Supporting Information

An Expedient and Divergent Tandem One-Pot Synthesis of Pyrimidin-2,4-diones using the Blaise Reaction Intermediate

Yu Sung Chun, Zi Xuan, Ju Hyun Kim, Sang-gi Lee*
Department of Chemistry and Nano Science, Ewha Womans University, 120-750 Seoul, Korea

List of Contents

1. General
2. Experimental Procedures

2-1. A Typical Procedure for the Synthesis of $\mathbf{4 a - 4 q}$, and their characterization data ----------------------- S2-S7
2-2. A Typical Procedure for the synthesis of $\mathbf{4 q - 4} \mathbf{u}$, and their characterization data ------------------------ S7-S8

4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 4 and 5 -- S15--S65

1. General. All reactions and manipulations were performed in a nitrogen atmosphere using standard Schelenk techniques. The reaction solvents were distilled prior to used (THF was distilled from sodium benzophenone ketyl). All purchased reagent were used without further purification. Anhydrous solvents were transferred by oven-dried syringe. Flasks were flames dried under a stream of nitrogen. The NMR spectra were recorded at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 75.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $282 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$.

2. Experimental Procedures

$\mathbf{2 - 1}$. A Typical Procedure for the Synthesis of Pyrimidin-2,4-diones $\mathbf{4 a - 4} \mathbf{p}$.
5-Methyl-3,6-diphenyl-1 H -pyrimidine-2,4-dione (4a)

To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring for 10 min , benzonitrile ($306 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) was added all at once. While maintaining THF reflux, methyl 2-bromopropionate $(0.58 \mathrm{~mL}, 4.5 \mathrm{mmol})$ was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h . After cooled to room temperature, to the reaction mixture were added successively $\mathrm{Cu}(\mathrm{OAc})_{2}(55 \mathrm{mg}, 0.3 \mathrm{mmol}$ and a solution of phenyl isocyanate $(489 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$. The reaction mixture was refluxed for 1 h, and allowed to cool to room temperature. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude solid was crystallized with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione 4a and the product was further isolated from the residual of filtrates through by column chromatography (n hexane/ethyl acetate $=3 / 2$) to afford $\mathbf{4 a}$ in a combined yield of $82 \%(685 \mathrm{mg}, 2.46 \mathrm{mmol})$. White solid; $\mathrm{mp}: 179-$ $181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 7.23(\mathrm{dd}, J=1.5 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37 \sim 7.52(\mathrm{~m}, 8 \mathrm{H}), 9.20$ $(\mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.2,107.6,128.3,128.4,128.7,129.0,129.3,130.5,132.5,134.9$, 146.7, 151.8, 164.7 ppm ; HRMS (FAB) m / z Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}: 279.1134$; Found: 279.1128.

Synthesis of 5-Methyl-3-phenyl-6-m-tolyl-1H-pyrimidine-2,4-dione (4b)

Yield: 75% ($655 \mathrm{mg}, 2.24 \mathrm{mmol}$); White solid; mp : $208-210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97$ (s, 3 H), 2.35 $(\mathrm{s}, 3 \mathrm{H}), 7.22 \sim 7.37(\mathrm{~m}, 6 \mathrm{H}), 7.43 \sim 7.52(\mathrm{~m}, 3 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.3,21.4$, $107.4,125.5,128.4,128.7$ (128.67), 128.7(128.70), 128.8, 129.3, 131.2, 132.5, 135.0, 139.0, 146.9, 151.8, 164.7 ppm; HRMS (FAB) m / z Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}: 293.1290$; Found: 293.1285.

5-Methyl-3-phenyl-6-p-tolyl-1 H-pyrimidine-2,4-dione (4c)

Yield: 82% ($722 \mathrm{mg}, 2.47 \mathrm{mmol}$); White solid; mp: $209-210^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 7.23 \sim 7.34(\mathrm{~m}, 6 \mathrm{H}), 7.44 \sim 7.53(\mathrm{~m}, 3 \mathrm{H}), 8.66(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.3,21.5$, $107.3,128.2,128.5,128.6,129.3,129.6,135.0,140.7,146.8,151.8,164.7 \mathrm{ppm} ; H R M S(F A B) m / z$ Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$: 293.1290; Found: 293.1285.

