Supporting Information

An Expedient and Divergent Tandem One-Pot Synthesis of Pyrimidin-2,4-diones using the Blaise Reaction Intermediate

Yu Sung Chun, Zi Xuan, Ju Hyun Kim, Sang-gi Lee*

Department of Chemistry and Nano Science, Ewha Womans University, 120-750 Seoul, Korea

List of Contents

1.	General
2.	Experimental Procedures

2-1 A Typical Procedure for the Synthesis of 4a-4a and their characterization data	\$2-\$7
2-2. A Typical Procedure for the synthesis of 4g-4u , and their characterization data	S7-S8
2-3. Synthesis and characterization data of 4v	
2-4. Synthesis and characterization data of 4w	S9
2-5. Synthesis and characterization data of 4x	S10
2-6. Synthesis and characterization data of 5	S11
3. X-ray crystal data for 4c	S12-S14
4. Copies of ¹ H and ¹³ C NMR Spectra for Compounds 4 and 5	S15-S65

General. All reactions and manipulations were performed in a nitrogen atmosphere using standard Schelenk techniques. The reaction solvents were distilled prior to used (THF was distilled from sodium benzophenone ketyl). All purchased reagent were used without further purification. Anhydrous solvents were transferred by oven-dried syringe. Flasks were flames dried under a stream of nitrogen. The NMR spectra were recorded at 300 MHz (¹H), 75.5 MHz (¹³C) and 282 MHz (¹⁹F).

2. Experimental Procedures

2-1. A Typical Procedure for the Synthesis of Pyrimidin-2,4-diones 4a-4p.
5-Methyl-3,6-diphenyl-1*H*-pyrimidine-2,4-dione (4a)

To a stirred suspension of commercial zinc dust (Aldrich, 10 µm, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring for 10 min, benzonitrile (306 µL, 3.0 mmol) was added all at once. While maintaining THF reflux, methyl 2-bromopropionate (0.58 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h. After cooled to room temperature, to the reaction mixture were added successively Cu(OAc)₂ (55 mg, 0.3 mmol and a solution of phenyl isocyanate (489 µL, 4.5 mmol) in THF (1.0 mL). The reaction mixture was refluxed for 1 h, and allowed to cool to room temperature. The reaction was quenched with saturated aqueous NH₄Cl solution, and neutralized with saturated aqueous Na₂CO₃ solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude solid was crystallized with *n*-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione **4a** and the product was further isolated from the residual of filtrates through by column chromatography (*n*-hexane/ethyl acetate = 3/2) to afford **4a** in a combined yield of 82% (685 mg, 2.46 mmol). White solid; mp: 179 - 181 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.97 (s, 3H), 7.23 (dd, *J* = 1.5 Hz, *J* = 8.1 Hz, 2H), 7.37 ~ 7.52 (m, 8H), 9.20 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.2, 107.6, 128.3, 128.4, 128.7, 129.0, 129.3, 130.5, 132.5, 134.9, 146.7, 151.8, 164.7 ppm; HRMS (FAB) *m*/z Cal. for [M+H]⁺: C₁₇H₁₅N₂O₂: 279.1134; Found: 279.1128.

Synthesis of 5-Methyl-3-phenyl-6-*m*-tolyl-1*H*-pyrimidine-2,4-dione (4b)

Yield: 75% (655 mg, 2.24 mmol); White solid; mp: 208 - 210 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.97 (s, 3H), 2.35 (s, 3H), 7.22 ~ 7.37 (m, 6H), 7.43 ~ 7.52 (m, 3H), 8.56 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 21.4, 107.4, 125.5, 128.4, 128.7 (128.67), 128.7(128.70), 128.8, 129.3, 131.2, 132.5, 135.0, 139.0, 146.9, 151.8, 164.7 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₈H₁₇N₂O₂: 293.1290; Found: 293.1285.

Yield: 82% (722 mg, 2.47 mmol); White solid; mp: 209 - 210 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.98 (s, 3H), 2.42 (s, 3H), 7.23 ~ 7.34 (m, 6H), 7.44 ~ 7.53 (m, 3H), 8.66 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 21.5, 107.3, 128.2, 128.5, 128.6, 129.3, 129.6, 135.0, 140.7, 146.8, 151.8, 164.7 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₈H₁₇N₂O₂: 293.1290; Found: 293.1285.

