Supporting Information

Adducts of Nitrous Oxide and N-Heterocyclic Carbenes: Syntheses, Structures and Reactivity

Alexander G. Tskhovrebov, Basile Vuichoud, Euro Solari, Rosario Scopelliti, and Kay Severin*

Table of Contents

	Page
General remarks	S1
General procedure for the synthesis of compounds 1–7	S1
Synthesis of compound 8	S3
General procedure for the thermolysis of 1, 3, 5 and 8	S4
Synthesis of compound 13	S9
Synthesis of compound 14	S9
Synthesis of compound 15	S10
Synthesis of compound 16	S10
Synthesis of compound 17	S11
Synthesis of complex 18	S11
Synthesis of complex 19	S12
Synthesis of complex 20	S12
Synthesis of complex 21	S13
Synthesis of complex 22	S13
Synthesis of complex 23	S14
NMR and UV-Vis spectra	S15
X-ray crystallography	S28
References	S29

General remarks

Unless stated otherwise, the reactions were performed under an atmosphere of dry dinitrogen. Solvents were purified and dried according to standard procedures. All the reagents except of dixylylimidazolium chloride were obtained from commercial sources. Dixylylimidazolium chloride was prepared analogously to dimesitylimidazolium chloride. No (99.999%) was purchased from Air-liquide. NMR spectra were measured on a Bruker Avance DPX-400 (1H: 400 MHz, 13C: 100 MHz), Bruker Avance-200 (1H: 200 MHz) or Bruker DRX-400 (15N: 40.5 MHz) spectrometer. Spectra were referenced against formamide (112 ppm). Mass spectra were recorded with a Q-TOF Ultima (Waters) instrument. UV-Vis spectra were measured on PerkinElmer Lambda 40 UV-Vis spectrometer. Combustion analysis was performed with a Thermo Scientific Flash 2000 Organic Elemental Analyzer.

General procedure for the synthesis of compounds 1–7

KHMDS (1 equiv.) was added to a suspension of the respective imidazolium salt (1 equiv.) in THF and the resulting mixture was stirred for 24 h. The solution was then filtered and stirred under an atmosphere of N_2O for additional 24 h. The solution or suspension that formed was concentrated to 20 mL (0.5 mL for 2), and the precipitate was isolated by filtration, washed with hexane (3×10 mL), and dried under vacuum.

- **1**. KHMDS (9.27 mmol, 1.85 g), 1,3-dimesitylimidazolium chloride (9.27 mmol, 3.16 g) and THF (1 L) were used. Yield: 1.45 g (45%). The NMR data of **1** correspond to what has been published.² UV/Vis (CH₂Cl₂): $\lambda_{\text{max}} = 302$ nm, $\varepsilon = 1.33 \times 10^4$ M⁻¹cm⁻¹, $\lambda = 448$ nm, $\varepsilon = 205$ M⁻¹cm⁻¹. ¹⁵N NMR (CDCl₃): δ 152.0 (NMes), 336.9 (CNNO), 617.6 (CNNO).
- 2. KHMDS (0.47 mmol, 94 mg), 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (0.47 mmol, 200 mg) and THF (5 mL) were used. Yield: 85 mg (42%). The NMR data of 2

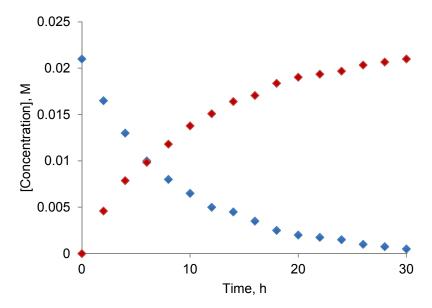
correspond to what has been published.2 UV/Vis (CH₂Cl₂): $\lambda_{\text{max}} = 305 \text{ nm}$, $\varepsilon = 0.97 \times 10^4 \text{ M}^{-1}\text{cm}^{-1}$, $\lambda = 446 \text{ nm}$, $\varepsilon = 148 \text{ M}^{-1}\text{cm}^{-1}$.

- 3. KHMDS (1.73 mmol, 346 mg), 1,3-dicyclohexylimidazolium tetrafluoroborate (1.73 mmol, 555 mg) and THF (100 mL) were used. Yield: 271 mg (56%). Elem. anal. calcd for $C_{15}H_{24}N_4O$: C 65.17; H 8.75; N 20.27. Found: C 65.08; H 9.04; N 20.28. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.17–2.10 (m, 20 H, CH₂), 4.47 (t of t, 11.8 Hz, 3.7 Hz, 2 H, CH from Cy), 6.99 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 25.13, 25.28, 33.09 (CH₂), 56.20 (CH from Cy), 113.92 (CH=CH), 150.63 (CNNO). MS (ESI⁺), found: 277.2029 [M+H]⁺; calcd for $C_{15}H_{25}N_4O$: 277.2022. UV/Vis (CH₂Cl₂): λ_{max} = 294 nm, ε = 1.20×10⁴ M⁻¹cm⁻¹, λ = 431 nm, ε = 218 M⁻¹cm⁻¹ Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of 3 in hexane/CH₂Cl₂ (2:1).
- **4.** KHMDS (352 mg, 1.76 mmol), 1,3-dixylylimidazolium chloride (550 mg, 1.76 mmol) and THF (200 mL) were used. Yield: 293 mg (52%). Elem. anal. calcd for $C_{19}H_{20}N_4O$: C 71.23; H 6.29; N 17.49. Found: C 71.38; H 6.35; N 17.87. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.20 (s, 12 H, Me), 6.98 (s, 2 H, CH=CH), 7.23 (d, 7.40 Hz, 4 H, *m*-CH from Xyl), 7.35 (t, 7.40 Hz, 2 H, *p*-CH from Xyl). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 17.62 (Me), 118.67 (CH=CH), 128.49, 129.59, 135.14, 135.33 (arenes), 152.99 (CNNO). MS (ESI⁺), found: 321.1715 [M+H]⁺; calcd for $C_{19}H_{21}N_4O$: 321.1788. [M+H]⁺; calcd for $C_{19}H_{21}N_4O$: 321.1788. UV/Vis (CH₂Cl₂): $\lambda_{max} = 303$ nm, $\varepsilon = 1.17 \times 10^4$ M⁻¹cm⁻¹, $\lambda = 448$ nm, $\varepsilon = 158$ M⁻¹cm⁻¹. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of 4 in THF.
- **5.** KHMDS (3.17 mmol, 634 mg), 1,3-dimethylimidazolium methylsulfate (3.17 mmol, 661 mg) and THF (200 mL) were used. Yield: 180 mg (40%). Elem. anal. calcd for C₅H₈N₄O: C 42.85; H 5.75; N 39.98. Found: C 42.58; H 5.35; N 39.64. ¹H NMR (400 MHz, CD₂Cl₂): δ 3.71 (s, 6 H, Me), 6.81 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz CD₂Cl₂): δ 35.43 (CH₃), 118.14 (CH=CH), 152.69 (CNNO). MS (ESI⁺), found: 141.0776 [M+H]⁺; calcd for C₅H₉N₄O: 141.0770. UV/Vis (CH₂Cl₂): λ_{max} = 298 nm, ε = 1.2×10⁴ M⁻¹cm⁻¹, λ = 420 nm, ε = 544 M⁻¹cm⁻¹, λ = 442 nm, ε = 461 M⁻¹cm⁻¹; (H₂O): λ_{max} = 289 nm, ε = 1.1×10⁴ M⁻¹cm⁻¹. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **5** in hexane/CH₂Cl₂ (1:1).

