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Supporting Information Text
Derivation of 1/{ATpqs¢) at high [dGTP]

As shown in Figure 3B, the transition rates between the two post-translocation states are
kon[dGTP] and ko¢r. The time scale of relaxing to the equilibrium between two states is given by
the reciporocal of the sum of the transition rates. At high dGTP conentration, ko,[dGTP] + ko is
large and as a result, the two post-translocation states are effectively in equilibrium. Thus, we

treat the two post-translocation states as one composite state with the probability of each sub-
state given by

PE-DNA = kot / (kon[dGTP] + kogp)
PE-DNA-dNTP = Kon[dGTP] / (kon[dGTP] + kor)

The overall transition rate from the composite post-translocation state to the pre-translocation
state is

post-pre = '4 PE-DNA-ANTP T 72 PE-DNA
= (r4 kon[dGTP] + 73 kofr) / (kon[dGTP] + ko)
=14+ (r2 = ra) kott / (kon[dGTP] + kof)
— 14 + (s — r4) Ky/[dGTP] = (15 — r4) K4*/[dGTP]* + O(1/[dGTPT)
~ r4 + a/[dGTP]
where Kq = kofr / kon and o = (1 — r4) K.

In the measured time traces of ionic current amplitude, the composite post-translocation state is
detected as the lower amplitude state since the two post-translocation states yield the same
amplitude level.

The mean dwell time of the composite post-translocation state satisfies
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1/<ATpost> = Fpost-pre = 4 T /[dGTP]

The three-state model and the method for estimating transition rates from measured time
traces of amplitude

As shown in Figure 3, the 3 states are
State 1:  pre-translocation state (upper amplitude)
State 2:  post-translocation state (lower amplitude)
State 2B: post-translocation state with dGTP bound (lower amplitude)

Based on the analysis shown in Figure 4, we eliminated the direct transitions between the pre-

translocation state and the dGTP bound post-translocation state (r;[dGTP] and r, in Figure 3B).
Thus, the 3-state model becomes the one shown in Figure 3C where the dGTP can only bind

when the complex is in the post-translocation state. The 3 states are connected by 4 transition
rates

ry transition rate from state 1 to state 2
Ty transition rate from state 2 to state 1
k,,:  first order rate constant of dGTP binding
kog:  rate of dGTP dissociating
At equilibrium, the probabilities of 3 states satisfy
P+ Dyt Py =1

@=M K =kLﬁ
pZ Kd ’ ‘ kon
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Solving these equations, we obtain
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[dGTP]

Doy = d
2B TP
1+[dG ]+r2
K, n

Below we derive a method for estimating the 4 transition rates from data at individual values of
voltage and [dGTP].

The two post-translocation states (states 2 and 2B) yield the same current amplitude. The
measured time traces of amplitude show only two amplitude levels:

I,: the true amplitude of the pre-translocation state (without noise)
I,: the true amplitude of the two post-translocation states (without noise)

Note that /; is the upper amplitude and /, is the lower amplitude: I, <1,.
Let
S(r): state (1, 2, or 2B) of the complex atop of the pore at time ¢
I(¥):  the true amplitude (without noise) at time ¢, corresponding to state S(¢).
X(#): measured time trace of amplitude = /() + noise
We have
(1) {Il . S(r)=1
I,, S(t)=2o0r2B
X(t)=1(t)+ N(z)
Note that S(7), I(f) and X(¢) are all random processes.
We assume that the noise N(¢) has zero mean and that N(¢,) is independent of N(¢,).

We map [1,, ;] to [-1, 1] and consider the scaled amplitude

v(r)- (L(x(t)_ )

11 _12)

The mean of Y(7) has the theoretical expression

A —(1+ [dGTP])
1 Kd

E[Y]=p, = (p.+ Pos) = i [aGTP] (E01)
1+ e +72

This is the first equation for the unknown parameters.

To derive more equations, we consider the auto-correlation
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R(t)= E[Y(1,)Y (1, +1)].
Form the 3-state model shown in Figure 3C, we can show that the autocorrelation function has
two properties:

1. R(t)- (E[Y])2 = (1 - (E[Y])Z)[c1 exp(—)»lt) + (1 -c )exp(—)»zt)]
where A, and A, are the eigenvalues of

((n+n)  k,[dGTP]
r, (k,[dGTP]+k,) )

This property leads to two equations for the unknown parameters
A+ A, =(rl +r2)+(k0n[dGTP]+koﬁ) (E02)
A2y =(r+1,)(k, [dGTP]+ k, ) - 1.k, [dGTP]

_ (r, [dGTP] )
-nk,,ﬂkrl+ X, +1) (E03)