6-(4-Methoxy-phenyl)-5-methyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4d)

Yield: 81% (752 mg, 2.44 mmol); White solid; mp: 222 - 224 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.99 (s, 3H), 3.87 (s, 3H), 6.95 (d, *J* = 8.7 Hz, 2H) 7.25 ~ 7.28 (m, 2H), 7.38 ~ 7.54 (m, 5H), 8.50 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 55.5, 107.1, 114.4, 124.7, 128.5, 128.7, 129.4, 129.8, 135.0, 146.5, 151.7, 161.2, 164.8 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₈H₁₆N₂O₃: 308.1161; Found: 308.1159.

6-(4-Bromo-phenyl)-5-methyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4e)

Yield: 79% (843 mg, 2.36 mmol); White solid; mp: 216 - 220 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 1.74 (s, 3H), 7.26 (d, J = 7.5 Hz, 2H), 7.41 ~ 7.50(m, 5H), 7.72 ~ 7.75 (m, 2H), 11.29 (s, 1H) ppm; ¹³C NMR (75.5 MHz, DMSO- d_6) δ 11.8, 105.4, 123.4, 128.0, 128.8, 128.9, 130.9, 131.5, 131.7, 135.8, 146.8, 150.6, 164.0 ppm; HRMS (EI) m/z Cal. for [M]⁺: C₁₇H₁₃⁷⁹BrN₂O₂: 356.0160; Found: 356.0157; Cal. for [M+2]⁺: C₁₇H₁₃⁸¹BrN₂O₂: 358.0140; Found: 358.0124.

5-Methyl-6-pentafluorophenyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4f)

Yield: 94% (1.035 g, 2.81 mmol); White solid; mp: 180 - 184 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.85 (s, 3H), 7.17 ~ 7.20 (m, 2H), 7.46 ~ 7.49 (m, 3H), 10.9 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.1, 113.5, 128.0, 129.1, 129.4, 133.3, 134.1, 152.9, 163.2 ppm; ¹⁹F NMR (282 MHz, CDCl₃, CF₃COOD as an internal reference) δ -137.8 (d, *J* = 16.9 Hz, 2F), -149.3 (tt, *J* =14.1 Hz, *J* = 2.8 Hz, 1F), -159.7 (m, 2F) ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₇H₉F₅N₂O₂:368.0584; Found: 368.0584.

5-Methyl-6-furanyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4g)

Yield: 63 % (506 mg, 1.89 mmol); White solid; mp: 204 - 206 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.23 (s, 3H), 6.61 (t, *J* = 1.8 Hz, 1H), 6.98 (d, *J* = 3.3 Hz, 1H), 7.26~7.29 (m, 2H), 7.42~7.56 (m, 4H), 9.12 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 11.8, 105.3, 112.9, 115.7, 128.5, 128.8, 129.3, 135.1, 135.8, 144.7, 144.9, 151.5, 164.6 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₅H₁₂N₂O₃: 268.0848; Found: 268.0851.

6-Benzyl-5-methyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4h)

Yield: 52% (459 mg, 1.57 mmol); White solid; mp: 196 - 200 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 1.84 (s, 3H), 3.83 (s, 2H), 7.21 ~ 7.28 (m, 3H), 7.32 ~ 7.47 (m, 7H), 11.25 (s, 1H) ppm; ¹³C NMR (75.5 MHz, DMSO- d_6) δ 10.5, 35.5, 105.1, 126.8, 127.9, 128.4, 128.7, 128.8, 128.9, 135.9, 136.5, 148.4, 150.8, 164.0 ppm; HRMS (EI) *m*/*z* Cal. for [M]⁺: C₁₈H₁₆N₂O₂: 292.1212; Found: 292.1209.