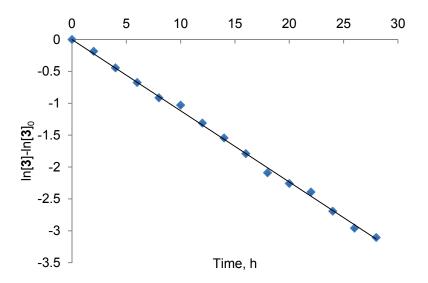
6. KHMDS (1.67 mmol, 334 mg), 1,3-diisopropylimidazolium tetrafluoroborate (1.67 mmol, 316 mg) and THF (100 mL) were used. Yield: 140 mg (43%). Elem. anal. calcd for C₉H₁₆N₄O: C 55.08; H 8.21; N 28.54. Found: C 55.23; H 8.40; N 28.80. ¹H NMR (400 MHz, CDCl₃): δ 1.42 (d, 6.7 Hz, 12 H, CH(CH₃)₂), 4.96 (sept, 6.7 Hz, 2 H, CH(CH₃)₂), 6.95 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 22.46 (CH(*C*H₃)₂), 49.10 (*C*H(CH₃)₂), 113.38 (CH=CH), 150.47 (CNNO). ¹⁵N NMR (CDCl₃): δ 106 (N*i*Pr), 341.8 (CNNO), 604.6 (CNNO). MS (ESI⁺), found: 197.1411 [M + H]⁺; calcd for C₉H₁₇N₄O: 197.1475. UV/Vis (CH₂Cl₂): λ_{max} = 294 nm, ε = 1.04×10⁴ M⁻¹cm⁻¹, λ = 432 nm, ε = 167 M⁻¹cm⁻¹. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **6** in hexane/CH₂Cl₂ (1:2).

7. KHMDS (553 mg, 2.77 mmol), 1-ethyl-3-methylimidazolium bromide (530 mg, 2.77 mmol) and THF (200 mL) were used. Yield: 170 mg (40%). Elem. anal. calcd for $C_6H_{10}N_4O$: C 46.74; H 6.54; N 36.34. Found: C 47.12; H 6.71; N 36.16. ¹H NMR (400 MHz, CD₂Cl₂): δ 1.39 (t, 7.2 Hz, 3 H, CH₂CH₃), 4.10 (q, 7.2 Hz, 2 H, CH₂CH₃), 6.82 and 6.86 (two d, 2.3 Hz, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 14.74 (CH₂CH₃), 35.67 (CH₂CH₃), 43.00 (CH₃), 116.23 and 118.49 (CH=CH), 152.13 (CNNO). MS (ESI⁺), found: 155.0944 [M + H]⁺; calcd for $C_6H_{11}N_4O$: 155.1005. UV/Vis (CH₂Cl₂): λ_{max} = 297 nm, ε = 1.11×10⁴ M⁻¹cm⁻¹, λ = 437 nm, ε = 169 M⁻¹cm⁻¹. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of 7 in hexane/CH₂Cl₂ (1:1).

Synthesis of compound 8


A solution of SIMes (0.33 mmol, 100 mg) in hexane/Et₂O (1:2, 3 mL) was placed under N₂O, resulting in the precipitation of a yellow solid. After 24 h the precipitate was isolated by filtration, washed with hexane (3×1 mL) and dried under vacuum. Yield: 71 mg (62%). Elem. anal. calcd for C₂₁H₂₆N₄O: C 71.97; H 7.48; N 15.99. Found: C 71.90; H 7.92; N 16.36. 1 H NMR (400 MHz, CD₂Cl₂): δ 2.29 (s, 12 H, *o*-Me), 2.31 (s, 6 H, *p*-Me), 4.12 (s, 4 H, CH₂-CH₂), 6.96 (s, 4 H, CH from Mes). 13 C{ 1 H} NMR (100 MHz, CD₂Cl₂): δ 17.46 (*o*-Me),

20.62 (p-Me), 47.97 (CH₂-CH₂), 129.21, 133.93, 135.33, 138.40 (Mes), 165.79 (C=N-N=O). MS (ESI⁺), found: 351.2185 [M + H]⁺; calcd for C₂₁H₂₇N₄O: 351.2257. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **8** in hexane/Et₂O (1:4).


General procedure for the thermolysis of 1, 3, 5 and 8

A solution of **1**, **3**, **8** (0.021 M) or **5** (saturated solution at RT) in THF- d_8 or bromobenzene- d_5 was heated at 60 °C. The time course of the decomposition into the corresponding ureas was determined by 1 H NMR spectroscopy.

9. NMR yield: quant. after 36 h. ¹H NMR (400 MHz, THF- d_8): δ 0.91–0.99 (m, 20 H, CH₂), 4.11 (m, 2 H, CH from Cy), 5.92 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, toluene- d_8): δ 25.38, 25.45, 32.41 (CH₂), 51.68 (CH from Cy), 106.24 (CH=CH), 151.96 (C=O). MS (ESI⁺), found: 249.1967 [M + H]⁺; calcd for C₁₅H₂₅N₂O: 249.2039.

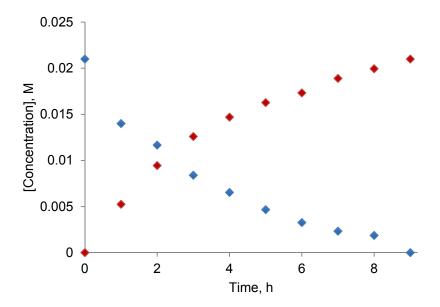


Figure S1. Concentration vs. time for the decomposition of **3** (\bullet) into **9** (\bullet) in THF- d_8 (0.021 M, 60 °C).

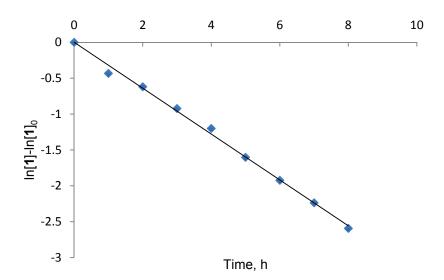


Figure S2. Plot of rate $\ln[3]-\ln[3]_0$ vs. time for the decomposition of **3** into **9** in THF- d_8 (0.021 M, 60 °C). $k = 0.11 \text{ h}^{-1}$, $t_{1/2} = 5.6 \text{ h}$.

10. NMR yield: quant. after 12 h. Analyses were in accord with published data.²

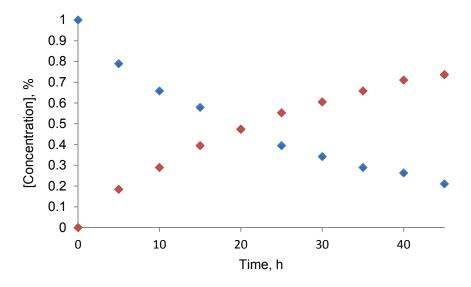


Figure S3. Concentration vs. time for the decomposition of **1** (\blacklozenge) into **10** (\blacklozenge) in THF- d_8 (0.021 M, 60 °C).

