Description	Mathematical expression
S1. Phase equilibrium condition on penetrant chemical potential. The expression for chemical potential is given in a general form which is valid for both pure penetrant $(\phi_1=1)$ in the gas phase and for penetrant in the binary polymer mixture.	$\frac{\mu_{1}^{\text{chas}}}{RT} = \frac{\mu_{1}^{POL}}{RT}$ where $\frac{\mu_{1}}{RT} = \ln \frac{\phi_{1}}{\omega_{1}r_{1}} - r_{1}\sum_{j=1}^{2} \frac{\phi_{j}l_{j}}{r_{j}} + \ln \tilde{\rho} + r_{1}(\tilde{v}-1)\ln(1-\tilde{\rho}) - \frac{z}{2}r_{1}\left[\tilde{v}-1+\frac{q_{1}}{r_{1}}\right]\ln\left[1-\tilde{\rho}+\frac{q}{r}\tilde{\rho}\right]$ $+ \frac{zq_{1}}{2}\left[\ln\Gamma_{11} + \frac{r_{1}}{q_{1}}(\tilde{v}-1)\ln\Gamma_{00}\right] + r_{1}\frac{\tilde{P}\tilde{v}}{\tilde{T}} - \frac{q_{1}}{\tilde{T}_{1}} + \frac{\mu_{1,H}}{RT}$ where $\tilde{P} = \frac{P}{P^{*}}; \tilde{T} = \frac{T}{T^{*}}; RT^{*} = P^{*}v^{*} = \varepsilon^{*} with: \varepsilon^{*} = \sum_{i=1}^{2}\sum_{j=1}^{2}\theta_{i}\theta_{j}\varepsilon^{*}_{ij} v^{*} = 9.75cm^{3} / mol$ $\varepsilon^{*}_{12} = (1-k_{12})\sqrt{\varepsilon^{*}_{11}\varepsilon^{*}_{22}}; with \varepsilon^{*}_{ii} = \varepsilon^{*}_{hi} + (T-298.15)\varepsilon^{*}_{s,i}$ $\tilde{v} = \frac{V - \sum_{i=1}^{N}\sum_{j=1}^{n}N_{ij}V^{0}_{ij}}{rNv^{*}} where V \text{ is the total volume of the mixture}$ $\tilde{\rho} = \frac{1}{v}$
S2. HB contribution to the expression of chemical potential of penetrant. The expression for the $\mu_{I,H}$ is given in a general form which is valid for both pure penetrant (component 1) in the gas phase and for penetrant in the binary polymer mixture. S3. Expression of the EOS. The expression for the EOS is given in a general form which is valid for both pure penetrant ($\phi_{l}=1$) in the	$\frac{\mu_{1,H}}{RT} = r_1 v_H - \sum_{i}^{m} d_i^{1} \ln(\frac{v_d^{i}}{v_{i0}}) - \sum_{j}^{n} a_j^{1} \ln(\frac{v_a^{j}}{v_{0j}})$ $\tilde{P} + \tilde{T} \left[\ln(1-\tilde{\rho}) - \tilde{\rho} \left(\sum_{i=1}^{2} \phi_i \frac{l_i}{r_i} - v_H \right) - \frac{z}{2} \ln\left(1-\tilde{\rho} + \frac{q}{r}\tilde{\rho}\right) + \frac{z}{2} \ln\Gamma_{00} \right] = 0$

Table S1. List of relevant equations and related description for NRHB model.