5-Methyl-6-phenethyl-3-phenyl-1*H*-pyrimidine-2,4-dione (4i)

Yield: 51% (472 mg, 1.54 mmol); White solid; mp: 188 - 190 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 1.73 (s, 3H), 2.70 (t, *J* = 7.8 Hz, 2H), 2.87 (t, *J* = 7.8 Hz, 2H), 7.18 ~ 7.25 (m, 2H), 7.31 ~ 7.47 (m, 8H), 11.17 (s, 1H) ppm; ¹³C NMR (75.5 MHz, DMSO- d_6) δ 10.0, 32.2, 33.2, 104.5, 126.3, 127.9, 128.4, 128.5, 128.8, 128.9, 135.9, 140.4, 149.3, 150.9, 163.9 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₉H₁₈N₂O₂: 306.1368; Found: 306.1366.

5-Methyl-6-phenyl-3-p-tolyl-1H-pyrimidine-2,4-dione (4j) (CAS No:95796-77-3)

Yield: 84% (736 mg, 2.52 mmol); White solid; mp: 196 - 200 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.96 (s, 3H), 2.41 (s, 3H), 7.11 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.41 ~ 7.47 (m, 5H), 8.96 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.2, 21.4, 107.5, 128.0, 128.2, 129.0, 130.0, 130.4, 132.2, 132.6, 138.6, 146.5, 151.8, 164.8 ppm; HRMS (FAB) *m*/z Cal. for [M+H]⁺: C₁₈H₁₇N₂O₂: 293.1290; Found: 293.1285.

3-(4-Methoxy-phenyl)-5-methyl-6-phenyl-1*H*-pyrimidine-2,4-dione (4k)

Yield: 66% (609 mg, 1.98 mmol); White solid; mp: 218 - 220 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.97 (s, 3H), 3.85 (s, 3H), 6.99 (d, *J* = 9.0 Hz, 2H), 7.16 (d, *J* = 8.7 Hz, 2H), 7.44 ~ 7.48 (m, 5H), 8.73 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 55.6, 107.6, 114.7, 127.4, 128.2, 129.0, 129.4, 130.5, 132.7, 146.5, 151.9, 159.6, 164.9 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₈H₁₇N₂O₃: 309.1239; Found: 309.1234.

3-(4-Fluoro-phenyl)-5-methyl-6-phenyl-1*H*-pyrimidine-2,4-dione (41)

Yield: 79% (699 mg, 2.36 mmol); White solid; mp: 224 - 226 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.97 (s, 3H), 7.13 ~ 7.26 (m, 4H), 7.41 ~ 7.52 (m, 5 H), 8.96 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.2, 107.6, 116.2 (d, *J* = 23.4 Hz), 128.3, 129.0, 130.2, 130.3, 130.6 (d, *J* = 3.8 Hz), 132.4, 1468.8, 151.8, 162.4 (d, *J* = 247.6 Hz), 164.6 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₇H₁₄FN₂O₂: 297.1039; Found: 297.1034.

Yield: 46% (356 mg, 1.38 mmol); Pale yellow solid; mp: 114 -118 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.93 (t, *J* = 7.2 Hz, 3H), 1.31 ~ 1.39 (m, 2H), 1.53 ~ 1.64 (m, 2H), 1.93 (s, 3H), 3.89 (t, *J* = 7.5 Hz, 2H), 7.42 ~ 7.50 (m, 5H), 9.46 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.2, 13.9, 20.3, 29.8, 40.9, 107.1, 128.4, 128.8, 130.3, 132.7, 146.2, 152.2, 164.6 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₅H₁₈N₂O₂: 259.1368; Found: 258.1366.

5-Methyl-6-*m*-tolyl-3-p-tolyl-1*H*-pyrimidine-2,4-dione (4n)

Yield: 67% (616 mg, 2.01 mmol); White solid; mp: 202 - 204 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.97 (s, 3H), 2.33 (s, 3H), 2.41 (s, 3H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.21 ~ 7.36 (m, 6H), 8.62 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 21.4, 107.4, 125.4, 128.1, 128.6, 128.9, 130.1, 131.3, 132.3, 132.7, 138.7, 139.1, 146.6, 151.6, 164.9 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₉H₁₉N₂O₂: 307.1447; Found: 307.1441.