6-(4-Methoxy-phenyl)-5-methyl-3-phenyl-1H-pyrimidine-2,4-dione (4d)

Yield: 81% ($752 \mathrm{mg}, 2.44 \mathrm{mmol}$); White solid; mp: $222-224{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) 7.25 \sim 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.38 \sim 7.54(\mathrm{~m}, 5 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.3,55.5,107.1,114.4,124.7,128.5,128.7,129.4,129.8,135.0,146.5,151.7,161.2,164.8 \mathrm{ppm} ; \mathrm{HRMS}$ (EI) m / z Cal. for $[\mathrm{M}]^{+}: \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: 308.1161$; Found: 308.1159.

6-(4-Bromo-phenyl)-5-methyl-3-phenyl-1 H-pyrimidine-2,4-dione (4e)

Yield: 79% ($843 \mathrm{mg}, 2.36 \mathrm{mmol}$); White solid; mp: $216-220{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.74(\mathrm{~s}, 3 \mathrm{H})$, $7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41 \sim 7.50(\mathrm{~m}, 5 \mathrm{H}), 7.72 \sim 7.75(\mathrm{~m}, 2 \mathrm{H}), 11.29(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}) $\delta 11.8,105.4,123.4,128.0,128.8,128.9,130.9,131.5,131.7,135.8,146.8,150.6,164.0 \mathrm{ppm}$; HRMS (EI) m / z Cal. for $[M]^{+}: \mathrm{C}_{17} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}: 356.0160$; Found: 356.0157 ; Cal. for $[\mathrm{M}+2]^{+}: \mathrm{C}_{17} \mathrm{H}_{13}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{2}: 358.0140$; Found: 358.0124.

5-Methyl-6-pentafluorophenyl-3-phenyl-1 H -pyrimidine-2,4-dione (4f)

Yield: $94 \%(1.035 \mathrm{~g}, 2.81 \mathrm{mmol})$; White solid; mp: $180-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.85(\mathrm{~s}, 3 \mathrm{H}), 7.17$ $\sim 7.20(\mathrm{~m}, 2 \mathrm{H}), 7.46 \sim 7.49(\mathrm{~m}, 3 \mathrm{H}), 10.9(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1,113.5,128.0,129.1$, 129.4, 133.3, 134.1, $152.9,163.2 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CF}_{3} \mathrm{COOD}$ as an internal reference) $\delta-137.8$ $(\mathrm{d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{~F}),-149.3(\mathrm{tt}, J=14.1 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{~F}),-159.7(\mathrm{~m}, 2 \mathrm{~F}) \mathrm{ppm}$; HRMS (EI) $m / z \mathrm{Cal}$. for $[\mathrm{M}]^{+}$: $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}: 368.0584$; Found: 368.0584.
5-Methyl-6-furanyl-3-phenyl-1 H -pyrimidine-2,4-dione (4g)

Yield: 63% ($506 \mathrm{mg}, 1.89 \mathrm{mmol}$); White solid; mp: $204-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 6.61$ $(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26 \sim 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.42 \sim 7.56(\mathrm{~m}, 4 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8,105.3,112.9,115.7,128.5,128.8,129.3,135.1,135.8,144.7,144.9,151.5,164.6$ ppm; HRMS (EI) m / z Cal. for [M] ${ }^{+}: \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}: 268.0848$; Found: 268.0851 .

6-Benzyl-5-methyl-3-phenyl-1H-pyrimidine-2,4-dione (4h)

Yield: 52% ($459 \mathrm{mg}, 1.57 \mathrm{mmol}$); White solid; mp: $196-200{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.84(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{~s}, 2 \mathrm{H}), 7.21 \sim 7.28(\mathrm{~m}, 3 \mathrm{H}), 7.32 \sim 7.47(\mathrm{~m}, 7 \mathrm{H}), 11.25(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.5$, $35.5,105.1,126.8,127.9,128.4,128.7,128.8,128.9,135.9,136.5,148.4,150.8,164.0 \mathrm{ppm}$; HRMS (EI) m / z Cal. for $[\mathrm{M}]^{+}: \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 292.1212; Found: 292.1209.

