Supporting information

Copper catalyzed β-Difluoroacetylation of Dihydropyrans and Glycals by Means of Direct C-H Functionalization.

Marie-Charlotte Belhomme, Thomas Poisson and Xavier Pannecoucke

Normandie Univ, COBRA, UMR 6014 and FR 3038; Univ Rouen; Insa Rouen; CNRS; IRCOF 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France

> xavier.pannecoucke@insa-rouen.fr thomas.poisson@insa-rouen.fr

Table of contents

Section A: General information	S-2
Section B: Optimization studies	S-3
Section C: Experimental procedures	S-4
Section D: Copies of ¹ H and ¹³ C NMR spectra	S-17

Section A: General information

General

All reactions were carried out using oven dried glassware and magnetic stirring under an atmosphere of argon unless otherwise stated. Flash chromatography was performed with silica gel (0.040-0.060 nm). Analytical thin layer chromatography was performed on silica gel aluminium plates with F-254 indicator and visualized by UV light (254 nm) and/or chemical staining with KMnO₄ solution. ¹H NMR spectra were recorded on a Bruker DXP 300, ¹³C NMR spectra at 75 MHz and ¹⁹F NMR spectra at 282 MHz. Chemical shifts (δ) are quoted in parts per million (ppm) relative to residual solvent (CHCl₃: δ = 7.27 ppm for ¹H, δ = 77.0 ppm for ¹³C or relative to external CFCl₃: δ = 0 ppm). The following abbreviations have been used: δ (chemical shift), *J* (coupling constant), s (singlet), brs (broad singlet), d (doublet), dd (doublet of doublet of doublets), t (triplet), q (quartet), dq (doublet of quartets), m (multiplet). High-resolution mass spectra (HRMS) were recorded on Waters LCT Premier, IR spectra were recorded on a PerkinElmer Spectrum 100. Optical rotations were measured in CHCl₃ on a Perkin-Elmer 341 polarimeter with a 1 cm cell (*c* are given in g/100 mL). Melting points are uncorrected.

Material

All anhydrous solvents were dried by standard techniques and freshly distilled before use: dichloromethane were distilled from calcium hydride and tetrahydrofuran over Na/benzophenone. Dry DMF (sure sealed bottle) was purchased from Acros and NMP from VWR. Cs_2CO_3 was purchased from Acros, K_2CO_3 from Carlo Erba, $Cu(OTf)_2$, $Cu(CH_3CN)_4PF_6$, Cul from Aldrich, 2-hydroxymethyl-3,4-dihydro-2*H*-pyran from Alfa Aesar, 3,4,6-tri-*O*-acetyl-D-glucal, 3,4,6-tri-*O*-acetyl-D-galactal, 3,4-di-*O*-acetyl-6-deoxy-L-glucal and 3,4-di-*O*-acetyl-L-arabinal from Carbosynth and were used as received. Dihydropyran and ethyl bromodifluoroacetate were distilled prior to use. 3,4,6-tri-*O*-benzyl-D-glucal, 3,4,6-tri-*O*methyl-D-glucal, 3,4,6-tri-*O*-pivaloyl-D-glucal,¹ 3,4,6-tri-*O*-(p-methoxybenzyl)-D-glucal,² 3,4,6tri-*O*-benzyl-D-galactal,³ 3,4,6-tri-*O*-methyl-D-galactal,⁴ 3,4-di-*O*-benzyl-L-arabinal,⁵ were prepared according to the known procedures.

¹ C. Bucher, R. Gilmour, *Angew. Chem. Int. Ed.* **2010**, *49*, 8724-8728.

² A. Fürstner, K. Radkowski, J. Grabowski, C. Wirtz, R. Mynott, J. Org. Chem. **2000**, 65, 8758-8762.

³ F. Leonelli, M. Capuzzi, V. Calcagno, P. Passacantilli, G. Piancatelli, *Eur. J. Org. Chem.* **2005**, 2671-2676.