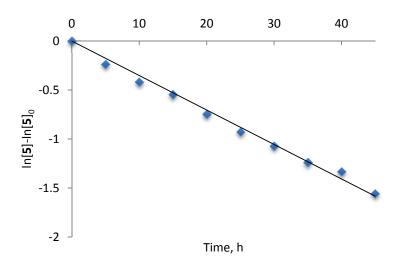


Figure S4. Plot of rate $\ln[1]-\ln[1]_0$ vs. time for the decomposition of **1** into **10** in THF- d_8 (0.021 M, 60 °C). k = 0.31 h⁻¹, $t_{1/2} = 2.3$ h (for reactions with $[1]_0 = 0.011$ M: k = 0.32 h⁻¹, $t_{1/2} = 2.2$ h, for reactions with $[1]_0 = 0.031$ M: k = 0.34 h⁻¹, $t_{1/2} = 2.0$ h).

11. NMR yield: quant. after 72 h. ¹H NMR (400 MHz, THF- d_8): δ 0.91 (s, 6 H, CH₃), 4.11 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, toluene- d_8): δ 25.38 (CH₃), 106.24 (CH=CH), 151.96 (C=O). MS (ESI⁺), found: 113.0715 [M + H]⁺; calcd for C₅H₉N₂O: 113.0787.

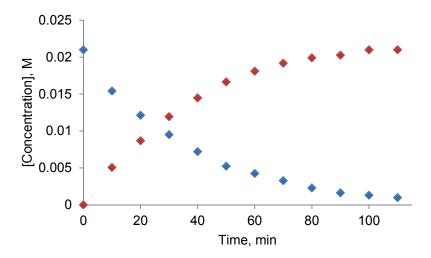


Figure S5. Concentration vs. time for the decomposition of **5** (\blacklozenge) into **11** (\blacklozenge) in bromobenzene- d_5 (60 °C).

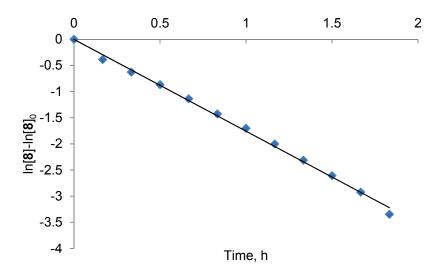


Figure S6. Plot of rate $\ln[5]-\ln[5]_0$ vs. time for the decomposition of **5** into **11** in bromobenzene- d_5 (60 °C). $k = 0.035 \text{ h}^{-1}$, $t_{1/2} = 19.7 \text{ h}$.

12. NMR yield: quant. after 2 h. ¹H NMR (400 MHz, THF- d_8): δ 2.24 (s, 6 H, o-Me), 2.26 (s, 12 H, p-Me), 3.73 (s, 4 H, CH₂–CH₂), 6.86 (s, 4 H, CH from Mes). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 17.08 (o-Me), 20.03 (p-Me), 43.76 (CH₂–CH₂), 128.67, 134.48, 136.46, 136.99 (C and CH from Mes), 156.18 (C=O). MS (ESI⁺), found: 323.2123 [M+H]⁺; calcd for C₂₁H₂₇N₂O: 323.2123.

Figure S7. Concentration vs. time for the decomposition of **8** (\blacklozenge) into **12** (\blacklozenge) in THF- d_8 (0.021 M, 60 °C).

Figure S8. Plot of rate $ln[8]-ln[8]_0$ vs. time for the decomposition of **8** into **12** in THF- d_8 (0.021 M, 60 °C). $k = 1.66 \text{ h}^{-1}$, $t_{1/2} = 0.4 \text{ h}$.

Synthesis of compound 13

Excess of HCl, (0.2 mL, 37% in water) was added to a solution of **1** (50 mg, 0.14 mmol) in CH₂Cl₂ (20 mL) and the resulting mixture was stirred for 0.5 h. The solution was subsequently concentrated to ca. 1 mL, Et₂O (10 mL) was added, and the white solid was isolated by filtration and dried under vacuum. Yield: 22 mg (45%). Elem. anal. calcd for $C_{21}H_{26}N_3Cl$: C 70.86; H 7.36; N 11.81. Found: C 70.49; H 7.30; N 11.94. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.21 (s, 12 H, o-Me), 2.40 (s, 6 H, p-Me), 6.79 (s, 2 H, CH=CH), 7.12 (s, 4 H, CH, arenes), 7.52 (s, br, 2 H, NH₂). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 17.26 (o-Me), 21.06 (p-Me), 116.77, 128.23, 129.97, 135.87, 141.40 (arenes, CH=CH), 145.70 (C=NH₂). MS (ESI⁺), found: 320.2127 [M – CI]⁺; calcd for $C_{21}H_{26}N_3$: 320.2199.

Synthesis of compound 14

TsOH (92 mg, 0.48mmol) was added to a solution of **1** (84 mg, 0.24 mmol) in THF (5 mL) and the resulting mixture was stirred for 0.5 h. Hexane (10 mL) was added to the solution and the resulting colorless solid was isolated by filtration and dried under vacuum. Yield: 55 mg (47%). Elem. anal. calcd for $C_{28}H_{34}N_3O_3S$: C 68.26; H 6.96; N 8.53. Found: C 68.06; H 6.74; N 8.38. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.18 (s, 12 H, o-Me), 2.38 (s, 3 H, p-Me from Ts), 2.39 (s, 6 H, p-Me from Mes), 6.79 (s, 2 H, CH=CH), 7.07 (s, br, 2 H, NH₂), 7.09 (s, 4 H, CH from Mes), 7.11 (d, 7.30 Hz, 2 H, CH from Ts), 7.40 (d, 7.30 Hz, 2 H, CH from Ts). $^{13}C\{^{1}H\}$ NMR (100 MHz, CD₂Cl₂): δ 17.23 (o-Me), 20.92 (p-Me from Mes), 20.94 (p-Me from Ts), 116.82, 125.66, 128.10, 128.27, 130.05, 135.88, 138.95, 141.52, 143.85, (arenes, CH=CH), 145.83 (C=NH₂). MS (ESI⁺), found: 320.2127 [M – TsO]⁺; calcd for $C_{21}H_{26}N_3$:

320.2199. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **14** in hexane/THF (1:4).

Synthesis of compound 15

AcCl (0.72 mmol, 57 mg) was added to a solution of **1** (0.24 mmol, 85 mg) in THF (5 mL). After 30 min, hexane (5 mL) was added, and the colorless solid was collected, washed with hexane (3×3 mL), and dried under vacuum. Yield: 80 mg (84%). Elem. anal. calcd for $C_{23}H_{28}CIN_4O$: C 69.42; H 7.09; N 10.56. Found: C 69.22; H 7.08; N 10.46. ¹H NMR, (400 MHz, CD₂Cl₂): δ 1.84 (s, 3 H, C(O)Me), 2.17 (s, 12 H, *p*-Me), 2.29 (s, 6 H, *o*-Me), 6.99 (s, 4 H, CH from Mes), 7.21 (s, 2 H, CH=CH), 13.30 (s, 1 H, NH). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 17.61 (*o*-Me), 20.90 (*p*-Me), 22.36 (C(O)*Me*), 121.77, 129.71, 135.31, 141.31 (arenes, CH=CH), 140.90 (C=N), 171.57 (*C*(O)Me). MS (ESI⁺), found: 362.2232 [M – CI]⁺; calcd for $C_{23}H_{28}N_3O$: 362.2305. Crystals, suitable for X-ray analysis, were obtained by the slow evaporation of a solution of **15** in hexane/THF (1:4).