5-Methyl-6-phenethyl-3-phenyl-1H-pyrimidine-2,4-dione (4i)

Yield: 51% (472 mg, 1.54 mmol); White solid; mp: $188-190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.73$ (s, 3 H), $2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18 \sim 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.31 \sim 7.47(\mathrm{~m}, 8 \mathrm{H}), 11.17(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}) $\delta 10.0,32.2,33.2,104.5,126.3,127.9,128.4,128.5,128.8,128.9,135.9,140.4$, 149.3, 150.9, 163.9 ppm ; HRMS (EI) m / z Cal. for [M] ${ }^{+}: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 306.1368$; Found: 306.1366.

5-Methyl-6-phenyl-3-p-tolyl-1H-pyrimidine-2,4-dione (4j) (CAS No:95796-77-3)

Yield: 84% ($736 \mathrm{mg}, 2.52 \mathrm{mmol}$); White solid; mp: 196-200 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.96(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (s, 3H), $7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41 \sim 7.47(\mathrm{~m}, 5 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,21.4,107.5,128.0,128.2,129.0,130.0,130.4,132.2,132.6,138.6,146.5,151.8,164.8 \mathrm{ppm} ;$ HRMS (FAB) $m / z \mathrm{Cal}$. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}: 293.1290$; Found: 293.1285.

3-(4-Methoxy-phenyl)-5-methyl-6-phenyl-1 H -pyrimidine-2,4-dione (4k)

Yield: 66% ($609 \mathrm{mg}, 1.98 \mathrm{mmol}$); White solid; mp: $218-220^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 3.85$ (s, 3H), $6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44 \sim 7.48(\mathrm{~m}, 5 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.3,55.6,107.6,114.7,127.4,128.2,129.0,129.4,130.5,132.7,146.5,151.9,159.6,164.9 \mathrm{ppm} ;$ HRMS (FAB) m / z Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}: 309.1239$; Found: 309.1234.

3-(4-Fluoro-phenyl)-5-methyl-6-phenyl-1 H -pyrimidine-2,4-dione (41)

Yield: 79\% ($699 \mathrm{mg}, 2.36 \mathrm{mmol}$); White solid; mp: $224-226{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97$ (s, 3H), 7.13 $\sim 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.41 \sim 7.52(\mathrm{~m}, 5 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.2,107.6,116.2(\mathrm{~d}, J=$ $23.4 \mathrm{~Hz}), 128.3,129.0,130.2,130.3,130.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 132.4,1468.8,151.8,162.4(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 164.6$ ppm; HRMS (FAB) m / z Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}_{2}$: 297.1039; Found: 297.1034.

3-Butyl-5-methyl-6-phenyl-1 H -pyrimidine-2,4-dione (4m)

Yield: $46 \%(356 \mathrm{mg}, 1.38 \mathrm{mmol})$; Pale yellow solid; mp: $114-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31 \sim 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.53 \sim 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42 \sim 7.50(\mathrm{~m}, 5 \mathrm{H})$, $9.46(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.2,13.9,20.3,29.8,40.9,107.1,128.4,128.8,130.3,132.7$, 146.2, 152.2, 164.6 ppm ; HRMS (EI) m / z Cal. for [M] ${ }^{+}: \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 259.1368; Found: 258.1366.

5-Methyl-6-m-tolyl-3-p-tolyl-1H-pyrimidine-2,4-dione (4n)

Yield: 67% ($616 \mathrm{mg}, 2.01 \mathrm{mmol}$); White solid; mp: 202-204 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.97$ (s, 3 H), 2.33 $(\mathrm{s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21 \sim 7.36(\mathrm{~m}, 6 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 12.3,21.4,107.4,125.4,128.1,128.6,128.9,130.1,131.3,132.3,132.7,138.7,139.1,146.6,151.6,164.9 \mathrm{ppm}$; HRMS (FAB) m / z Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}: 307.1447$; Found: 307.1441.