⁴ Bucher, C.; Gilmour, R. Angew. Chem. Int. Ed. **2010**, 49, 8724-8728.

⁵ A.G. Tolstikov, N.V. Khakhalina, L.V. Spirikhin, *Synthesis* **1998**, 221-222.

Section B: Optimization studies

Table 1. Solvent screening using 1a.^[a]

	Cu(OTf) ₂ /phenanthroline Cs ₂ CO ₃ , BrCF ₂ CO ₂ Et	
\searrow	solvent, 80 °C, 18h	CF ₂ CO ₂ Et
1 a		2a
Entry	Solvent	Yield % ^b , (%) ^c
1	toluene	NR
2	THF	38
3	1,4-dioxane	25
4	MeCN	44
5	DMF	42 (47)
6	DMA	50 (43)
7	DMI	47 (34)
8	NMP	70 (65)
9	water	NR

[a] Reaction conditions: **1a** (0.36 mmol), BrCF₂CO₂Et (1.44 mmol), Cu(OTf)₂ (0.036 mmol), phenanthroline (0.043 mmol), Cs₂CO₃ (0.72 mmol), solvent (1.8 mL). [b] Determined by ¹⁹F NMR using α, α, α -trifluorotoluene as an internal standard. [c] Isolated yield.

Table 2. E	Base screening	usina 1	a . ^[a]
------------	----------------	---------	---------------------------

	Cu(OTf) ₂ /phenanthroline base, BrCF ₂ CO ₂ Et	
1a	DMF, 80 °C, 18h	CF ₂ CO ₂ Et
Entry	Base	Yield % ^b , (%) ^c
1	Cs ₂ CO ₃	42 (47)
2	K ₂ CO ₃	74(73)
3	Na ₂ CO ₃	12
4	K ₃ PO ₄	4
5	2,6-lutidine	20
6	2,6- ^t Bu ₂ -pyridine	NR
7	Et ₃ N	21

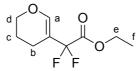
[a] Reaction conditions: **1a** (0.36 mmol), BrCF₂CO₂Et (1.44 mmol), Cu(OTf)₂ (0.036 mmol), phenanthroline (0.043 mmol), base (0.72 mmol), DMF (1.8 mL). [b] Determined by ¹⁹F NMR using α, α, α -trifluorotoluene as an internal standard. [c] Isolated yield.

Table 3. Ligand screening using 1a.^[a]

	Cu(OTf) ₂ /ligand K_2CO_3 , BrCF ₂ CO ₂ Et DMF, 80 °C, 18h	CF_2CO_2Et
Entry	Ligand	Yield % ^b , (%) ^c
1	Phenanthroline	74 (73)
2	Bathophenanthroline	77 (62)
3	Neocuproine	61
4	Bathocuproine	61
5	2,2'-bipyridine	33
6	Terpyridine	13
7	BINAP	28

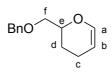
[a] Reaction conditions: **1a** (0.36 mmol), BrCF₂CO₂Et (1.44 mmol), Cu(OTf)₂ (0.036 mmol), ligand (0.043 mmol), K₂CO₃ (0.72 mmol), DMF (1.8 mL). [b] Determined by ¹⁹F NMR using α, α, α -trifluorotoluene as an internal standard. [c] Isolated yield.

Section C: Experimental procedures

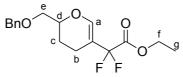

General Procedure for copper cross-coupling reaction of dihydropyran derivatives (A)

Under an air atmosphere, $Cu(OTf)_2$ (13 mg, 0.036 mmol), phenanthroline (8 mg, 0.043 mmol) and K_2CO_3 (100 mg, 0.72 mmol) were dissolved in DMF (1.8 mL). Then enol ether (0.36 mmol) and ethyl bromodifluoroacetate (0.19 mL, 1.44 mmol) were added and the tube was sealed. The resulting mixture was heated at 80 °C for 18h. The solution was cooled and extracted with Et₂O (3 x 10 mL). The organic layer was washed with water (2 x 10 mL), brine (2 x 10 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (SiO₂, pentane/Et₂O).