Synthesis of compound 16

Ph₃CBF₄ (0.25 mmol, 83 mg) was added to a solution of **1** (0.25 mmol, 87 mg) in CH₂Cl₂ (5 mL) and the solution was stirred at RT. After 30 min, the solution was evaporated to dryness. The resulting light-yellow solid was washed with Et₂O (3×3 mL) and dried under vacuum. Yield: 140 mg (82%). Elem. anal. calcd for C₄₀H₃₉N₄OBF₄: C 69.16; H 5.79; N 8.25.

Found: C 69.14; H 6.02; N 8.04. ¹H NMR (400 MHz, CDCl₃): δ 1.89 (s, 12 H, o-Me), 2.34 (s, 6 H, p-Me), 6.80 (d, J = 7.5 Hz, 6 H, o-CH from Ph), 6.95 (s, 4 H, CH from Mes), 7,25 (m, 6 H, m-CH from Ph), 7,34 (m, 3 H, p-CH from Ph), 7.83 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 17.10 (o-Me), 20.94 (p-Me), 98.40 (CPh₃), 125.51-142.02 (arenes, CH=CH, CN=NO). MS (ESI⁺), found: 592.3202 [M – BF₄]⁺; calcd for C₄₀H₃₉N₄O: 592.3196. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **16** in hexane/CH₂Cl₂ (1:1).

Synthesis of compound 17

$$\begin{array}{c}
\text{Mes} \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
N \\
-N \\
-N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
\text{Mes} \\
N \\
-N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
N \\
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
-SO_2$$

$$\begin{array}{c}
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
-SO_2$$

$$\begin{array}{c}
N \\
-SO_2
\end{array}$$

$$\begin{array}{c}
N \\
-SO_2$$

$$\begin{array}{c}
N \\
-SO$$

SOCl₂ (0.21 mmol, 25 mg) was added to a solution of **1** (0.18 mmol, 63 mg) in THF (5 mL). The formation of bubbles was observed immediately. After 30 min, a brown-yellow solid was isolated by filtration. Hexane (3 mL) was added to the filtrate, and an additional amount of product was collected. The combined solids were washed with hexane (3×3 mL) and dried under vacuum. Yield: 52 mg (76%). Analyses were in accord with published data.³ *Qualitative detection of SO*₂: The formation of SO₂ was evidenced by the placing of a paper test stripe soaked with a Na₂Cr₂O₇ solution over the reaction mixture after the addition of SOCl₂. The color of the test stripe turned from orange to green.

Synthesis of complex 18

1 (0.11 mmol, 40 mg) was added to a suspension of CrCl₃(THF)₃ (0.11 mmol, 43 mg) in THF (5 mL). After 24 h, the pale purple precipitate was filtered, washed with THF (3×1 mL), and dried under vacuum. Yield: 61 mg (82%). Elem. anal. calcd for C₂₉H₄₀Cl₃N₄O₃Cr: C 53.60; H 6.21; N 8.62. Found: C 53.14; H 5.89; N 8.34. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **18** in THF.

Synthesis of complex 19

1 (0.46 mmol, 200 mg) was added to a suspension of [Cu(OTf)]₂-toluene (0.14 mmol, 74 mg) in THF (5 mL), and the solution was kept under N₂ resulting in the precipitation of a dark yellow solid. After 24 h, hexane (10 mL) was added under stirring and the precipitate was filtered, washed with hexane (3×1 mL), and dried under vacuum. Yield: 230 mg (84%). Elem. anal. calcd for C₄₃H₄₈CuF₃N₈O₅S: C 56.79; H 5.32; N 12.32. Found: C 56.55; H 5.12; N 11.82. ¹H NMR (400 MHz, CDCl₃): δ 2.00 (s, 24 H, o-Me), 2.25 (s, 12 H, p-Me), 6.89 (s, 8 H, CH, Mes), 7.17 (s, 4 H, CH=CH). ¹³C{¹H} NMR (100 MHz CDCl₃): δ 17.75 (o-Me), 21.13 (p-Me), 121.01, 129.81, 130.40, 134.41, 140.66 (arenes, CH=CH), 146.98 (CNNO). MS (ESI⁺), found: 759.3196 [M – CF₃SO₃]⁺; calcd for C₄₂H₄₈CuN₈O₂: 759.3368. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **19** in THF.

Synthesis of complex 20

1 (0.13 mmol, 45 mg) was added to a suspension of Fe(OTf)₂ (0.065 mmol, 23 mg) in THF (5 mL) and the suspension was stirred under N₂. After 24 h, the dark red solution was layered with hexane (10 mL), which resulted in the formation of a red oil and a few crystals of 21. Due to the low yield, an elemental analysis was not performed.

Synthesis of complex 21

1 (0.23 mmol, 80 mg) was added to a solution of SnCl₃Ph (0.23 mmol, 69 mg) in THF (10 mL), and the colorless solution was kept under N₂ for 24 h resulting in the precipitation of a colorless solid. Hexane (10 mL) was added under stirring and the precipitate was filtered, washed with hexane (3×1 mL), and dried under vacuum. Yield: 140 mg (94%). Elem. anal. calcd for $C_{27}H_{29}Cl_3N_4OSn$: C 49.84; H 4.49; N 8.61. Found: C 49.38; H 4.52; N 8.68. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.07 (s, 12 H, o-Me), 2.35 (s, 6 H, p-Me), 6.91 (s, 4 H, CH, Mes), 7.27 (s, 2 H, CH=CH), 7.38–7.48 (m, 3 H, m-CH and p-CH from Ph), 7.75 (d, 7.1 Hz, 2 H, o-CH from Ph). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 17.37 (o-Me), 20.99 (p-Me), 122.32, 128.36, 129.67, 130.16, 134.12, 134.54, 141.52, 141.84 (arenes, CH=CH), 147.39 (CNNO). Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **21** in THF.

Synthesis of complex 22

1 (0.23 mmol, 80 mg) was added to a suspension of $CuCl_2$ (0.23 mmol, 31 mg) in MeOH (2 mL), what led to the formation of brown yellow solution. After 24 h, the solution was concentrated to ca. 1 mL. The resulting precipitate was isolated by filtration, washed with methanol (3×0.5 mL), and dried under vacuum. Yield: 52 mg (46%). Elem. anal. calcd for $C_{42}H_{48}Cl_4Cu_2N_8O_2$: C 52.23; H 5.01; N 11.60. Found: C 51.77; H 5.17; N 11.21. MS (ESI⁺), found: 965.1304 [M+H]⁺; calcd for $C_{42}H_{49}Cl_4Cu_2N_8O_2$: 965.1597. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of **22** in MeOH.