5-Methyl-3,6-di-*p*-tolyl-1*H*-pyrimidine-2,4-dione (40)

Yield: 82% (754 mg, 2.46 mmol); White solid; mp: 210 - 212 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.98 (s, 3H), 2.42 (s, 3H), 2.42 (s, 3H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.28 ~ 7.36 (m, 6H), 8.32 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 12.3, 21.4, 21.6, 107.3, 128.1(128.09), 128.1(128.13), 129.7, 129.8, 130.0, 132.3, 138.6, 140.7, 146.6, 151.8, 164.8 ppm; HRMS (FAB) *m*/*z* Cal. for [M+H]⁺: C₁₉H₁₉N₂O₂: 307.1447; Found: 307.1441.

3,6-Diphenyl-5-propyl-1*H*-pyrimidine-2,4-dione (**4p**)

Yield: 90% (830 mg, 2.71 mmol); White solid; mp: 192 - 194 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.82 (t, *J* = 7.5 Hz, 3H), 1.45 ~ 1.57 (m, 2H), 2.30 (t, *J* = 7.8 Hz, 2H), 7.25 (d, *J* = 6.6 Hz, 2H), 7.42 ~ 7.51 (m, 8H), 8.63 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 14.2, 22.7, 28.3, 112.3, 128.0, 128.4, 128.6, 128.9, 129.2, 130.3, 132.6, 134.8, 147.3, 151.7, 164.2 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₁₉H₁₈N₂O₂: 306.1368; Found: 306.1365.

3,5,6-Triphenyl-1*H*-pyrimidine-2,4-dione (**4q**) (CAS No:67566-50-1)

Yield: 89% (905 mg, 2.66 mmol); White solid; mp: 294 - 296 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.04 ~ 7.27 (m, 5H), 7.28 ~ 7.52 (m, 10H), 11.55 (s, 1H) ppm; ¹³C NMR (75.5 MHz, DMSO- d_6) δ 111.5, 126.8, 127.5, 128.1, 128.9(128.87), 128.9(128.93), 129.2, 129.6, 131.5, 132.6, 133.4, 135.8, 149.4, 150.7, 162.9 ppm.

2-2. A Typical Procedure for the synthesis of pyrimidin-2,4-diones 4r-4u.

2,4-Dioxo-3,6-diphenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4r)

To a stirred suspension of commercial zinc dust (Aldrich, 10 µm, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring 10 min, to the reaction mixture was added benzonitrile (306 µL, 3.0 mmol) all at once. While maintaining THF reflux, ethyl α -bromoacetate (0.50 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h, and cooled to room temperature. To the reaction mixture was added phenyl isocyanate (360 μ L, 3.3 mmol) all at once, and stirred at 40 °C for 1 h. After cool the reaction mixture to 0 °C using ice bath, a solution of triphosgene (890 mg, 3 mmol) in THF (4 mL) was added, and then triethylamine (0.84 mL, 6 mmol) over 30 min using syringe pump. The reaction mixture was stirred at room temperature for 3 h, quenched with saturated aqueous NH₄Cl solution, and neutralized with saturated aqueous Na₂CO₃ solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude solid was solidified with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione 4r and the product was further isolated from the residual of the filtrates through by column chromatography (*n*-hexane/ ethyl acetate = 1/1) to give **4r** in a combined yield of 73% (735 mg, 2.19 mmol). White solid; mp: 212 - 214 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.05 (t, J = 7.2 Hz, 3H), 4.12 (q, J = 6.9 Hz, 2H), 7.21 ~ 7.26 (m, 2H), 7.32 ~ 7.51 (m, 8H), 9.64 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 13.7, 61.8, 107.9, 127.4, 128.3, 129.0(128.95), 129.0(129.02), 129.3, 131.1, 131.6, 133.8, 151.3, 151.4, 160.4, 164.0 ppm; HRMS (EI) m/z Cal. for [M]⁺: C₁₉H₁₆N₂O₄: 336.1110; Found: 336.1113.