gas phase and for penetrant in the	
binary polymer mixture.	
S4. Average number of hydrogen bonds per molecular segment	$v_H = \sum_{i}^{m} \sum_{j}^{n} v_{ij} = \sum_{i}^{m} \sum_{j}^{n} \frac{N_{ij}}{rN}$
S5. Expression obtained by minimizing the Gibbs energy as a function of N_{ij} variable.	$v_{H} = \sum_{i}^{m} \sum_{j}^{n} v_{ij} = \sum_{i}^{m} \sum_{j}^{n} \frac{N_{ij}}{rN}$ $\frac{v_{ij}}{v_{i0}v_{0j}} = \widetilde{\rho} \exp(-\frac{G_{ij}^{0}}{RT})$
	where $G_{ij}^{0} = E_{ij}^{0} - T \cdot S_{ij}^{0} + p \cdot V_{ij}^{0}$
S6. Expression obtained by minimizing the Gibbs energy as a function of the number of contacts between segment of species	$\frac{\Gamma_{ii}\Gamma_{jj}}{\Gamma_{ij}^2} = \exp(-\frac{\Delta \mathcal{E}_{ij}}{RT})$
between segment of species i and j (0, 1 and 2 representing, respectively, empty lattice sites, penetrant and polymer)	where $\Gamma_{ij} = \frac{N_{ij}^{NR}}{N_{ij}^{NR,0}} \qquad \text{with } N_{ij}^{NR,0} \text{ representing the effective number of contacts in the compressible}$
	lattice between the mers of kind i and the mers of kind j in the case of random statistics.
	$\Delta \varepsilon_{ij} = \varepsilon_{ii} + \varepsilon_{jj} - 2(1 - k_{ij})\sqrt{\varepsilon_{ii}\varepsilon_{jj}} \qquad \text{with } \varepsilon_{ii} = \varepsilon_{ii}^* \frac{2}{z}$
S7. Material balance expression for the non random factors Γ s	$\sum_{i=0}^{t} \theta_i \theta_r \Gamma_{ij} = 1 \qquad j = 0, 1, \dots, t$
	where
	$\theta_r = \sum_{i=1}^t \theta_i$
	Here t is the number of components, '0' representing empty sites.

S8. Definition of the 'close-	
packed' specific volume	$v_{sp,i}^* = \frac{1}{\rho_i^*} = v_{sp,0i}^* + (T - 298.15)v_{sp,1i}^*$
	where $v_{sp,1i}^*$ is a characteristic parameters for different homologous series and ρ_i^* is the 'close-
	packed' density of component 'i'.

Description	Mathematical expression
S9. Chemical potential of penetrant according to NRHB theory. Expression A4 still holds also in this case. Moreover, due to the	$\frac{\mu_1^{GAS}}{RT} = \frac{\mu_1^{POL, PE}}{RT}$
hypothesis of 'instantaneous' evolution kinetics for \underline{N}_{ij} and	where
\underline{N}_{rs}^{NR} , also eqs. A5, A6 and A7 hold true.	$\frac{\mu_1^{GAS}}{RT} =$
	$\ln\frac{\phi_1}{\delta_1 r_1} - r_1 \sum_{j=1}^2 \frac{\phi_j l_j}{r_j} + \ln\widetilde{\rho} + r_1(\widetilde{v} - 1)\ln(1 - \widetilde{\rho}) - \frac{z}{2}r_1 \left[\widetilde{v} - 1 + \frac{q_1}{r_1}\right]\ln\left[1 - \widetilde{\rho} + \frac{q}{r}\widetilde{\rho}\right]$
	$+\frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln\Gamma_{00}\right] + r_1\frac{\tilde{P}\tilde{v}}{\tilde{T}} - \frac{q_1}{\tilde{T}_1} + \frac{\mu_{1,H}^{GAS}}{RT}$
	$\frac{\mu_1^{POL,PE}}{RT} = \ln\frac{\phi_1}{\delta_1 r_1} - r_1 \sum_{j=1}^2 \frac{\phi_j l_j}{r_j} + \ln\tilde{\rho} + r_1(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1 \left[\tilde{v} - 1 + \frac{q_1}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2} \left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q_1}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q_1}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{r_1}{q_1}(\tilde{v} - 1)\ln(1 - \tilde{\rho}) - \frac{z}{2}r_1\left[\tilde{v} - 1 + \frac{q}{r_1}\right] \ln\left[1 - \tilde{\rho} + \frac{q}{r}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{q}{r_1}(\tilde{v} - 1) + \frac{q}{r_1}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac{zq_1}{2}\tilde{\rho}\right] + \frac{zq_1}{2}\left[\ln\Gamma_{11} + \frac$
	$-\frac{q_{1}}{\widetilde{T}_{1}}+\widetilde{T}\left[\ln(1-\widetilde{\rho})-\widetilde{\rho}\left(\sum_{i}\phi_{i}\frac{l_{i}}{r_{i}}\right)-\frac{z}{2}\ln\left(1-\widetilde{\rho}+\frac{q}{r}\widetilde{\rho}\right)+\frac{z}{2}\ln\Gamma_{00}\right]\cdot\frac{rx_{2}\cdot\frac{\partial\widetilde{v}}{\partial x_{1}}\Big _{P,T,\rho_{2},\underline{N}_{ij},\underline{N}_{rs}^{NR}}}{\widetilde{T}}+\frac{\mu_{1,H}^{POL,PE}}{RT}$