5-Methyl-3,6-di-p-tolyl-1 H -pyrimidine-2,4-dione (4o)

Yield: 82% ($754 \mathrm{mg}, 2.46 \mathrm{mmol}$); White solid; mp: $210-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28 \sim 7.36(\mathrm{~m}, 6 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 12.3,21.4,21.6,107.3,128.1(128.09), 128.1(128.13), 129.7,129.8,130.0,132.3,138.6,140.7,146.6,151.8$, $164.8 \mathrm{ppm} ; \mathrm{HRMS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ Cal. for $[\mathrm{M}+\mathrm{H}]^{+}: \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}: 307.1447$; Found: 307.1441 .

3,6-Diphenyl-5-propyl-1H-pyrimidine-2,4-dione (4p)

Yield: 90% ($830 \mathrm{mg}, 2.71 \mathrm{mmol}$); White solid; mp: $192-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.45 \sim 1.57(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42 \sim 7.51(\mathrm{~m}, 8 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.7,28.3,112.3,128.0,128.4,128.6,128.9,129.2,130.3,132.6,134.8$, 147.3, 151.7, 164.2 ppm ; HRMS (EI) m / z Cal. for [M] ${ }^{+}: \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 306.1368$; Found: 306.1365.

3,5,6-Triphenyl-1 H-pyrimidine-2,4-dione (4q) (CAS No:67566-50-1)

Yield: 89% ($905 \mathrm{mg}, 2.66 \mathrm{mmol}$); White solid; mp: $294-296{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.04 \sim 7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.28 \sim 7.52(\mathrm{~m}, 10 \mathrm{H}), 11.55(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- $\left.d_{6}\right) \delta 111.5,126.8,127.5,128.1$, $128.9(128.87)$, 128.9(128.93), 129.2, 129.6, 131.5, 132.6, 133.4, 135.8, 149.4, 150.7, 162.9 ppm.

2-2. A Typical Procedure for the synthesis of pyrimidin-2,4-diones 4r-4u.

2,4-Dioxo-3,6-diphenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4r)

To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring 10 min , to the reaction mixture was added benzonitrile $(306 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$ all at once. While maintaining THF reflux, ethyl α-bromoacetate ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h , and cooled to room temperature. To the reaction mixture was added phenyl isocyanate ($360 \mu \mathrm{~L}, 3.3$ mmol) all at once, and stirred at $40^{\circ} \mathrm{C}$ for 1 h . After cool the reaction mixture to $0^{\circ} \mathrm{C}$ using ice bath, a solution of triphosgene ($890 \mathrm{mg}, 3 \mathrm{mmol}$) in THF (4 mL) was added, and then triethylamine ($0.84 \mathrm{~mL}, 6 \mathrm{mmol}$) over 30 min using syringe pump. The reaction mixture was stirred at room temperature for 3 h , quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude solid was solidified with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione $\mathbf{4 r}$ and the product was further isolated from the residual of the filtrates through by column chromatography (n-hexane/ ethyl acetate $=1 / 1$) to give $\mathbf{4 r}$ in a combined yield of 73% ($735 \mathrm{mg}, 2.19 \mathrm{mmol}$). White solid; mp: 212-214 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21 \sim$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32 \sim 7.51(\mathrm{~m}, 8 \mathrm{H}), 9.64(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,61.8,107.9,127.4$, $128.3,129.0(128.95)$, $129.0(129.02)$, 129.3, 131.1, 131.6, 133.8, 151.3, 151.4, 160.4, 164.0 ppm ; HRMS (EI) m / z Cal . for $[\mathrm{M}]^{+}: \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}: 336.1110$; Found: 336.1113 .

3-Butyl-2,4-dioxo-6-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4s)

Yield: 69% ($655 \mathrm{mg}, 2.07 \mathrm{mmol}$);White solid; mp: $156-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45 \sim$ $7.54(\mathrm{~m}, 5 \mathrm{H}), 10.0(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 13.7,20.2,29.4,40.8,61.6,107.5,127.5,128.8$, 131.3, 131.4, 151.0, 151.9, 160.4, 164,2 ppm; HRMS (EI) m / z Cal. for $[M]^{+}: \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: 316.1423$. Found: 316.1422 .