3-Butyl-2,4-dioxo-6-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4s)

Yield: 69% (655 mg, 2.07 mmol); White solid; mp: 156 - 158 °C; ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, *J* = 7.5 Hz, 3H), 1.04 (t, *J* = 7.5 Hz, 3H), 1.33 (m, 2H), 1.59 (m, 2H), 3.87 (t, *J* = 7.5 Hz, 2H), 4.12 (q, *J* = 7.5 Hz, 2H), 7.45 ~ 7.54 (m, 5H), 10.0 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl3) δ 13.7, 20.2, 29.4, 40.8, 61.6, 107.5, 127.5, 128.8, 131.3, 131.4, 151.0, 151.9, 160.4, 164,2 ppm; HRMS (EI) *m*/*z* Cal. for [M]⁺ : C₁₇H₂₀N₂O₄ : 316.1423. Found: 316.1422.

3,6-Dibenzyl-2,4-dioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4t)

Yield: 55% (601 mg, 1.65 mmol); White solid; mp : 186 - 188 °C ; ¹H NMR (75.5 MHz, CDCl₃) δ 1.34 (t, *J* = 7.2 Hz, 3H), 3.94 (s, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 5.06 (s, 2H), 7.26 ~ 7.29 (m, 8H), 7.42 ~ 7.45 (m, 2H), 9.92 (s, 1H) ppm; ¹³C NMR (300 MHz, CDCl₃) δ 14.3, 37.1, 44.3, 62.0, 107.5, 128.0, 128.6, 129.1, 129.2, 134.2, 136.1, 152.2, 153.8, 160.2, 164.4 ppm; ; HRMS (EI) *m/z* Cal. for [M]⁺ : C₂₁H₂₀N₂O₄ : 364.1423. Found: 364.1427.

3-Benzyl-2,4-dioxo-6-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (4u)

Yield: 60 % (630 mg, 1.80 mmol); White solid; mp: 216 -2 18 °C ; ¹H NMR (300 MHz, CDCl₃) δ 1.34 (t, *J* = 7.1 Hz, 3H), 3.88 (s, 2H), 4.36 (q, *J* = 7.2 Hz, 2H), 7.18~7.31 (m, 7H), 7.43 ~ 7.54 (m, 3H), 9.74 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 14.2, 37.0, 62.0, 107.7, 127.9, 128.4, 129.0, 129.1, 129.4, 129.5, 134.0, 151.8, 154.5, 160.3, 164.4 ppm; HRMS (EI) *m/z* Cal. for [M]⁺ : C₂₀H₁₈N₂O₄; 350.1267. Found: 350.1267.

2-3. 2,4-Dioxo-3,6-diphenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid phenylamide (**4v**)

To a stirred suspension of commercial zinc dust (Aldrich, 10 µm, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring 10 min at THF reflux, to the reaction mixture was added benzonitrile (306 µL, 3.0 mmol) all at once. While maintaining THF reflux, ethyl α -bromoacetate (0.50 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h. The reaction mixture was cooled to room temperature, and added phenyl isocyanate (360 µL, 3.3 mmol). After stirring at 40 °C for 1 h, the reaction mixture was cooled to room temperature. To the reaction mixture, $Cu(OAc)_2$ (55 mg, 0.3 mmol) and a solution of phenyl isocyanate (489 μ L, 4.5 mmol) in THF (1.0 mL) were added successively. After stirring at 80 °C for 1 h, the reaction mixture was cooled to room temperature, quenched with saturated aqueous NH_4Cl solution, and neutralized with saturated aqueous Na_2CO_3 solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude material was crystalized with *n*-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione 4v and the product was further isolated from the residual of the filtrates through by column chromatography (*n*-hexane/ethyl acetate = 1/1) to afford 4v in a combined yield of 67% (775 mg, 2.02 mmol). White solid; mp: 236 - 240 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.01 (t, J = 7.5 Hz, 1H), 7.21 ~ 7.33 (m, 4H), 7.42 ~ 7.61 (m, 10H), 10.31 (s, 1H), 11.79 (s, 1H) ppm; ¹³C NMR (75.5 MHz, DMSO-*d*₆) δ 119.6, 124.0, 128.2, 128.4, 128.8, 128.9, 129.0, 129.1, 129.2, 129.5, 131.1, 132.1, 132.1, 135.5, 139.3, 150.9, 161.9, 162.0 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₂₃H₁₇N₃O₃: 383.1270; Found: 383.1267.

