocation state and the dGTP bound post-translocation state (r_3 [dGTP] and r_4 in Figure 3B). Thus, the 3-state model becomes the one shown in Figure 3C where the dGTP can only bind when the complex is in the post-translocation state. The 3 states are connected by 4 transition rates transition rate from state 1 to state 2 r_1 : transition rate from state 2 to state 1 *r*₂: first order rate constant of dGTP binding k_{on} : rate of dGTP dissociating $k_{\rm off}$: At equilibrium, the probabilities of 3 states satisfy $$p_1 + p_2 + p_{2B} = 1$$ $$\frac{p_{2B}}{p_2} = \frac{\left[dGTP\right]}{K_d}\,, \qquad K_d = \frac{k_{off}}{k_{on}}$$ $$K_d = \frac{k_{off}}{k_{off}}$$ $$\frac{p_1}{p_2} = \frac{r_2}{r_1}$$ Solving these equations, we obtain $$p_{1} = \frac{\frac{r_{2}}{r_{1}}}{1 + \frac{dGTP}{K_{d}} + \frac{r_{2}}{r_{1}}}$$ $$p_2 = \frac{1}{1 + \left[\frac{dGTP}{K_d}\right] + \frac{r_2}{r_1}}$$ $$p_{2B} = \frac{\left[dGTP\right]}{1 + \left[dGTP\right]} + \frac{r_2}{r_1}$$ Below we derive a method for estimating the 4 transition rates from data at individual values of voltage and [dGTP]. The two post-translocation states (states 2 and 2B) yield the same current amplitude. The measured time traces of amplitude show only two amplitude levels: I_1 : the true amplitude of the pre-translocation state (without noise) I_2 : the true amplitude of the two post-translocation states (without noise) Note that I_1 is the upper amplitude and I_2 is the lower amplitude: $I_2 < I_1$. Let S(t): state (1, 2, or 2B) of the complex atop of the pore at time t I(t): the *true* amplitude (without noise) at time t, corresponding to state S(t). X(t): measured time trace of amplitude = I(t) + noise We have $$I(t) = \begin{cases} I_1, & S(t) = 1 \\ I_2, & S(t) = 2 \text{ or } 2B \end{cases}$$ $$X(t) = I(t) + N(t)$$ Note that S(t), I(t) and X(t) are all random processes. We assume that the noise N(t) has zero mean and that $N(t_1)$ is independent of $N(t_2)$. We map $[I_2, I_1]$ to [-1, 1] and consider the scaled amplitude $$Y(t) = \frac{2}{(I_1 - I_2)} \left(X(t) - \frac{I_1 + I_2}{2} \right)$$ The mean of Y(t) has the theoretical expression $$E[Y] = p_1 - (p_2 + p_{2B}) = \frac{\frac{r_2}{r_1} - \left(1 + \frac{[dGTP]}{K_d}\right)}{1 + \frac{[dGTP]}{K_d} + \frac{r_2}{r_1}}$$ (E01) This is the first equation for the unknown parameters. To derive more equations, we consider the auto-correlation $$R(t) = E[Y(t_0)Y(t_0 + t)].