General Procedure for copper cross-coupling reaction of glycal derivatives (B)

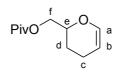

Under an air atmosphere, $Cu(CH_3CN)_4PF_6$ (9 mg, 0.024 mmol), phenanthroline (5 mg, 0.029 mmol) and K_2CO_3 (66 mg, 0.48 mmol) were dissolved in DMF (1.2 mL). Then glycal derivative (0.24 mmol) and ethyl bromodifluoroacetate (0.25 mL, 1.92 mmol) were added and the tube was sealed. The resulting mixture was heated at 110 °C for 24h. The solution was cooled and extracted with Et₂O (3 x 8 mL). The organic layer was washed with water (2 x 8 mL), brine (2 x 8 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (SiO₂, pentane/Et₂O).

A crude NMR yield could be determined using $PhCF_3$ as an internal standard.

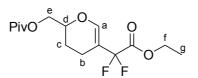

3,4-dihydro-5-(ethyl difluoro acetate)-2H-pyran 2a. Prepared following the procedure **A** from dihydropyran **1a**. Compound **2a** was obtained as a colorless oil in 73% yield (54 mg) after flash chromatography (SiO₂, pentane/Et₂O 19: 1, $R_f = 0.34$) (*caution: the product is highly volatile*).

¹H NMR (CDCI₃, 300 MHz) δ 6.84 (brs, 1H, H_a), 4.33 (q, 2H, H_e, J_{HH} = 7.1 Hz), 4.00 (dd, 2H, H_d, J_{HH} = 5.3, 5.1 Hz), 2.14 (dt, 2H, H_b, J_{HH} = 6.3, 1.1 Hz), 1.93-1.85 (m, 2H, H_c), 1.35 (t, 3H, H_f, J_{HH} = 7.1 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 164.0 (t, J_{CF} = 35.8 Hz), 146.3 (t, J_{CF} = 11.0 Hz), 114.3 (t, J_{CF} = 248.1 Hz), 105.9 (t, J_{CF} = 24.8 Hz), 66.0, 62.8, 21.0, 17.8 (t, J_{CF} = 2.8 Hz), 13.9. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -105.3 (s, 2F). IR (neat, cm⁻¹) 2941, 1760, 1662, 1256, 1009. HRMS (AP+): calcd for [M+H]⁺ C₉H₁₃F₂O₃: 207.0833 found: 207.0827 (-2.9 ppm).

2-(benzyloxymethyl)-3,4-dihydro-2H-pyran 1b. To a solution of 2-hydroxymethyl-3,4-dihydro-2*H*-pyran (1 g, 8.76 mmol) and TBAI (325 mg, 0.88 mmol) in DMF (70 mL) was added NaH (279 mg, 11.4 mmol, 98%) at room temperature over 15min. Then BnBr (1.4 mL, 11.4 mmol) was added dropwise at 0 °C and the mixture was allowed to warm up to room temperature. After 7h, the reaction mixture was quenched with sat. aq. NH₄CI (30 mL) and extracted with Et₂O (3 x 30 mL). The combined organic layers were washed with water (2 x 20 mL), brine (2 x 20 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 19: 1, $R_{\rm f}$ = 0.33) to afford **1b** as a colorless oil in 84% yield (1.5 g).