2-4. 3,6-Diphenyl-5-(1-phenyl-vinyl)-1*H*-pyrimidine-2,4-dione (4w)

To a stirred suspension of commercial zinc dust (Aldrich, 10 μ m, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring 10 min at THF reflux, to the reaction mixture was added benzonitrile (306 μ L, 3.0 mmol) all at once. While maintaining THF reflux, ethyl α -bromoacetate (0.50 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h. To this reaction mixture, phenylacetylene (363 μ L, 3.3 mmol) was added. After 1.5 h stirring at THF reflux, the reaction mixture was cooled to room temperature, and Cu(OAc)₂ (55 mg, 0.3 mmol) and a solution of phenyl isocyanate (489 μ L, 4.5 mmol) in THF (1.0 mL) were successively added. After stirring at THF reflux for 30 min, the reaction mixture was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution, and neutralized with saturated aqueous Na₂CO₃ solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered,

and concentrated under reduced pressure. The crude solid was washed with n-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione 4w and the product was further isolated from the residual of the filtrates through by column chromatography (*n*-hexane/ethyl acetate = 1/1) to afford **4w** in a combined yield of 75% (821 mg, 2.24 mmol). White solid; mp: 226 - 228 °C; ¹H NMR (300 MHz, CDCl₃) δ 5.11 (s, 1H), 5.68 (s, 1H), 7.23 ~ 7.48 (m, 15H), 9.02 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 113.2, 120.3, 126.1, 127.8, 127.9, 128.5, 128.6, 128.8, 128.9, 129.3, 130.7, 132.5, 134.5, 140.2, 140.6, 148.7, 151.6, 162.9 ppm; HRMS (EI) *m/z* Cal. for [M]⁺: C₂₄H₁₈N₂O₂: 366.1368; Found: 366.1365.

2-5. Synthesis of 5-Bromo-3,6-diphenyl-1*H*-pyrimidine-2,4-dione (4x)

To a stirred suspension of commercial zinc dust (Aldrich, 10 µm, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring for 10 min at THF reflux, benzonitrile (306 μ L, 3.0 mmol) was added all at once. While maintaining THF reflux, ethyl α bromoacetate (0.50 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h. The reaction mixture was cooled to 0 °C, and then N-bomosuccinimide (552 mg, 3.1 mmol) was added. After 1 h stirring at 0 °C, to the reaction mixture was added successively Cu(OAc)₂ (55 mg, 0.3 mmol) and a solution of phenyl isocyanate (489 µL, 4.5 mmol) in THF (1.0 mL). The reaction mixture was stirred at THF reflux for 30 min, and allowed to cool to room temperature, quenched with saturated aqueous NH₄Cl solution, and neutralized with saturated aqueous Na₂CO₃ solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude solid was washed with *n*-hexane/ethyl acetate (4/1) to afford pyrimidine-2,4-dione **4x** and the product was further isolated from the residual of the filtrates through by column chromatography (n-hexane/ethyl acetate = 1/1) to afford 4x in a combined yield of 60% (621 mg, 1.81 mmol). White solid; mp: 216 - 220 °C; ¹H NMR (300 MHz, DMSO- d_6) δ 7.32 (d, J = 7.2 Hz, 2H), 7.40 ~ 7.59 (m, 8H), 11.88 (s, 1H) ppm; ¹³C NMR (75.5) MHz, DMSO-*d*_δ) δ 95.2, 128.3, 128.4, 128.6, 128.7, 129.0, 130.5, 132.7, 135.8, 150.2, 151.1, 159.9 ppm; HRMS (EI) m/z Cal. for $[M]^+$: $C_{16}H_{11}^{79}BrN_2O_2$: 342.0004; Found: 342.0000.; Cal. for $[M+2]^+$: $C_{17}H_{11}^{81}BrN_2O_2$: 343.9983; Found: 343.9983

2-6. Synthesis of 3-Amino-3-phenyl-2-phenylcarbamoyl-acrylic acid ethyl ester (5)

(306 µL, 3.0 mmol)