3,6-Dibenzyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4t)

Yield: 55% ($601 \mathrm{mg}, 1.65 \mathrm{mmol}$); White solid; mp : $186-188{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 7.26 \sim 7.29(\mathrm{~m}, 8 \mathrm{H}), 7.42 \sim 7.45(\mathrm{~m}, 2 \mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3,37.1,44.3,62.0,107.5,128.0,128.6,129.1,129.2,134.2,136.1,152.2$, 153.8, 160.2, $164.4 \mathrm{ppm} ;$; HRMS (EI) m / z Cal. for [M] ${ }^{+}: \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: 364.1423$. Found: 364.1427.

3-Benzyl-2,4-dioxo-6-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4u)

Yield: $60 \%(630 \mathrm{mg}, 1.80 \mathrm{mmol})$; White solid; $\mathrm{mp}: 216-218{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18 \sim 7.31(\mathrm{~m}, 7 \mathrm{H}), 7.43 \sim 7.54(\mathrm{~m}, 3 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}) $\delta 14.2,37.0,62.0,107.7,127.9,128.4,129.0,129.1,129.4,129.5,134.0,151.8,154.5$, 160.3, 164.4 ppm ; HRMS (EI) m / z Cal. for $[\mathrm{M}]^{+}: \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: 350.1267$. Found: 350.1267.

2-3. 2,4-Dioxo-3,6-diphenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid phenylamide (4v)

To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring 10 min at THF reflux, to the reaction mixture was added benzonitrile $(306 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$ all at once. While maintaining THF reflux, ethyl α-bromoacetate ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h . The reaction mixture was cooled to room temperature, and added phenyl isocyanate ($360 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$). After stirring at $40^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cooled to room temperature. To the reaction mixture, $\mathrm{Cu}(\mathrm{OAc})_{2}(55 \mathrm{mg}, 0.3 \mathrm{mmol})$ and a solution of phenyl isocyanate $(489 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ in THF (1.0 mL) were added successively. After stirring at $80^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude material was crystalized with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione $\mathbf{4 v}$ and the product was further isolated from the residual of the filtrates through by column chromatography (n-hexane/ethyl acetate $=1 / 1$) to afford $\mathbf{4 v}$ in a combined yield of $67 \%(775 \mathrm{mg}, 2.02 \mathrm{mmol})$. White solid; mp: $236-240{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21 \sim 7.33(\mathrm{~m}, 4 \mathrm{H}), 7.42 \sim 7.61(\mathrm{~m}, 10 \mathrm{H}), 10.31(\mathrm{~s}, 1 \mathrm{H}), 11.79(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}) $\delta 119.6,124.0,128.2,128.4,128.8,128.9,129.0,129.1,129.2,129.5,131.1,132.1,132.1$, $135.5,139.3,150.9,161.9,162.0 \mathrm{ppm}$; HRMS (EI) $m / z \mathrm{Cal}$. for $[\mathrm{M}]^{+}: \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: 383.1270$; Found: 383.1267.

2-4. 3,6-Diphenyl-5-(1-phenyl-vinyl)-1H-pyrimidine-2,4-dione (4w)

To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring 10 min at THF reflux, to the reaction mixture was added benzonitrile $(306 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$ all at once. While maintaining THF reflux, ethyl α-bromoacetate ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h . To this reaction mixture, phenylacetylene ($363 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$) was added. After 1.5 h stirring at THF reflux, the reaction mixture was cooled to room temperature, and $\mathrm{Cu}(\mathrm{OAc})_{2}(55 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ and a solution of phenyl isocyanate $(489 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ in THF (1.0 mL) were successively added. After stirring at THF reflux for 30 min , the reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered,
and concentrated under reduced pressure. The crude solid was washed with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione $\mathbf{4 w}$ and the product was further isolated from the residual of the filtrates through by column chromatography (n-hexane/ethyl acetate $=1 / 1$) to afford $\mathbf{4 w}$ in a combined yield of $75 \%(821 \mathrm{mg}, 2.24 \mathrm{mmol}$). White solid; mp: $226-228{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 7.23 \sim 7.48(\mathrm{~m}, 15 \mathrm{H}), 9.02$ $(\mathrm{s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 113.2,120.3,126.1,127.8,127.9,128.5,128.6,128.8,128.9,129.3$, $130.7,132.5,134.5,140.2,140.6,148.7,151.6,162.9 \mathrm{ppm}$; HRMS (EI) m / z Cal. for $[\mathrm{M}]^{+}: \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 366.1368$; Found: 366.1365.