2. R’(O) = —2(1”1p1 + rzpz)
which gives us another equation for the unknown parameters:

(1_(E[Y])2)[C1)H +(1—c1)A2] = 2’3(1?1 +:—2p2)

1

4r,

ldGTP] 1, (E04)
+E—+

K, h

1

Thus, we obtain 4 equations for the 4 unknown parameters (r1 1k, oﬁ.) :

n_{,,[dGTP])
h L K, /]=E[Y]
| L4GTP] 1,
K, h
4r, 5
| [dGTP] r _( _(E[Y]) )[cl)”l*'(l_cl))”z]
+
K, r1
o (n ldGTP] N\
h Oﬁ'l\ : K, J_ ()
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(r1 + r2)+ (kon[dGTP] + knﬁ) =A+A,
In the above 4 equations, all quantities on the right hand side are calculated from data.
= E[Y]is calculated directly from a time trace of amplitude {¥(?)}.
= R(?) is calculated directly from a time trace of amplitude {¥(?)}.

= ¢y, A and A, are calculated by fitting measured values of {R(#)} to the theoretical

expression

R(t)- (E[Y])2 = (1 - (E[Y])z)[c1 exp(—)»lt) + (1 -c )exp(—)»zt)] :

The 4 unknown parameters are then solved from the 4 equations above. In this way, we can
calculate a set of 4 parameters from each measured time trace of amplitude. At each individual
voltage and [dGTP], we have 20 ~ 60 measured time traces. From multiple estimated sets of
parameter values, we use the mean as a more accurate estimate and use the standard error as the
error bar.
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Table S1. Translocation and dNTP binding rates.

[dGTP]  Voltage r(s?)® ry(s1)® ko (s uM ) € kye(s™) ¢

OuM 140 mV 67294 +33.68  1337.9 +24.34
150 mV ~ 51232+981  1428.8 +19.31
160mV 4468 +5.63 1592.8 + 51.44
170 mV 34331 +681  1793.5+15.94
180 mV 23571 +4.4 1932.9 +25.06
190mV ~ 196.16 +14.13 19992 + 27.28
200mV 14509 +10.65  2308.2 +101.39
210mV 1079 +3.73 2368.7 + 63.09

5uM  140mV 6789 =18.1 1327 + 112 1299+ 173 2622 +294
150mV ~ 538.1%259 1534 + 101 1473 £183 2784180
160mV 41202138 1689 = 112 15312098 3029 +2.03
170 mV 3245+ 10.1 1765 + 81 1304096  30.13+1.90
180mV 2430+ 128 2039 + 128 15752136  34.61 241
190mV 1815+ 145 2118 + 297 1332+ 1.15  30.01+3.10
200mV  137.6=123 2205 + 181 1312095 3027199
210mV  109.7 =123 2406 = 306 1074 £1.63 2742+481

10u4M 140 mV  7485+77.1 1294 + 264 1587 £430 2694 +4.71
150mV 5752 %540 1477 £ 232 1896278 2820276
160 mV ~ 420.7 277 1653 = 181 19.19+143 3023 +1.54
170 mV 34222229 1801 = 166 19.15+£ 146  30.09 +0.77
180 mV 2572104 1920 = 75 2094095  30.55%0.65
190 mV 202.0 + 8.7 2100 + 124 1961 +1.17  32.19+122
200mV  148.0 =125 2271 + 318 1874112 2942122
210 mV 1004 7.3 2194 + 252 2191 +1.19  3552+1.94
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[dGTP]  Voltage r(s?)® ry(sh® ko (s uM ) € kye(s™) ¢

204M 140 mV 8703 %120 1137 + 487 1020 £5.09  23.88+4.26
150mV  680.0 + 102 1303 + 464 1259 £3.95 2407 £3.57
160mV ~ 474.1%619 1556 = 334 1457245 2640 =1.79
170mV ~ 366.8 +46.4 1703 = 359 1700 £1.63  29.88 +1.88
180 mV 236.0 = 15 1931 + 173 1881 158  31.69+0.81
190mV 2002159 2098 + 195 1821 £0.62  29.78 +1.18
200mV 1445+ 122 2112 =271 1725107 3029109
210 mV 102.7 = 8.6 2349 = 316 1749+ 1.15  32.15+1.62

40 M 180mV 2272218 1765 = 318 1801143  3135+1.02
190mV 1715163 1940 + 312 1742117 3167139
200 mV 132.0 9.0 2180 = 310 1924109 3235155
210mV~ 87.11 =115 1985 =+ 365 1979 154 3530 +2.96

* The rate of transition from the pre-translocation to the post-translocation state.
® The rate of transition from the post-translocation to the pre-translocation state.
¢ The dGTP association rate.

4 The dGTP dissociation rate.

All values are reported with the standard error.
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