Multiscale Modeling of Barium Sulfate Formation from BaO – Supporting Information Nikola Rankovic,*,†,‡ Céline Chizallet,§ André Nicolle,* and Patrick Da Costa † #### 1 Detailed Parameters Used for Simulating BaO Surfaces Table S.1: Parameters Used for the Simulation of BaO Surfaces and the Resulting Surface Energy After Relaxation. For Some Systems, a Reduction of the k-points Grid Was Necessary With HSE06 Hybrid Functional to Compensate Very Long Computational Times | System | (100) Terrace | Monoatomic step | Kink | | |---|---------------------------------------|---------------------------------------|-------------------------------|--| | Number of atoms per supercell | 80 | 72 | 106 | | | Supercell size (Å) along the | | | | | | x-axis | 11.09 | 11.09 | 16.64 | | | y-axis | 11.09 | 8.77 | 8.77 | | | z-axis: slab thickness | 11.09 | 14.91 | 14.91 | | | z-axis: vacuum thickness | 17.00 | 19.00 | 19.00 | | | Projected surface area (\mathring{A}^2) | 123.07 | 97.30 | 145.95 | | | la mainta maala | $3 \times 3 \times 1 \text{ (GGA)}$ | $3 \times 2 \times 1 \text{ (GGA)}$ | $1 \times 2 \times 1$ | | | k-points mesh | $2 \times 2 \times 1 \text{ (HSE06)}$ | $2 \times 2 \times 1 \text{ (HSE06)}$ | $SE06)$ $1 \times 2 \times 1$ | | | Surface energy Γ after relaxation (J m ⁻²) | 0.29 | 0.43 | 0.50 | | ### 2 Investigation of the Surface Reconstruction Phenomena: Molecular Dynamics Velocity-scaled molecular dynamics (MD) were performed each time a surface reconstruction phenomenon was encountered to explore the stability of the obtained geometry. Velocities were scaled at each time step (5 fs) to the chosen temperature (600 K). The calculation accuracy was decreased to limit computational cost to a cut-off energy of 300 eV and the convergence criterion for the electronic SCF loop was reduced to 1×10^{-4} eV. The energetic minima obtained from MD simulations were quenched by 0 K geometry optimization with usual accuracy (see the "Computational Methods" section in the manuscript) and the most stable quenched structures are assumed to give the best estimate of the most energetically favorable configurations for each explored coverage value. The evolution of the potential energy as a function of time is given in Figure S.1. $^{^*\}mathrm{IFP}$ Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France $^{^\}dagger$ Institut Jean Le Rond d'Alembert – Université Pierre et Marie Curie – UPMC Paris 6, CNRS-UMR 7190, 2 place de la gare de ceinture, 78210 Saint-Cyr-l'Ecole, France [‡]New Address: Aramco Fuel Research Center, 232 Avenue Napoléon Bonaparte, 92500 Rueil-Malmaison, France [§]IFP Energies nouvelles, établissement de Lyon, Rond-point de l'échangeur de Solaize, BP 3, 69360 Solaize, France (a) $\rm BaO(100)\text{--}SO_2$ at 0.5 ML (b) $\mathrm{BaO}(100)\mathrm{-SO}_2$ at 0.75 ML (c) BaO(100)– SO_2 at 1 ML Figure S.1: Evolution of the potential energy relative to the initial geometry optimization during a 600 K MD simulation of SO_2 adsorbed on BaO(100) terrace at (a) 0.5 ML, (b) 0.75 ML and (c) 1 ML fractional coverage (black). Energetic minima were further quenched and their energies calculated at the GGA level are also reported (red). #### 3 Activation Barriers for SOx Adsorption on BaO(100) Some additional investigations of SOx adsorption on BaO aimed to provide an insight into the adsorption kinetics. This was achieved by tracing the energetic profile of a SOx molecule approaching a basic O_{5C} site (calculations performed at the GGA level). For this purpose, the most stable structure obtained for the adsorption on a BaO(100) terrace was distorted by increasingly moving the molecule away from the surface along the z axis and keeping the O_{5C} -S distance fixed while allowing all other atoms to relax. The adsorption energy profile of the SO_3 molecule (Figure S.2) illustrates a transition from a physisorbed to a chimisorbed state. No noticeable activation barrier for a transition from the gas-phase SO_3 to a chimisorbed state was observed for this perpendicular approach. This finding is particularly