Synthesis of complex 23

1 (0.16 mmol, 57 mg) was added to a solution of $Zn(C_6F_5)_2$ (0.16 mmol, 65 mg) in CH_2Cl_2 (2 mL). Hexane (2 mL) was added to the colorless solution and the resulting precipitate was isolated by filtration, washed with hexane (3×1 mL), and dried under vacuum. Yield: 85 mg (69%). Elem. anal. calcd for $C_{33}H_{24}F_{10}N_4OZn$: C 52.99; H 3.23; N 7.49. Found: C 52.76; H 3.16; N 7.49. ¹H NMR (400 MHz, CD_2Cl_2): δ 1.94 (s, 12 H, o-Me), 2.18 (s, 6 H, p-Me), 6.79 (s, 4 H, CH, Mes), 7.06 (s, 2 H, CH=CH). ¹³C{¹H} NMR (100 MHz, CD_2Cl_2): δ 17.05 (o-Me), 20.69 (p-Me), 119.23 (m), 135.32 (m), 136.88 (m), 138.83 (m), 140.46 (m), 147.93 (m), 149.44 (m, C_6F_5), 120.80 (CH=CH), 129.38 (CH from Mes), 130.39, 134.57, 141.21 (C from Mes), 145.49 (CNNO). MS (ESI⁺), found: 747.1160 [M + H]⁺; calcd for $C_{33}H_{25}F_{10}N_4OZn$: 747.1232. Crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution of 23 in CH_2Cl_2 /hexane (1:1).

NMR and UV spectra

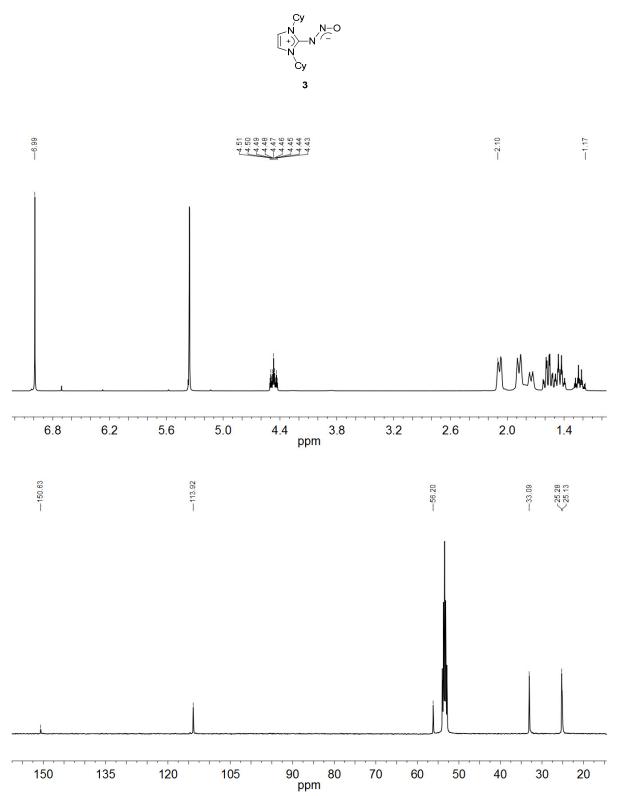


Figure S9. ¹H (top) and ¹³C (bottom) NMR spectra of 3 in CD₂Cl₂.

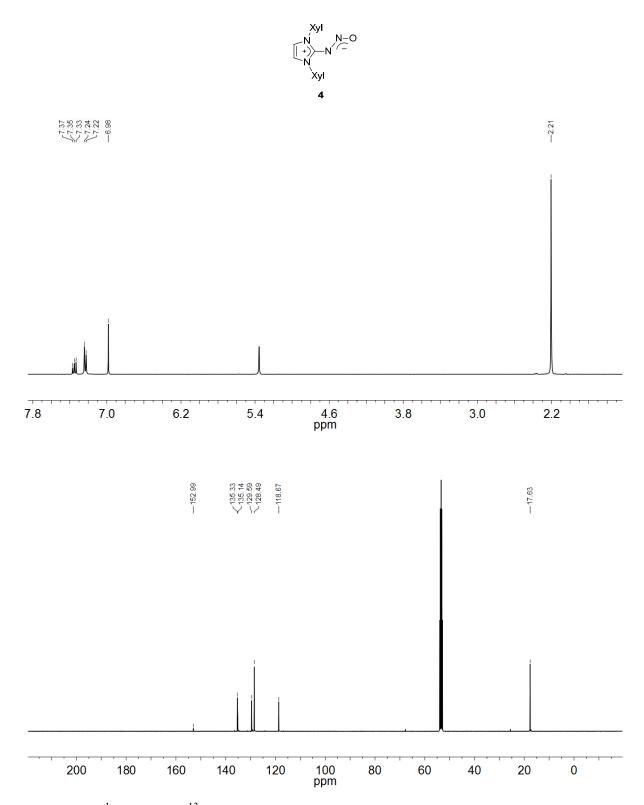


Figure S10. ¹H (top) and ¹³C (bottom) NMR spectra of 4 in CD₂Cl₂.

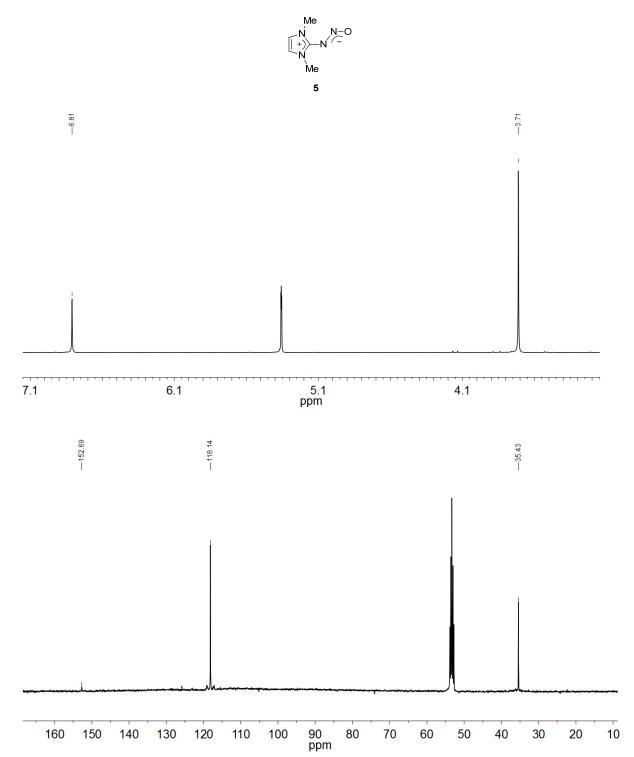


Figure S11. ¹H (top) and ¹³C NMR spectra of 5 in CD₂Cl₂.

