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Figure S1. FTIR spectra of LiSCN aqueous solutions (D;0) in the C=N frequency

region (A) and OD frequency region in HOD solutions (1% wt D,0 in H;O) (B) at

different bulk concentrations. All the backgrounds are subtracted from the spectra.
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Figure S2. FTIR spectra of CsSCN aqueous solutions (D,0) in the C=N frequency

region (A) and OD frequency region in HOD solutions (1% wt D,0 in H,0O) (B) at

different bulk concentrations. All the backgrounds are subtracted from the spectra.
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Figure S3. Concentration dependent rotation anisotropy of SCN (4) and OD (B)
measured in the LiSCN solutions as a function of delay. Data is normalized with

respect to the value at zero delay. Dots are the experimental results, the lines are the

fitting results.
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Figure S4. Concentration dependent rotation anisotropy of SCN (4) and OD (B)
measured in the NaSCN solutions as a function of delay. Data is normalized with
respect to the value at zero delay. Dots are the experimental results, the lines are the

fitting results.
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Figure S5. Concentration dependent rotation anisotropy of SCN (4) and OD (B)

measured in the KSCN solutions as a function of delay. Data is normalized with

respect to the value at zero delay. Dots are the experimental results, the lines are the

fitting results.
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Figure S6. Concentration dependent rotation
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Table S1. The potential parameters

Atom g (e) 6 (A) e(kJ-mol™)
'SPC/E Ow -0.8476 3.166 0.650
water Hw 0.4238 0.000
S -0.56 3.52 1.5225
’SCN C 0.16 3.35 0.425
N -0.58 3.31 0.310
K* +1.0 3.33 0.42
*Na” +1.0 2.58 0.42
Table S2. The simulation bulk information
Concentration Num of Num of mixed Num of water
KSCN or ion
NaSCN
2mol 46 1154
10mol 200 1000
15mol 300 1000

To quantitatively analyze the SCN™ anion cluster concentration in LiSCN, NaSCN,
KSCN and CsSCN aqueous solutions at Smol/kg, we used a
location-energy-exchange kinetic model which was shown in Scheme S1. In the
model, vibrational energy can exchange between two closely contacted thiocyanate

anions (SCN_, and S"C"N,

clu

). Thiocyanate anions which are separated by water or
other anions (SCN_, and S"C"N_ ) can’t exchange energy. The two types of
thiocyanate anions can exchange locations. The vibrational energy of each species

decays with its own lifetime. More details of the kinetic model were described in our

previous publications.“'7 From the kinetic model analysis, we can obtain the energy



transfer rate constants, the equilibrium constant and the location exchange rate
constants. Detailed fitting parameters for the time dependent intensities of the
diagonal peaks and the cross peaks of the mixed MS"*C">’N/MSCN (M=Li, Na, K, Cs)
aqueous solutions at Smol/kg are shown in Figure S7 to S10. The energy transfer
rate and ion cluster concentrations for LiSCN, NaSCN, KSCN and CsSCN solutions
at Smol/kg are listed in Table S3. In the fitting of Fig S7 to S10, we found that the
energy transfer rate and equilibrium constant (ion cluster concentration) can’t be
solely determined. These two parameters are entangled which means that one given
energy transfer rate can give one equilibrium constant. It seems that the non-resonant
energy transfer fitting can give us arbitrary ion cluster concentrations in the MSCN
solutions. However, from the resonance energy transfer measurement, the number of
SCN' anions in an energy transfer unit for LISCN, NaSCN, KSCN and CsSCN can be
determined which set a restriction on the cluster concentration value. Thus the energy
transfer rates listed in Table 3 were determined by combing with the resonance energy
transfer measurements. The details of the resonance energy transfer data can be found
in our previous paper.’ For comparison, we also compared the ion cluster
concentrations when a fixed energy transfer time constant of 140 ps was used in the
non-resonant energy transfer fitting for all solutions. The results are listed in Table S4.
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Figure S7. Time-dependent intensities of SC'’N'rand SCN™ decay (A) and the
energy transfer peaks between S"*C'*’N"and SCN'r (B) for a 5 mol/kg LiSCN aqueous
solution. Dots are data, and lines are calculations. Calculations for (A) and (B) are
with input parameters:
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Figure S8. Time-dependent intensities of S”°C'°N'r and SCN™ decay (A) and their

energy transfer peaks between S"C""N"and SCNr (B) for a 5 mol’kg NaSCN



aqueous solution. Dots are data, and lines are calculations. Calculations for (A) and

(B) are with input parameters:
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Figure S9. Time-dependent intensities of S”C'’N'r and SCN™ decay (A) and their
energy transfer peaks between S”°C'°N"and SCN™ (B) for a 5 mol/kg KSCN aqueous
solution. Dots are data, and lines are calculations. Calculations for (A) and (B) are

with input parameters:
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Figure S10. Time-dependent intensities of S"?C'°N"r and SCN™ decay (A) and their
energy transfer peaks between S"°C'°N” and SCN'r(B) for a 5 mol/kg CsSCN
aqueous solution. Dots are data, and lines are calculations. Calculations for (A) and
(B) are with input parameters:
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Figure S11. Rotational time constants of SCN and D,0 in solutions of different
cations Vs. viscosity. The viscosity (0.97 centistokes) of pure water is taken to be 1 for
the normalization of viscosities of other solutions.
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Figure S12. Reorientation correlation functions of SCN and water in aqueous
solutions of (A) 5 mol/kg KSCN and 5 mol/kg CsSCN; and (B) 10 mol/kg NaSCN and
10 mol/kg LiSCN.



Table S3 Experimental cluster concentrations for the LiSCN, NaSCN, KSCN and
CsSCN solutions at 5Smol/kg.

Energy Equilibrium Percentage of
transfer rate constant K clustered ions
(ps)
LiSCN (5mol/kg) 20 10 50+ 4%
NaSCN (5mol/kg) 120 L5 60+ 4%
KSCN (Smolkg) 140 2.0 67 +4%
CsSCN (5mol/kg) 200 2.3 70+ 4%

Table S4 Experimental cluster concentrations for the LiSCN, NaSCN, KSCN and
CsSCN solutions at Smol/kg, the energy transfer rate was fixed at 140 ps.

Equilibrium Percentage of

constant K clustered ions
LiSCN (5mol/kg) 5.0 83+ 5%
NaSCN (5mol/kg) 29 69+ 4%
KSCN (5mol/kg) 20 67+ 4%
CsSCN (5mol/kg) 1.0 50+4%
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