interesting for the conception of the kinetic model, allowing us to postulate a non-activated surface SO_3 adsorption. Figure S.2: SO_3 molecule adsorbed onto a basic oxygen site of the BaO surface. Energetic profile for the SO_3 –BaO(100) system as the molecule approaches the basic surface site along the z axis. The bond elongation is relative to the equilibrium bond length of 1.57 Å. According to the adsorption energy profile for the SO_2 molecule (Figure S.3), we can see that no significant activation barrier seems to exist to reach the final chimisorbed state from the gas phase, along a perpendicular approach. The existence of a shallow precursor state (denoted by a star on Figure S.3) will have to be confirmed in the future work. We thus postulate, similarly to the case of SO_3 adsorption, a non-activated adsorption process for SO_2 in first approximation. Figure S.3: The energetic profile of the SO₂–BaO(100) system as a function of the O_{5C}–S distance. # 4 Extrapolation of the Adsorption Energies over the 0-1 ML range Figure S.4: Polynomial extrapolation of SO_3 , SO_2 , and O_2 adsorption energies on BaO(100) terraces (filled symbols, solid lines) and on surface steps (open symbols, dashed line) over the 0-1 ML coverage range. # 5 Kinetic and Thermodynamic Parameters Used for Kinetic Modeling Table S.2: Kinetic and Thermodynamic Parameters Used for Kinetic Modeling of Reactions R1–R14 | R14 | | | | | |----------|-----------------------|-----------------------------------|--|--| | Reaction | $A (s^{-1})$ | $Ea \text{ (kJ mol}^{-1}\text{)}$ | $\Delta r U \; (\mathrm{kJ} \; \mathrm{mol}^{-1})$ | $\Delta r S \text{ (J mol}^{-1} \text{ K}^{-1})$ | | R1 | 1.00×10^6 | 0.0 | $209.29 \times \theta_{SO_2}^2 - 17.51 \times \theta_{SO_2} - 338.66$ for $\theta_{SO_2} \le 0.5$ ML and $-65.19 \times \theta_{SO_2}^2 + 20.79 \times \theta_{SO_2} - 271.68$ for 0.5 ML $< \theta_{SO_2} \le 1$ ML | -251 | | R2 | 1.00×10^{6} | 0.0 | $144.92 \times \theta_{SO_2}^2 - 72.46 \times \theta_{SO_2} - 388.07$ | -251 | | R3 | 1.00×10^{6} | 0.0 | -408 | -251 | | R4 | 1.63×10^4 | 68.6 | $-86.81 \times \theta_O^3 + 162.93 \times \theta_O^2 -21.54 \times \theta_O - 158.14$ | -152 | | R5 | 1.63×10^4 | 68.6 | $7.32 \times \theta_O^2 - 3.66 \times \theta_O - 131.20$ | -152 | | R6 | 1.63×10^4 | 68.6 | -123 | -152 | | R7 | 1.63×10^4 | 68.6 | -127 | -202 | | R8 | 1.00×10^{13} | 20.0 | -70 | -19 | | R9 | 1.00×10^{13} | 20.0 | -50 | -19 | | R10 | 1.00×10^{13} | 20.0 | -61 | -19 | | R11 | 1.00×10^6 | 0.0 | $1446.20 \times \theta_{SO_3}^2 - 167.13 \times \theta_{SO_3} - 482.16$ for $\theta_{SO_3} \le 0.5$ ML and $-268.00 \times \theta_{SO_3}^2 + 239.40 \times \theta_{SO_3} - 476.75$ for 0.5 ML $< \theta_{SO_3} \le 1$ ML | -246 | | R12 | 1.00×10^{6} | 0.0 | $176 \times \theta_{SO_3}^2 - 88 \times \theta_{SO_3} - 513$ | -246 | | R13 | 1.00×10^{6} | 0.0 | -531 | -246 | | R14 | 1.00×10^{7} | 80.5 | -505 | -314 | | | | | | | # 6 Storage mechanism analysis Additional information about storage mechanisms is provided herein. Figures S5(a) and S5(b) provide rate analysis for the case of SO₂ and SO₃ storage, respectively. Note that all rate values in Figure S5(b) represent net reaction rates $(r_{forward} - r_{backward})$, thus negative numerical values suggest backward processes taking over forward ones (SO₂ desorption and SO₃ decomposition). Figures S6(a) and S6(b) provide surface coverage evolution during SO₂ and O₂ coadsorption simulation. Figure S.5: (a) Analysis of the SO_2 storage—TPD simulation: net reaction rates versus time. The SO_2 storage phase ends at 2500 s. For illustration purposes, temperature profile is also given (orange). (b) Analysis of SO_3 storage. Storage phase: 200 ppm SO_3 in He at 25°C during 2500 s. Net SO_2 adsorption rates versus temperature. Inset: net SO_2 oxidation rates on BaO (opposite of SO_3 to SO_2 reduction rate). Figure S.6: Analysis of the 200 ppm SO_2+21 vol. % O_2 coadsorption simulation. (a) Barium peroxide fractional coverage; (b) SO_3 (thick lines) and SO_2 (thin lines) fractional coverages.