$$ Form the 3-state model shown in Figure 3C, we can show that the autocorrelation function has two properties: 1. $$R(t) - (E[Y])^2 = (1 - (E[Y])^2) \left[c_1 \exp(-\lambda_1 t) + (1 - c_1) \exp(-\lambda_2 t)\right]$$ where λ_1 and λ_2 are the eigenvalues of $$\begin{pmatrix} \left(r_1 + r_2\right) & k_{on} \left[dGTP\right] \\ r_2 & \left(k_{on} \left[dGTP\right] + k_{off}\right) \end{pmatrix}$$ This property leads to two equations for the unknown parameters $$\lambda_{1} + \lambda_{2} = (r_{1} + r_{2}) + \left(k_{on} \left[dGTP\right] + k_{off}\right)$$ $$\lambda_{1} \cdot \lambda_{2} = (r_{1} + r_{2})\left(k_{on} \left[dGTP\right] + k_{off}\right) - r_{2}k_{on} \left[dGTP\right]$$ (E02) $$= r_1 k_{off} \left(\frac{r_2}{r_1} + \frac{\left[dGTP \right]}{K_d} + 1 \right) \tag{E03}$$ 2. $$R'(0) = -2(r_1p_1 + r_2p_2)$$ which gives us another equation for the unknown parameters: $$\left(1 - \left(E[Y]\right)^{2}\right)\left[c_{1}\lambda_{1} + \left(1 - c_{1}\right)\lambda_{2}\right] = 2r_{1}\left(p_{1} + \frac{r_{2}}{r_{1}}p_{2}\right)$$ $$= \frac{4r_{2}}{1 + \frac{dGTP}{K_{d}} + \frac{r_{2}}{r_{1}}}$$ (E04) Thus, we obtain 4 equations for the 4 unknown parameters $(r_1, r_2, k_{on}, k_{off})$: $$\frac{\frac{r_2}{r_1} - \left(1 + \frac{dGTP}{K_d}\right)}{1 + \frac{dGTP}{K_d} + \frac{r_2}{r_1}} = E[Y]$$ $$\frac{4r_2}{1 + \frac{dGTP}{K_d} + \frac{r_2}{r_1}} = \left(1 - \left(E[Y]\right)^2\right)\left[c_1\lambda_1 + \left(1 - c_1\right)\lambda_2\right]$$ $$r_1 k_{off} \left(\frac{r_2}{r_1} + \frac{dGTP}{K_d}\right) + 1 = \lambda_1 \cdot \lambda_2$$ $$(r_1 + r_2) + (k_{on}[dGTP] + k_{off}) = \lambda_1 + \lambda_2$$ In the above 4 equations, all quantities on the right hand side are calculated from data. - E[Y] is calculated directly from a time trace of amplitude $\{Y(t)\}$. - R(t) is calculated directly from a time trace of amplitude $\{Y(t)\}$. - c_1 , λ_1 and λ_2 are calculated by fitting measured values of $\{R(t)\}$ to the theoretical expression $$R(t) - \left(E[Y]\right)^2 = \left(1 - \left(E[Y]\right)^2\right)\left[c_1 \exp\left(-\lambda_1 t\right) + \left(1 - c_1\right)\exp\left(-\lambda_2 t\right)\right].$$ The 4 unknown parameters are then solved from the 4 equations above. In this way, we can calculate a set of 4 parameters from each measured time trace of amplitude. At each individual voltage and [dGTP], we have $20 \sim 60$ measured time traces. From multiple estimated sets of parameter values, we use the mean as a more accurate estimate and use the standard error as the error bar. Table S1. Translocation and dNTP binding rates. | [dGTP] | Voltage | r_1 (s ⁻¹) ^a | $r_2 (s^{-1})^b$ | $k_{\rm on}({\rm s}^{-1}\mu{ m M}^{-1})^{{\rm c}}$ | $k_{\rm off}(s^{-1})^{\rm d}$ | |--------------------|---------|---------------------------------------|---------------------|--|-------------------------------| | | | | | | | | $0 \mu M$ | 140 mV | 672.94 ± 33.68 | 1337.9 ± 24.34 | | | | | 150 mV | 512.32 ± 9.81 | 1428.8 ± 19.31 | | | | | 160 mV | 446.8 ± 5.63 | 1592.8 ± 51.44 | | | | | 170 mV | 343.31 ± 6.81 | 1793.5 ± 15.94 | | | | | 180 mV | 235.71 ± 4.4 | 1932.9 ± 25.06 | | | | | 190 mV | 196.16 ± 14.13 | 1999.2 ± 27.28 | | | | | 200 mV | 145.09 ± 10.65 | 2308.2 ± 101.39 | | | | | 210 mV | 107.9 ± 3.73 | 2368.7 ± 63.09 | | | | | | | | | | | $5 \mu M$ | 140 mV | 678.9 ± 18.1 | 1327 ± 112 | 12.99 ± 1.73 | 26.22 ± 2.94 | | | 150 mV | 538.1 ± 25.9 | 1534 ± 101 | 14.73 ± 1.83 | 27.84 ± 1.80 | | | 160 mV | 412.0 ± 21.8 | 1689 ± 112 | 15.31 ± 0.98 | 30.29 ± 2.03 | | | 170 mV | 324.5 ± 10.1 | 1765 ± 81 | 13.04 ± 0.96 | 30.13 ± 1.90 | | | 180 mV | 243.0 ± 12.8 | 2039 ± 128 | 15.75 ± 1.36 | 34.61 ± 2.41 | | | 190 mV | 181.5 ± 14.5 | 2118 ± 297 | 13.32 ± 1.15 | 30.01 ± 3.10 | | | 200 mV | 137.6 ± 12.3 | 2205 ± 181 | 13.12 ± 0.95 | 30.27 ± 1.99 | | | 210 mV | 109.7 ± 12.3 | 2406 ± 306 | 10.74 ± 1.63 | 27.42 ± 4.81 | | | | | | | | | $10 \mu\mathrm{M}$ | 140 mV | 748.5 ± 77.1 | 1294 ± 264 | 15.87 ± 4.30 | 26.94 ± 4.71 | | | 150 mV | 575.2 ± 54.0 | 1477 ± 232 | 18.96 ± 2.78 | 28.20 ± 2.76 | | | 160 mV | 420.7 ± 27.7 | 1653 ± 181 | 19.19 ± 1.43 | 30.23 ± 1.54 | | | 170 mV | 342.2 ± 22.9 | 1801 ± 166 | 19.15 ± 1.46 | 30.09 ± 0.77 | | | 180 mV | 257.2 ± 10.4 | 1920 ± 75 | 20.94 ± 0.95 | 30.55 ± 0.65 | | | 190 mV | 202.0 ± 8.7 | 2100 ± 124 | 19.61 ± 1.17 | 32.19 ± 1.22 | | | 200 mV | 148.0 ± 12.5 | 2271 ± 318 | 18.74 ± 1.12 | 29.42 ± 1.22 | | | 210 mV | 100.4 ± 7.3 | 2194 ± 252 | 21.91 ± 1.19 | 35.52 ± 1.94 | | | | | | | | | [dGTP] | Voltage | $r_1 (s^{-1})^a$ | $r_2 (s^{-1})^b$ | $k_{\rm on}({\rm s}^{-1}\mu{\rm M}^{-1})^{\rm c}$ | $k_{\rm off}(s^{-1})^{\rm d}$ | |-------------|---------|------------------|------------------|---|-------------------------------| | | | | | | | | $20 \mu M$ | 140 mV | 870.3 ± 120 | 1137 ± 487 | 10.20 ± 5.09 | 23.88 ± 4.26 | | | 150 mV | 680.0 ± 102 | 1303 ± 464 | 12.59 ± 3.95 | 24.07 ± 3.57 | | | 160 mV | 474.1 ± 61.9 | 1556 ± 334 | 14.57 ± 2.45 | 26.40 ± 1.79 | | | 170 mV | 366.8 ± 46.4 | 1703 ± 359 | 17.00 ± 1.63 | 29.88 ± 1.88 | | | 180 mV | 236.0 ± 15 | 1931 ± 173 | 18.81 ± 1.58 | 31.69 ± 0.81 | | | 190 mV | 200.2 ± 15.9 | 2098 ± 195 | 18.21 ± 0.62 | 29.78 ± 1.18 | | | 200 mV | 144.5 ± 12.2 | 2112 ± 271 | 17.25 ± 1.07 | 30.29 ± 1.09 | | | 210 mV | 102.7 ± 8.6 | 2349 ± 316 | 17.49 ± 1.15 | 32.15 ± 1.62 | | | | | | | | | $40 \mu M$ | 180 mV | 227.2 ± 21.8 | 1765 ± 318 | 18.01 ± 1.43 | 31.35 ± 1.02 | | | 190 mV | 171.5 ± 16.3 | 1940 ± 312 | 17.42 ± 1.17 | 31.67 ± 1.39 | | | 200 mV | 132.0 ± 9.0 | 2180 ± 310 | 19.24 ± 1.09 | 32.35 ± 1.55 | | | 210 mV | 87.11 ± 11.5 | 1985 ± 365 | 19.79 ± 1.54 | 35.30 ± 2.96 | ^a The rate of transition from the pre-translocation to the post-translocation state. ^b The rate of transition from the post-translocation to the pre-translocation state. All values are reported with the standard error. ^c The dGTP association rate. ^d The dGTP dissociation rate.