To a stirred suspension of commercial zinc dust (Aldrich, 10 µm, 392 mg, 6.0 mmol) in THF (1.0 mL) was added a solution of methanesulfonic acid in THF (1 M, 0.3 mL) at 80 °C bath temperature. After stirring for 10 min, benzonitrile (306 μ L, 3.0 mmol) was added all at once. While maintaining THF reflux, ethyl α -bromoacetate (0.50 mL, 4.5 mmol) was added over 1 h using syringe pump, and the reaction mixture was further stirred for 1 h. The reaction mixture was cooled to room temperature, and phenyl isocyanate (360 µL, 3.3 mmol) was added. The reaction mixture was stirred at 40 °C for 1 h. The reaction was guenched with saturated aqueous NH₄Cl solution, and the solution was neutralized with saturated aqueous Na₂CO₃ solution. The organic compounds were extracted with ethyl acetate (50 mL x 3). The combined organic layer was dried with anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude solid was purified by recrystallization (*n*-hexane/ethyl acetate = ca. 4/1) to afford **5**, and the product was further isolated from the residual of filtrates through by column chromatography (*n*-hexane/ethyl acetate = 4/1) to afford 5 in a combined yield of 92% (853 mg, 2.75 mmol). White solid; mp: 126 - 128 °C; 0.57 (t, *J* = 7.2 Hz, 3H), 3.71 (q, *J* = 7.2 Hz, 2H), 5.42 (brs, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 7.23 ~ 7.46 (m, 7H), 7.59 (d, *J* = 8.1Hz, 2H), 10.82 (brs, 2H) ppm; ¹³C NMR (300 MHz, CDCl₃) δ 13.1, 59.9, 92.1, 120.7, 123.6, 126.8, 128.5, 128.9, 129.6, 138.8, 140.6, 167.6, 169.8, 170.7 ppm; HRMS (EI) *m/z* Cal. for [M]⁺ : C₁₈H₁₈N₂O₃ : 310.1317. Found: 310.1315.

Crystal Structure for 4c (CCDC 938319)

A colorless plate-like specimen of C₁₈H₁₆N₂O₂, approximate dimensions 0.100 mm x 0.290 mm x 0.440 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured. The total exposure time was 9.83 hours. The frames were integrated with the Bruker SAINT software package using a narrowframe algorithm. The integration of the data using a monoclinic unit cell yielded a total of 25573 reflections to a maximum θ angle of 28.27° (0.75 Å resolution), of which 3644 were independent (average redundancy 7.018, completeness = 99.8%, $R_{int} = 1.91\%$, $R_{sig} = 0.92\%$) and 3365 (92.34%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 11.1596(3) Å, <u>b</u> = 9.7432(3) Å, <u>c</u> = 13.8929(4) Å, β = 102.5580(10)°, volume = 1474.44(7) Å³, are based upon the refinement of the XYZ-centroids of 9941 reflections above 20 σ (I) with 5.148° < 2 θ < 56.53°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.944. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9627 and 0.9913. The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{18}H_{16}N_2O_2$. The final anisotropic full-matrix least-squares refinement on F^2 with 201 variables converged at R1 = 3.95%, for the observed data and wR2 = 10.98% for all data. The goodness-of-fit was 1.061. The largest peak in the final difference electron density synthesis was 0.354 e^{-/A^3} and the largest hole was -0.213 e^{-/A^3} with an RMS deviation of 0.058 e^{-/Å³}. On the basis of the final model, the calculated density was 1.317 g/cm³ and F(000), 616 e.

Table S1. Sample and crystal data for 4c.

Chemical formula	$C_{18}H_{16}N_2O_2$	$C_{18}H_{16}N_2O_2$		
Formula weight	292.33	292.33		
Temperature	150(2) K	150(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal size 0.100 x 0.290 x 0.440 m) mm		
Crystal habit	colorless plate	colorless plate		
Crystal system	monoclinic	monoclinic		
Space group	P 1 21/c 1	P 1 21/c 1		
Unit cell dimensions	a = 11.1596(3) Å	$\alpha = 90^{\circ}$		
	b = 9.7432(3) Å	$\beta = 102.5580(10)^{\circ}$		
	c = 13.8929(4) Å	$\gamma = 90^{\circ}$		
Volume	1474.44(7) Å ³			
Z	4			
Density (calculated)	1.317 g/cm^3			
Absorption coefficient	0.087 mm^{-1}	0.087 mm ⁻¹		
F(000)	616			

Table S2. Data collection and structure refinement for 4c.