 Table S2. List of relevant equations and related description for NETGP-NRHB model.

S10. HB contribution to the expression of chemical potential of penetrant in the gas phase.	where $1/\tilde{v} = \tilde{\rho} = \rho_2 / (\omega_2 \rho^*)$ according to the hypothesis that $V_{ij}^0 = 0 \forall i, j \; ; \; \rho^*$ represents the close-packed density of polymer-penetrant mixture $\frac{\mu_{i,H}^{GAS}}{RT} = r_i v_H - \sum_i^m d_i^1 \ln \left(\frac{v_d^i}{v_{i0}}\right) - \sum_i^m a_j^1 \ln \left(\frac{v_d^i}{v_{0i}}\right)$
S11. HB contribution to the expression of chemical potential of penetrant in the polymer phase	$\frac{\mu_{1,H}^{POL,PE}}{RT} = r_1 v_H - \sum_i^m d_i^1 \ln\left(\frac{v_d^i}{v_{i0}}\right) - \sum_j^n a_j^1 \ln\left(\frac{v_a^j}{v_{0j}}\right) + v_H \frac{\partial \ln \widetilde{v}}{\partial x_1}\Big _{P,T,\rho_2,\underline{N}_{ij},\underline{N}_{rs}^{NR}} x_2 r$

Table S3. List of relevant symbols and parameters for NRHB and NETGP-NRHB models, not explicitly defined in the text..

Description	Symbol (latin letters)	Dimension
Number of proton acceptor groups of kind j present on a molecule of type 1	a_j^1	-
Number of proton donor of type <i>i</i> on the molecule of type 1	d_i^1	-
Molar internal energy of formation of hydrogen bonding between proton donor group of type i and proton acceptor group of type j	E^0_{ij}	$[J \text{ mol}^{-1}]$
Molar Gibbs energy of formation of hydrogen bonding between proton donor group of type i and proton acceptor group of type j	G_{ij}^0	[J mol ⁻¹]
Mean field lattice fluid binary interactional parameter	k ₁₂	-
Dimensionless parameter of component <i>i</i> defined in ref. [46]	l_j	-
Number of types of proton donors	т	-
Number of types of proton acceptors	n	-
Number of occupied cells of the lattice in the mixture or in the pure component	N	-
Number of hydrogen bondings involving a proton donor of type <i>i</i> and a proton acceptor of type <i>j</i>	N _{ij}	-
Characteristic pressure of pure components or average characteristic pressure for the mixture	P^*	[MPa]
Average number of lattice contacts per molecule in the mixture	q	-
Number of lattice contacts per molecule for component 1	q_1	-
Average number of cells occupied per molecule in the mixture	r	-
Lattice cells occupied by one molecule of component 1 in the mixture or in the pure phase of component 1	r_1	-
Lattice cells occupied by one molecule of component 2 in the mixture or in the pure phase of component 2	<i>r</i> ₂	-
Universal gas constant	R	[J K ⁻¹ mol ⁻¹]
Molar entropy of formation of hydrogen bonding between the proton donor group of type i and the proton acceptor group of type j	S ⁰ _{ij}	[J mol ⁻¹ K ⁻¹]
Characteristic temperature of pure components or average characteristic temperature for the mixture	<i>T</i> *	[K]