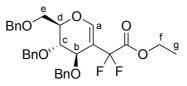

¹**H NMR (CDCI₃, 300 MHz)** δ 7.37-7.28 (m, 5H, Bn), 6.41 (d, 1H, H_a, *J* = 6.2 Hz), 4.72-4.67 (m, 1H, H_b), 4.63 (d, 1H, Bn, *J* = 12.3 Hz), 4.58 (d, 1H, Bn, *J* = 12.3 Hz), 4.08-4.00 (m, 1H, H_e), 3.57 (dq, 2H, H_f, *J* = 10.1, 6.2 Hz), 2.18-2.04 (m, 1H, H_c), 2.03-1.93 (m, 1H, H_c'), 1.89-1.83 (m, 1H, H_d), 1.77-1.63 (m, 1H, H_d'). ¹³**C NMR (CDCI₃, 75 MHz)** δ 143.2, 137.8, 127.9 (2C), 127.23 (2C), 127.17, 99.9, 73.6, 72.9, 72.0, 24.2, 18.9. **IR** (neat, cm⁻¹) 3058, 2857, 1649, 1240, 1070, 731. **HRMS** (EI): calcd for [M] C₁₃H₁₆O₂: 204.1150 found: 204.1143 (-3.4 ppm). Spectral data in accordance with literature: A. Boshi, C. Chiappe, A. De Rubertis, M.-F. Ruasse, *J. Org. Chem.* **2000**, *65*, 8470-8477.

2-(benzyloxymethyl)-3,4-dihydro-5-(ethyl difluoro acetate)-2H-pyran 2b. Prepared following the procedure **A** from 2-(benzyloxymethyl)-3,4-dihydro-2*H*-pyran **1b**. Reaction was carried out on a 0.24 mmol scale using $Cu(CH_3CN)_4PF_6$ (9 mg, 0.024 mmol) as a catalyst.

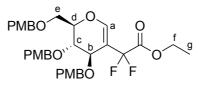

Compound **2b** was obtained as a colorless oil in 72% yield (56 mg) after flash chromatography (SiO₂, pentane/Et₂O 19: 1, R_f = 0.37).

¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.28 (m, 5H, Bn), 6.88 (brs, 1H, H_a), 4.64-4.55 (m, 2H, Bn), 4.33 (q, 2H, H_f, J_{HH} = 7.2 Hz), 4.10-4.03 (m, 1H, H_d), 3.62 (dd, 1H, H_e, J_{HH} = 10.2, 5.7 Hz), 3.56 (dd, 1H, H_{e'}, J_{HH} = 10.2, 4.5 Hz), 2.21-2.16 (m, 2H, H_b), 2.00-1.92 (m, 1H, H_c), 1.80-1.66 (m, 1H, H_{c'}), 1.35 (t, 3H, H_g, J_{HH} = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 164.0 (t, J_{CF} = 35.8 Hz), 146.0 (t, J_{CF} = 11.0 Hz), 137.8, 128.4, 127.8 (2C), 127.7 (2C), 114.2 (dd, J_{CF} = 248.7, 248.7 Hz), 105.8 (t, J_{CF} = 25.3 Hz), 74.9, 73.5, 71.6, 62.8, 23.0, 17.7 (t, J_{CF} = 2.8 Hz), 14.0. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -104.5 (d, J_{FF} = 253.4 Hz), -105.9 (d, J_{FF} = 253.4 Hz). IR (neat, cm⁻¹) 2859, 1760, 1662, 1271, 1198, 1089. HRMS (AP+): calcd for [M+H]⁺ C₁₇H₂₁F₂O₄: 327.1408 found: 327.1401 (-2.1 ppm).

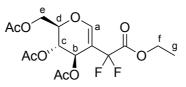
2-(pivaloyloxymethyl)-3,4-dihydro-2H-pyran 1c. To a solution of 2-hydroxymethyl-3,4-dihydro-2H-pyran (1.5 g, 13 mmol) and DMAP (3.2 g, 26 mmol) in THF (60 mL), PivCl (3.2 mL, 26 mmol) was added at 0 °C. The suspension was allowed to warm up to room temperature. After 12h, the reaction mixture was diluted with water (35 mL) and DCM (35 mL). The aqueous phase was extracted with DCM (2 x 35 mL). The combined organic phases were washed with brine (40 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 19: 1, $R_f = 0.39$) to afford **1c** as a colorless oil in 89% yield (2.3 g).