2-5. Synthesis of 5-Bromo-3,6-diphenyl-1H-pyrimidine-2,4-dione (4x)

4x (60\%)
($621 \mathrm{mg}, 1.81 \mathrm{mmol}$)
To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring for 10 min at THF reflux, benzonitrile ($306 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) was added all at once. While maintaining THF reflux, ethyl $\alpha-$ bromoacetate ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and then N-bomosuccinimide ($552 \mathrm{mg}, 3.1 \mathrm{mmol}$) was added. After 1 h stirring at $0^{\circ} \mathrm{C}$, to the reaction mixture was added successively $\mathrm{Cu}(\mathrm{OAc})_{2}(55 \mathrm{mg}, 0.3 \mathrm{mmol})$ and a solution of phenyl isocyanate $(489 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$. The reaction mixture was stirred at THF reflux for 30 min , and allowed to cool to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate (50 $\mathrm{mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude solid was washed with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione $\mathbf{4 x}$ and the product was further isolated from the residual of the filtrates through by column chromatography (n-hexane/ethyl acetate $=1 / 1$) to afford $4 \mathbf{x}$ in a combined yield of $60 \%(621 \mathrm{mg}, 1.81 \mathrm{mmol})$. White solid; $\mathrm{mp}: 216-220{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40 \sim 7.59(\mathrm{~m}, 8 \mathrm{H}), 11.88(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO- d_{6}) $\delta 95.2,128.3,128.4,128.6,128.7,129.0,130.5,132.7,135.8,150.2,151.1,159.9 \mathrm{ppm} ;$ HRMS (EI) m / z Cal. for $[\mathrm{M}]^{+}: \mathrm{C}_{16} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}: 342.0004$; Found: 342.0000.; Cal. for [M+2] ${ }^{+}: \mathrm{C}_{17} \mathrm{H}_{11}{ }^{81} \mathrm{BrN}_{2} \mathrm{O}_{2}: 343.9983$; Found: 343.9983

2-6. Synthesis of 3-Amino-3-phenyl-2-phenylcarbamoyl-acrylic acid ethyl ester (5)

($306 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$)

5 (92\%)
($853 \mathrm{mg}, 2.75 \mathrm{mmol}$)
To a stirred suspension of commercial zinc dust (Aldrich, $10 \mu \mathrm{~m}, 392 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF ($1 \mathrm{M}, 0.3 \mathrm{~mL}$) at $80^{\circ} \mathrm{C}$ bath temperature. After stirring for 10 \min, benzonitrile ($306 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) was added all at once. While maintaining THF reflux, ethyl α-bromoacetate ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h . The reaction mixture was cooled to room temperature, and phenyl isocyanate ($360 \mu \mathrm{~L}, 3.3 \mathrm{mmol}$) was added. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution,
and the solution was neutralized with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. The organic compounds were extracted with ethyl acetate ($50 \mathrm{~mL} \times 3$). The combined organic layer was dried with anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude solid was purified by recrystallization (n-hexane/ethyl acetate $=$ ca. 4/1) to afford 5, and the product was further isolated from the residual of filtrates through by column chromatography (n-hexane/ethyl acetate $=4 / 1$) to afford 5 in a combined yield of $92 \% ~(853 \mathrm{mg}, 2.75 \mathrm{mmol}$). White solid; mp: $126-128{ }^{\circ} \mathrm{C} ; 0.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{brs}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23 \sim 7.46(\mathrm{~m}, 7 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 10.82(\mathrm{brs}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.1$, 59.9, 92.1, 120.7, 123.6, 126.8, 128.5, 128.9, 129.6, 138.8, 140.6, 167.6, 169.8, 170.7 ppm ; HRMS (EI) $\mathrm{m} / \mathrm{z} \mathrm{Cal}$. for $[\mathrm{M}]^{+}: \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}: 310.1317$. Found: 310.1315.