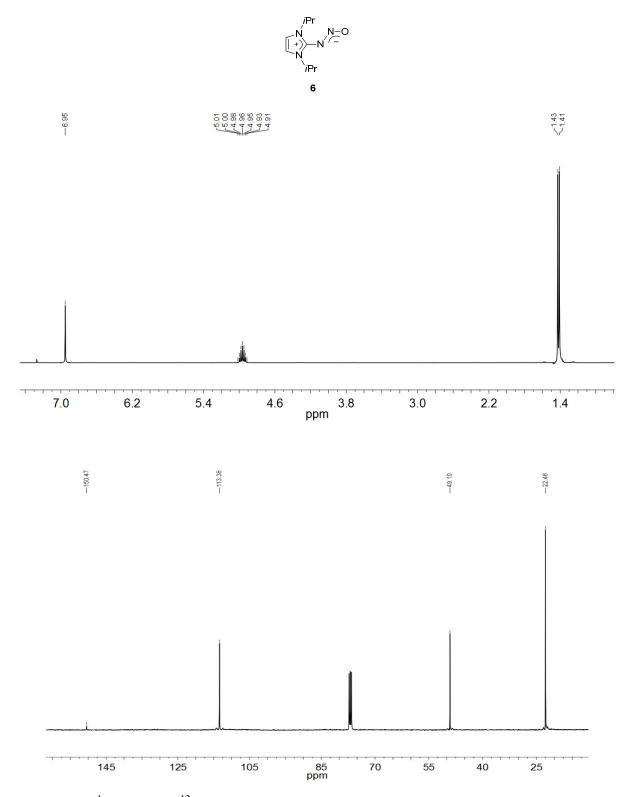


Figure S12. ¹H (top) and ¹³C (bottom) NMR spectra of 6 in CDCl₃.

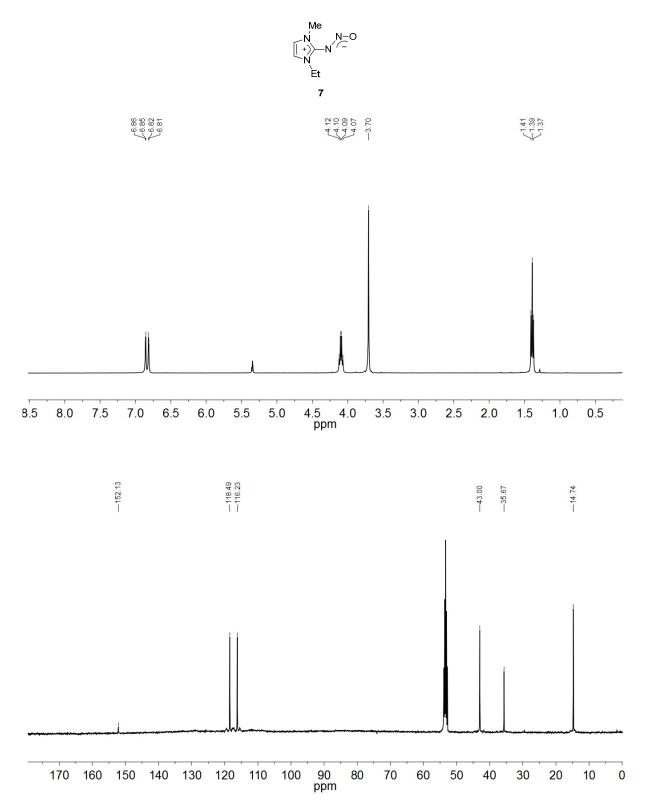


Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra of 7 in CD₂Cl₂.

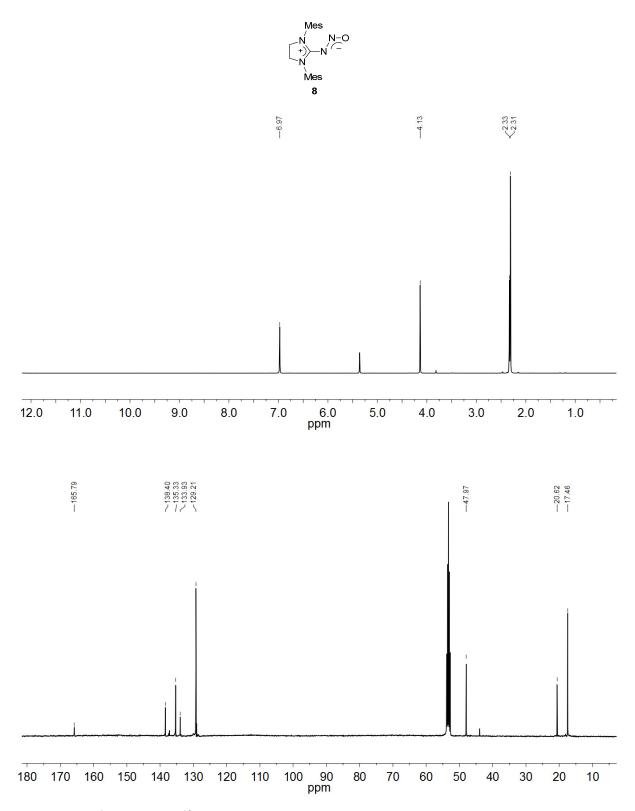


Figure S14. ¹H (top) and ¹³C (bottom) NMR spectra of 8 in CD₂Cl₂.

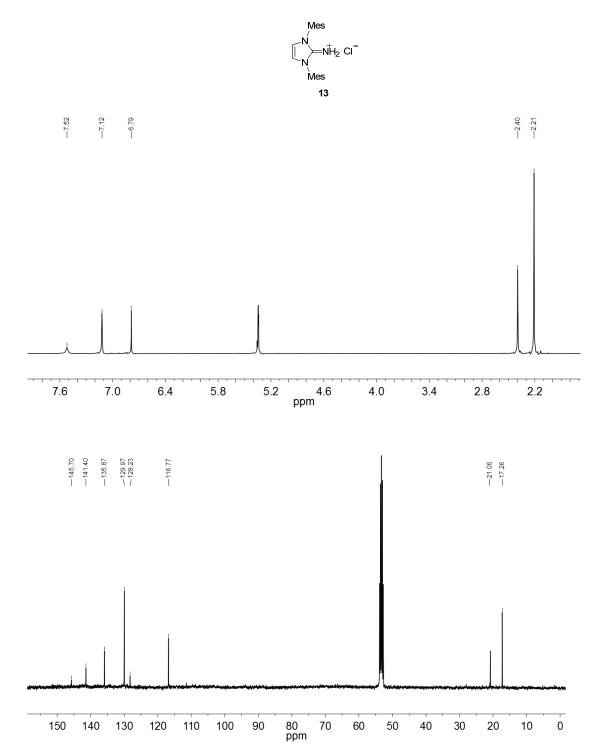


Figure S15. ¹H (top) and ¹³C (bottom) NMR spectra of 13 in CD₂Cl₂.

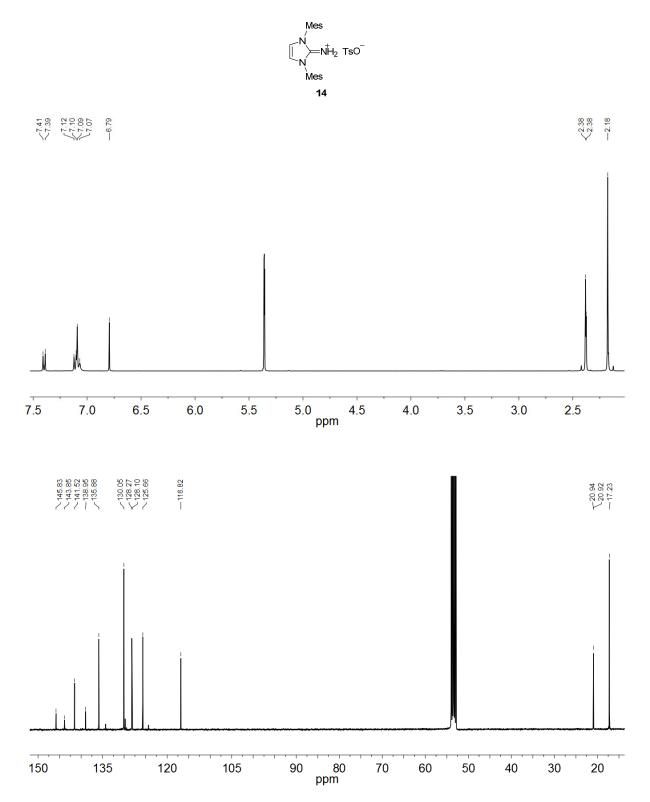


Figure S16. ¹H (top) and ¹³C (bottom) NMR spectra of 14 in CD₂Cl₂.