¹**H NMR (CDCI₃, 300 MHz)** δ 6.38 (dt, 1H, H_a, *J*_{HH} = 6.2, 1.9 Hz), 4.73-4.68 (m, 1H, H_b), 4.18-4.17 (d, 2H, H_f, *J*_{HH} = 5.1 Hz), 4.07-4.00 (m, 1H, H_e), 2.18-1.94 (m, 2H, H_c), 1.90-1.83 (m, 1H, H_d), 1.76-1.63 (m, 1H, H_{d'}), 1.23 (s, 9H, Piv). ¹³**C NMR (CDCI₃, 75 MHz)** δ 177.9, 143.0, 99.9, 72.3, 65.4, 38.4, 26.7 (3C), 23.8, 18.7. **IR** (neat, cm⁻¹) 2971, 2935, 1810, 1737, 1156, 1035, 999. **HRMS** (AP+): calcd for [M+H]⁺ C₁₁H₁₉O₃: 199.1334 found: 199.1338 (+2.0 ppm).

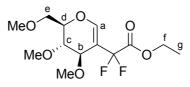
2-(pivaloyloxymethyl)-3,4-dihydro-5-(ethyl difluoro acetate)-2H-pyran 2c. Prepared following the procedure **A** from 2-(pivaloyloxymethyl)-3,4-dihydro-2*H*-pyran **1c**. Reaction was carried out on a 0.24 mmol scale using $Cu(CH_3CN)_4PF_6$ (9 mg, 0.024 mmol) as a catalyst. Compound **2c** was obtained as a colorless oil in 60% yield (46 mg) after flash chromatography (SiO₂, pentane/Et₂O 9: 1, $R_f = 0.34$).


¹**H NMR (CDCI₃, 300 MHz)** δ 6.86 (brs, 1H, H_a), 4.33 (q, 2H, H_f, *J*_{HH} = 7.2 Hz), 4.22 (dd, 1H, H_e, *J*_{HH} = 11.7, 4.7 Hz), 4.17 (dd, 1H, H_e', *J*_{HH} = 11.7, 5.3 Hz), 4.12-4.04 (m, 1H, H_d), 2.23-2.19 (m, 2H, H_b), 2.00-1.92 (m, 1H, H_c), 1.77-1.67 (m, 1H, H_c'), 1.36 (t, 3H, H_g, *J*_{HH} = 7.2 Hz), 1.22 (s, 9H, Piv). ¹³**C NMR (CDCI₃, 75 MHz)** δ 178.2, 163.9 (t, *J*_{CF} = 35.8 Hz), 145.8 (dd, *J*_{CF} = 11.0, 11.0 Hz), 114.1 (dd, *J*_{CF} = 248.7, 248.7 Hz), 105.9 (t, *J*_{CF} = 24.8 Hz), 73.5, 65.1, 62.9, 38.8, 27.1 (3C), 22.8, 17.6 (t, *J*_{CF} = 253.4 Hz), 13.9. ¹⁹**F NMR (CDCI₃, CFCI₃, 282 MHz)** δ - 103.9 (d, *J*_{FF} = 253.4 Hz), -105.6 (d, *J*_{FF} = 253.4 Hz). **IR** (neat, cm⁻¹) 2971, 1755, 1737, 1659,

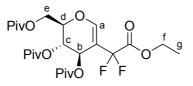
1283, 1156, 1096. **HRMS** (AP+): calcd for $[M+H]^+C_{15}H_{23}F_2O_5$: 321.1514 found: 321.1520 (+1.9 ppm).


1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-(ethyl difluoro acetate)-D-arabino-hex-1-enitol 2d. Prepared following the procedure **B** from 3,4,6-tri-O-benzyl-D-glucal **1d**. Compound **2d** was obtained as a colorless oil in 62% yield (80 mg) after flash chromatography (SiO₂, pentane/Et₂O 4: 1, R_f = 0.30).