A colorless plate-like specimen of $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, approximate dimensions $0.100 \mathrm{~mm} \times 0.290 \mathrm{~mm} \times 0.440 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The total exposure time was 9.83 hours. The frames were integrated with the Bruker SAINT software package using a narrowframe algorithm. The integration of the data using a monoclinic unit cell yielded a total of 25573 reflections to a maximum θ angle of $28.27^{\circ}(0.75 \AA$ resolution), of which 3644 were independent (average redundancy 7.018, completeness $\left.=99.8 \%, \mathrm{R}_{\mathrm{int}}=1.91 \%, \mathrm{R}_{\text {sig }}=0.92 \%\right)$ and $3365(92.34 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=11.1596(3) \AA, \underline{b}=9.7432(3) \AA, \underline{c}=13.8929(4) \AA, \beta=102.5580(10)^{\circ}$, volume $=1474.44(7) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9941 reflections above $20 \sigma(\mathrm{I})$ with $5.148^{\circ}<2 \theta<56.53^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.944 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9627 and 0.9913 . The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P $121 / \mathrm{c} 1$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 201 variables converged at $\mathrm{R} 1=3.95 \%$, for the observed data and $w R 2=10.98 \%$ for all data. The goodness-of-fit was 1.061. The largest peak in the final difference electron density synthesis was $0.354 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.213 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.058 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.317 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 616$ e^{-}.

Table S1. Sample and crystal data for $\mathbf{4 c}$.

Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	
Formula weight	292.33	
Temperature	$150(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.100 \times 0.290 \mathrm{x} 0.440 \mathrm{~mm}$	
Crystal habit	colorless plate	
Crystal system	monoclinic	
Space group	$\mathrm{P} 121 / \mathrm{c} 1$	
Unit cell dimensions	$\mathrm{a}=11.1596(3) \AA=90^{\circ}$	
	$\mathrm{b}=9.7432(3) \AA$	$\beta=102.5580(10)^{\circ}$
	$\mathrm{c}=13.8929(4) \AA$	$\gamma=90^{\circ}$
Volume	$1474.44(7) \AA^{3}$	
Z	4	
Density (calculated)	$1.317 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.087 \mathrm{~mm}^{-1}$	
F(000)	616	

Table S2. Data collection and structure refinement for $\mathbf{4 c}$.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on F^{2}
$\Delta / \sigma_{\text {max }}$
Final R indices

Weighting scheme
Largest diff. peak and hole
R.M.S. deviation from mean
1.87 to 28.27°
$-14<=\mathrm{h}<=14,-12<=\mathrm{k}<=12,-18<=\mathrm{l}<=18$
25573
$3644[\mathrm{R}($ int $)=0.0191]$
99.8\%
multi-scan
0.9913 and 0.9627
direct methods
SHELXS-97 (Sheldrick, 2008)
Full-matrix least-squares on F^{2}
SHELXL-97 (Sheldrick, 2008)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
3644 / 0 / 201
1.061
0.001

3365 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0395, \mathrm{wR} 2=0.1071$
all data $\quad \mathrm{R} 1=0.0422, \mathrm{wR} 2=0.1098$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0577 \mathrm{P})^{2}+0.5002 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.354 and $-0.213 \mathrm{e}^{-3}$
$0.058 \mathrm{e}^{-3}$
${ }^{1} \mathbf{H}$ Spectrum of 4 a in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of 4 a in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{4 b}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 b}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 c}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 c}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 d}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of 4 d in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of 4 e in DMSO- $\boldsymbol{d}_{\boldsymbol{\sigma}}$