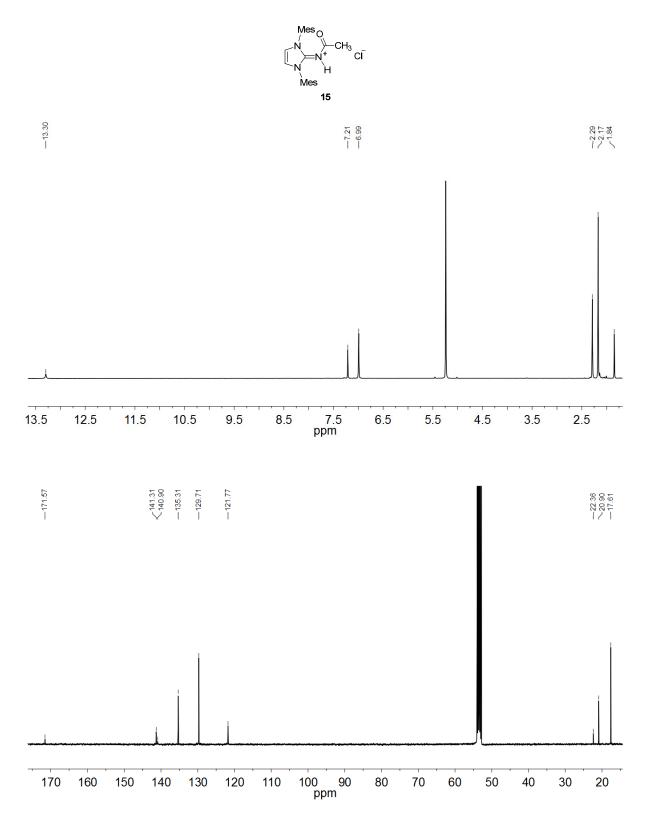


Figure S17. ¹H (top) and ¹³C (bottom) NMR spectra of 15 in CD₂Cl₂.

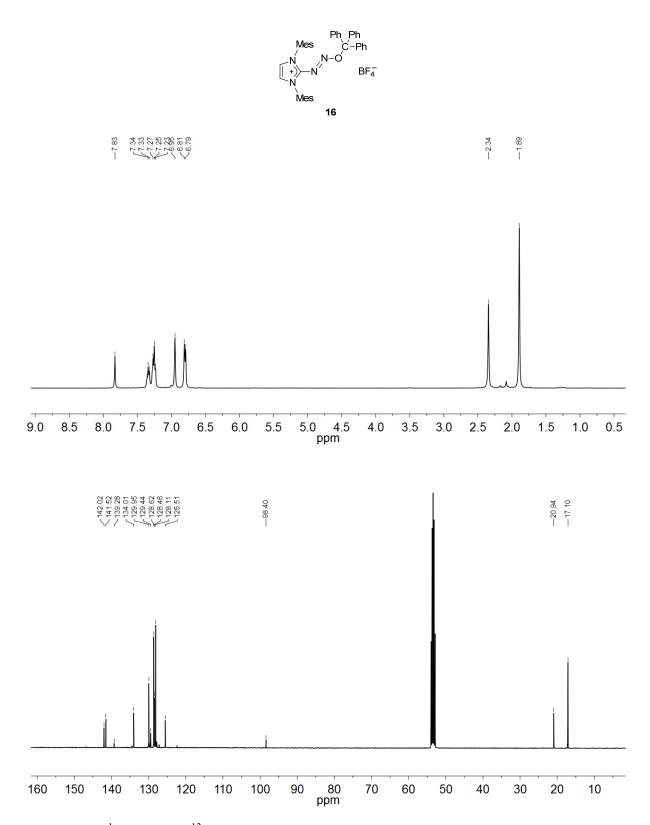


Figure S18. ¹H (top) and ¹³C (bottom) NMR spectra of 16 in CD₂Cl₂.

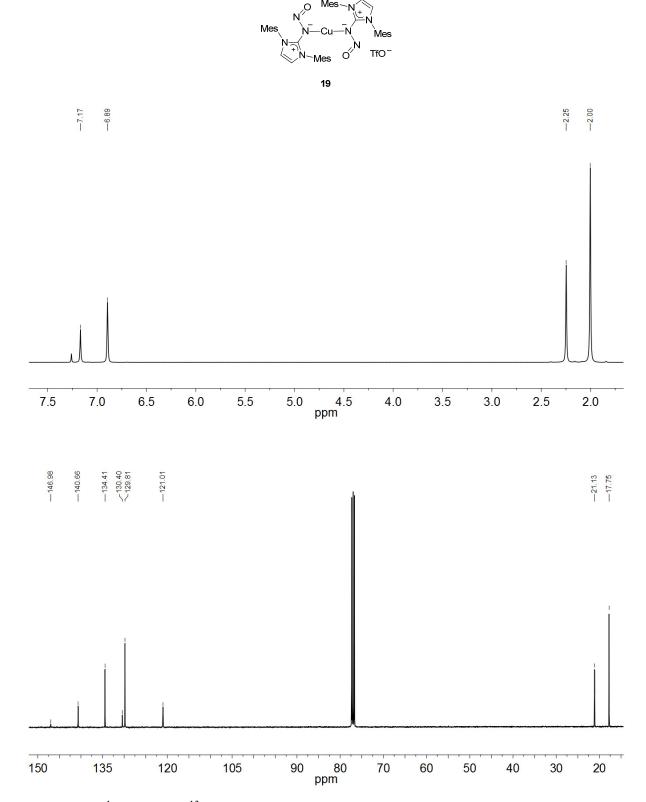


Figure S19. ¹H (top) and ¹³C (bottom) NMR spectra of 19 in CDCl₃.

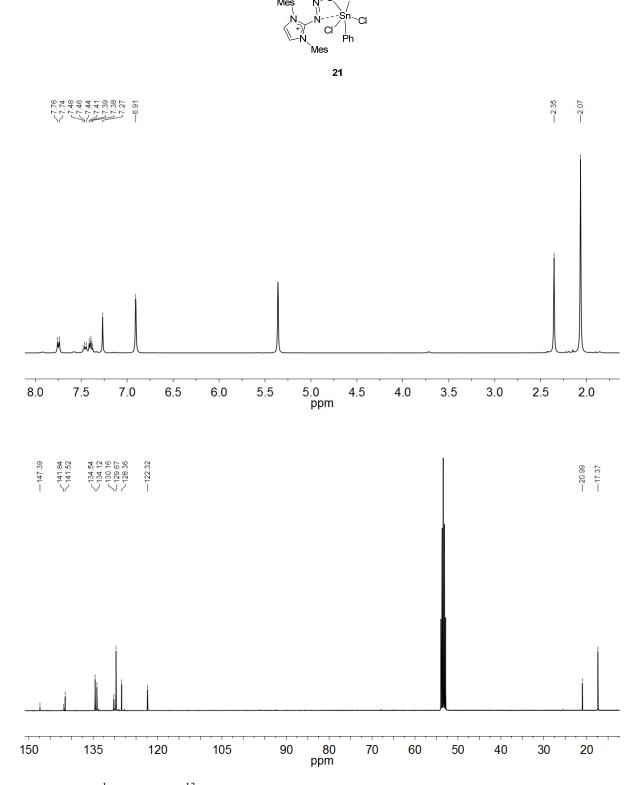


Figure S20. ¹H (top) and ¹³C (bottom) NMR spectra of 21 in CDCl₃.