1.87 to 28.27°		
-14<=h<=14, -12<=k<=12, -18<=l<=18		
25573		
3644 [R(int) = 0.0191]		
99.8%		
multi-scan		
0.9913 and 0.9627		
direct methods		
SHELXS-97 (Sheldrick, 2008)		
Full-matrix least-squares on F ²		
SHELXL-97 (Sheldrick, 2008)		
$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
3644 / 0 / 201		
1.061	.061	
0.001		
3365 data; I>2σ(I)	R1 = 0.0395, wR2 = 0.1071	
all data	R1 = 0.0422, wR2 = 0.1098	
w=1/[$\sigma^2(F_o^2)$ +(0.0577P) ² +0.5002P] where P=(F_o^2 +2 F_c^2)/3		
0.354 and -0.213 eÅ $^{\text{-3}}$		
0.058 eÅ ⁻³		
	1.87 to 28.27° -14<=h<=14, -12<=k<= 25573 3644 [R(int) = 0.0191] 99.8% multi-scan 0.9913 and 0.9627 direct methods SHELXS-97 (Sheldrick Full-matrix least-square SHELXL-97 (Sheldrick $\Sigma w(F_o^2 - F_c^2)^2$ 3644 / 0 / 201 1.061 0.001 3365 data; I>2 σ (I) all data w=1/[$\sigma^2(F_o^2)$ +(0.0577P) where P=(F_o^2 +2 F_c^2)/ 0.354 and -0.213 eÅ ⁻³ 0.058 eÅ ⁻³	

¹H Spectrum of 4a in CDCl₃

¹H Spectrum of 4b in CDCl₃

¹³C Spectrum of 4b in CDCl₃

¹H Spectrum of 4c in CDCl₃

¹³C Spectrum of 4c in CDCl₃

¹H Spectrum of 4d in CDCl₃

¹³C Spectrum of 4d in CDCl₃

¹H Spectrum of 4e in DMSO-*d*₆

¹³C Spectrum of 4e in DMSO-*d*₆

¹H Spectrum of 4f in CDCl₃

¹³C Spectrum of 4f in CDCl₃

¹H Spectrum of 4g in CDCl₃

¹H Spectrum of 4h in DMSO-*d*₆

¹³C Spectrum of 4h in DMSO-*d*₆

¹H Spectrum of 4i in DMSO-*d*₆

¹³C Spectrum of 4i in DMSO-*d*₆

¹H Spectrum of 4j in CDCl₃

¹³C Spectrum of 4j in CDCl₃

¹H Spectrum of 4kin CDCl₃

¹³C Spectrum of 4k in CDCl₃

¹H Spectrum of 4l in CDCl₃

¹³C Spectrum of 4l in CDCl₃

¹H Spectrum of 4m in CDCl₃

¹³C Spectrum of 4m in CDCl₃

¹H Spectrum of 4n in CDCl₃

¹³C Spectrum of 4n in CDCl₃

¹H Spectrum of 40 in CDCl₃

¹H Spectrum of 4p in CDCl₃

¹³C Spectrum of 4p in CDCl₃

¹H Spectrum of 4q in DMSO-*d*₆

¹³C Spectrum of 4q in DMSO-*d*₆

¹H Spectrum of 4r in CDCl₃

¹H Spectrum of 4s in CDCl₃

¹H Spectrum of 4t in CDCl₃

S55

¹H Spectrum of 4u in CDCl₃

¹³C Spectrum of 4u in CDCl₃

¹H Spectrum of 4v in DMSO-*d*₆

¹³C Spectrum of 4v in DMSO-*d*_×

¹H Spectrum of 4w in CDCl₃

¹³C Spectrum of 4w in CDCl₃

¹H Spectrum of 4x in DMSO-*d*₆

¹³C Spectrum of 4x in DMSO-*d*₆

¹H Spectrum of 5 in CDCl₃