${ }^{13} \mathrm{C}$ Spectrum of 4 e in DMSO- \boldsymbol{d}_{6}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 f}$ in $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 f}$ in CDCl_{3}

-163.23
-152.94

77.58
-77.16
-76.73
${ }^{19} \mathbf{F}$ Spectrum of $\mathbf{4 f}$ in CDCl_{3}
(

${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{~} \mathrm{g}$ in CDCl_{3}

${ }^{13}$ C Spectrum of $\mathbf{4 g}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 h}$ in DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$

${ }^{13} \mathrm{C}$ Spectrum of 4 h in DMSO- d_{6}

${ }^{1} \mathbf{H}$ Spectrum of 4 i in DMSO- \boldsymbol{d}_{6}

${ }^{13}$ C Spectrum of 4 in DMSO- d_{6}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4} \mathbf{j}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 j}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of 4kin $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ Spectrum of 4 k in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of 41 in CDCl_{3}

${ }^{13}$ C Spectrum of $\mathbf{4 1}$ in CDCl_{3}

164.49
-163.98
-160.69
-151.71
-146.73
132.30
130.45
-130.18
130.06
128.85
128.17
116.29
-115.99
-107.49
77.49
$\sim \quad 77.06$
76.64
-12.12

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 m}$ in CDCl_{3}

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 m}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{4 n}$ in CDCl_{3}

${ }^{13}$ C Spectrum of $\mathbf{4 n}$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of 40 in CDCl_{3}

${ }^{13}$ C Spectrum of 40 in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{4 p}$ in CDCl_{3}

${ }^{13}$ C Spectrum of 4 p in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of $4 q$ in DMSO- \boldsymbol{d}_{6}

-11.551
$\left[\begin{array}{l}7.515 \\ 7.491 \\ {\left[\begin{array}{l}7.465 \\ 7.436 \\ 7.412 \\ 7.388 \\ 7.345 \\ 7.320 \\ 7.288 \\ 7.277 \\ 7.270 \\ 7.162 \\ 7.142 \\ 7.067 \\ 7.059 \\ 7.042 \\ 7.036\end{array}\right.} \\ \hline\end{array}\right.$
${ }^{13} \mathbf{C}$ Spectrum of $4 \mathbf{q}$ in DMSO- d_{6}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 r}$ in CDCl_{3}

(

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 r}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of 4 s in CDCl_{3}

${ }^{13}$ C Spectrum of $4 s$ in CDCl_{3}

${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 t}$ in $\mathbf{C D C l}_{3}$

${ }^{13} \mathbf{C}$ Spectrum of $\mathbf{4 t}$ in CDCl_{3}

-164.37
-160.23
153.84
$=152.15$
-107.49
${ }^{1} \mathbf{H}$ Spectrum of $\mathbf{4 u}$ in CDCl_{3}
(

${ }^{13} \mathbf{C}$ Spectrum of 4 u in CDCl_{3}

ع

- 164.39
-160.34
$\begin{array}{r}154.51 \\ -151.84 \\ \hline\end{array}$

-107.74
77.58
$\times \quad \begin{array}{r}77.16 \\ 76.74\end{array}$
-62.02
-36.97

${ }^{1} \mathrm{H}$ Spectrum of $\mathbf{4 v}$ in $\mathrm{DMSO}-\boldsymbol{d}_{6}$

${ }^{13}$ C Snectrum of $4 v$ in DMSO- d.

${ }^{1} \mathbf{H}$ Spectrum of $4 w$ in CDCl_{3}

${ }^{13} \mathrm{C}$ Spectrum of 4 w in CDCl_{3}

${ }^{1} \mathrm{H}$ Spectrum of 4 x in DMSO- \boldsymbol{d}_{6}

-11.879

-2.500

${ }^{13} \mathrm{C}$ Spectrum of 4 x in DMSO- \boldsymbol{d}_{6}

${ }^{1} \mathbf{H}$ Spectrum of 5 in $\mathbf{C D C l}_{3}$

${ }^{13} \mathrm{C}$ Spectrum of 5 in CDCl_{3}