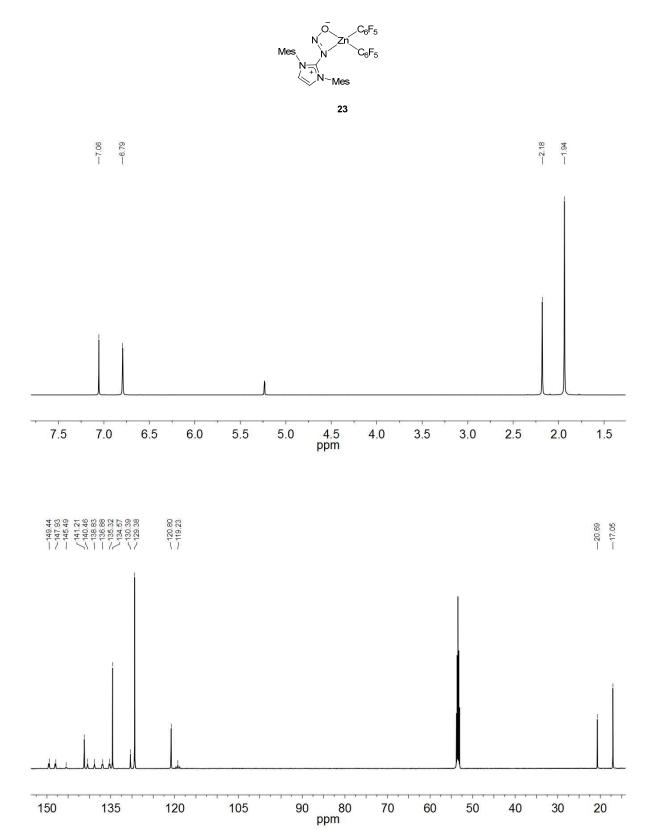


Figure S21. ¹H (top) and ¹³C (bottom) NMR spectra of 23 in CDCl₃.

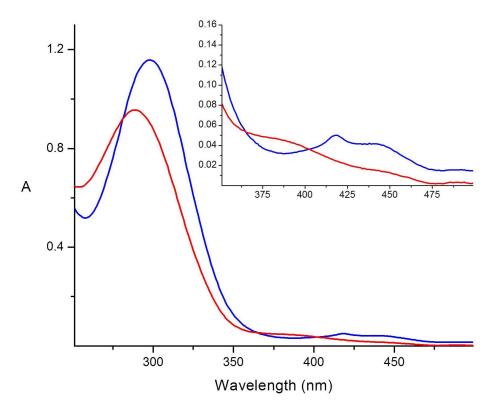
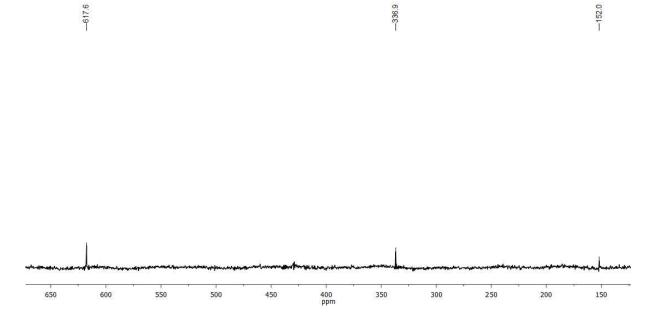



Figure S22. UV spectra of 5 in H₂O (red) and CH₂Cl₂ (blue).

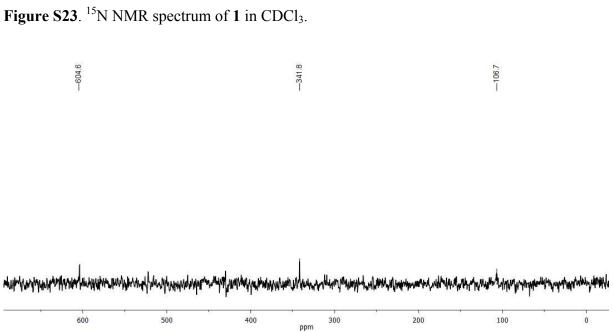


Figure S24. ¹⁵N NMR spectrum of 6 in CDCl₃.

X-ray crystallography

The diffraction data (except compounds 1.H₂O, 4, 15, 22 and 23) were measured at low temperature [100(2) K] using Mo K_{α} radiation on a Bruker APEX II CCD diffractometer equipped with a kappa geometry goniometer. The datasets were reduced by EvalCCD⁴ and then corrected for absorption.⁵ The data collections of compounds 1.H₂O, 4 and 22 were collected at low temperature [140(2) K] using Mo K_{α} radiation on a mar345dtb system in combination with a Genix Hi-Flux small focus generator ($mar\mu X$ system). The data reduction was carried out by automar.⁶ The data collections of compounds **15** and **23** were performed at room temperature using Cu (**23**) or Mo (**15**) K_{α} radiation on an Agilent Technologies SuperNova dual system in combination with an Atlas CCD detector. The data reduction was carried out by Crysalis PRO.⁷

The solutions and refinements were performed by SHELX.⁸ The crystal structures were refined using full-matrix least-squares based on F^2 with all non hydrogen atoms anisotropically defined. Hydrogen atoms were placed in calculated positions by means of the "riding" model. Additional electron density found in the difference Fourier map of compound 16 was treated by the SQUEEZE algorithm of PLATON.⁹ Pseudo merohedral twinning was found for compound 19 and treated by the TWINROTMAT algorithm of PLATON,9 obtaining two BASF values: 0.239(4), 0.013(4).

References

- [1] Bantreil, X.; Nolan, S. P. *Nature Protocols* **2011**, *6*, 69-77.
- [2] Tskhovrebov, A. G.; Solari, E.; Wodrich, M. D.; Scopelliti, R.; Severin, K. *Angew. Chem. Int. Ed.* **2012**, *51*, 232-234.
- [3] Cole, M. L.; Jones, C.; Junk, P. C. New J. Chem. 2002, 26, 1296-1303.
- [4] Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M. *J. Appl. Crystallogr.* **2003**, *36*, 220-229.
- [5] Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33-38.
- [6] automar, release 2.8.0, Marresearch GmbH, Germany, 2011.
- [7] Crysalis PRO, Agilent Technologies, release 1.171.35.21, 2012.
- [8] SHELX, Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [9] PLATON, Spek, A. L. Acta Crystallogr., Sect. D 2009, 65, 148-155.