Scaled temperature of the mixture	\widetilde{T}	-
Scaled temperature of the component 1 in pure phase of component 1 or in		
the mixture	\widetilde{T}_1	-
'Close-packed' volume of an elementary cell of the lattice in pure	v*	$[\text{cm}^3 \text{ mol}^{-1}]$
components	V	
or in the mixture.		
Temperature independent contribution to 'close-packed' specific volume of	*	[cm ³ g ⁻¹]
the pure component of type 1	$v_{sp,01}^*$	
Temperature independent contribution to 'close-packed' specific volume of	*	$[cm^{3}g^{-1}]$
the pure component of type 2	$v_{sp,02}^*$	
Scaled lattice fluid volume of the pure components or of the mixture	\widetilde{v}	_
Molar volume change upon the formation of hydrogen bonding between		$[\mathrm{cm}^3 \mathrm{mol}^{-1}]$
proton donor group of type <i>i</i> and proton acceptor group of type <i>j</i>	V^{0}_{ij}	
Lattice coordination number	-	
Description	z Symbol (Greek	Dimension
Description	letters)	Dimension
Non random factor for the distribution of an empty site around another empty	,	_
site in the lattice	Γ_{00}	-
Non random factor for the distribution of a site occupied by component 1	Г	_
around another site occupied by component 1 in the lattice	Γ_{11}	-
Number of configurations available to a molecule of component 1 in the	2	_
'close-packed' state.	$\delta_{ m l}$	-
Lattice fluid interaction energy per mole of contact <i>i-i</i>		[J mol ⁻¹]
	${\cal E}_{ii}$	
Average lattice fluid intersegmental interaction energy per mole of average	\mathcal{E}^{*}	[J/mol]
segment in the polymer-water mixture		
Enthalpic contribution to lattice fluid interaction energy per mole of segment	${\cal E}_{h1}^{*}$	[J/mol]
of component 1		
Entropic contribution to lattice fluid interaction energy per mole of segment	${\cal E}_{s1}^{*}$	[J mol ⁻¹ K ⁻¹]
of component 1		
Enthalpic contribution to lattice fluid interaction energy per mole of segment	${\cal E}_{h2}^{*}$	[J/mol]
of component 2		
Entropic contribution to lattice fluid interaction energy per mole of segment	\mathcal{E}_{s2}^{*}	[J mol ⁻¹ K ⁻¹]
		1
of component 2		
Average lattice fluid interaction energy per mole of segment of one molecule	${oldsymbol{\mathcal{E}}}_{ii}^{*}$	[J mol ⁻¹]

of component <i>i</i>		
Average lattice fluid interaction energy per mole of average segment in the binary <i>i-j</i> mixture	${\cal E}_{ij}^{*}$	[J mol ⁻¹]
Surface fraction of component <i>i</i>	θ_i	-
Sum of surface fraction of the component 1 and 2	θ_r	-
Average number of total hydrogen bonds per molecular segment	V_H	-
Average number of un-bonded proton donor of type <i>i</i> per molecular segment	V _{i0}	-
Average number of proton donor of type <i>i</i> per molecular segment	V_d^i	-
Average number of proton acceptor of type <i>j</i> per molecular segment	V_a^j	-
Average number of un-bonded proton acceptor of type <i>j</i> per molecular segment	V_{0j}	-
Average number per molecular segment of hydrogen bonding established between a proton donor of type <i>i</i> and a proton acceptor of type <i>j</i>	V_{ij}	-
'Close packed' density of the polymer-penetrant mixture	$ ho^*$	[g cm ⁻³]
'Close packed' volumetric fraction of component 1	ϕ_1	-
'Close packed' volumetric fraction of component 2	ϕ_2	-
Mass fraction of component 2	ω_2	-