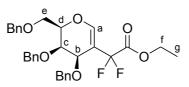
¹H NMR (CDCI₃, 300 MHz) δ 7.37-7.19 (m, 15H, Bn), 6.97 (d, 1H, H_a, *J_{HF}* = 2.6 Hz), 4.61-4.60 (m, 2H, Bn), 4.50-4.49 (m, 4H, Bn), 4.45-4.40 (m, 1H, H_d), 4.14-4.01 (m, 3H, H_{b,f}), 3.89-3.86 (m, 1H, H_c), 3.78 (dd, 1H, H_e, *J_{HH}* = 10.6, 6.4 Hz), 3.66 (dd, 1H, H_{e'}, *J_{HH}* = 10.6, 4.5 Hz), 1.15 (t, 3H, H_g, *J_{HH}* = 7.2 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 163.9 (dd, *J_{CF}* = 37.9, 33.6 Hz), 146.6 (dd, *J_{CF}* = 12.7, 9.4 Hz), 137.6, 137.5, 137.3, 128.5 (2C), 128.4 (2C), 128.2 (2C), 128.0, 127.8 (2C), 127.73 (2C), 127.69 (2C), 127.63 (2C), 113.4 (t, *J_{CF}* = 250.3 Hz), 105.7 (dd, *J_{CF}* = 26.4, 22.0 Hz), 76.3, 73.3, 72.5, 72.2, 71.9, 70.0 (d, *J_{CF}* = 3.9 Hz), 67.6, 62.6, 13.7. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -103.2 (d, *J_{FF}* = 256.5 Hz), -109.4 (d, *J_{FF}* = 256.5 Hz). IR (neat, cm⁻¹) 2928, 2869, 1762, 1291, 1202, 1088, 1068. HRMS (ESI+): calcd for [M+Na]⁺ C₃₁H₃₂F₂O₆Na: 561.2065 found: 561.2063 (-0.4 ppm). [*α*]_{*D*}²⁰ = -9.2° (c = 0.25, CHCI₃).


1,5-anhydro-3,4,6-tri-O-(p-methoxybenzyl)-2-deoxy-2-(ethyl difluoro acetate)-D-arabinohex-1-enitol 2e. Prepared following the procedure **B** from 3,4,6-tri-O-(p-methoxybenzyl)-Dglucal **1e** except that the reaction mixture was heated at 110 °C for 30h instead of 24h. Compound **2e** was obtained as a colorless oil in 50% (76 mg) yield after flash chromatography (SiO₂, pentane/Et₂O 1: 1, $R_f = 0.62$).

¹H NMR (CDCI₃, 300 MHz) δ 7.25-7.14 (m, 6H, PMB), 6.95 (d, 1H, H_a, *J_{HF}* = 2.6 Hz), 6.89-6.81 (m, 6H, PMB), 4.60-4.34 (m, 8H, PMB, H_{c,d}), 4.16-4.01 (m, 3H, H_{b,f}), 3.81 (s, 3H, PMB), 3.81 (s, 3H, PMB), 3.80 (s, 3H, PMB), 3.73 (dd, 1H, H_e, *J_{HH}* = 10.6, 6.6 Hz), 3.60 (dd, 1H, H_{e'}, *J_{HH}* = 10.6, 4.3 Hz), 1.16 (t, 3H, H_g, *J_{HH}* = 7.2 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 164.0 (dd, *J_{CF}* = 38.0, 34.1 Hz), 159.4 (2C), 159.2 (2C), 159.1 (2C), 146.6 (dd, *J_{CF}* = 12.7, 9.4 Hz), 129.8, 129.7, 129.5, 129.44, 129.40, 129.37, 113.8 (2C), 113.7 (2C), 113.5 (2C), 113.4 (t, *J_{CF}* = 250.3 Hz), 105.8 (dd, *J_{CF}* = 26.4, 22.0 Hz), 76.5, 73.0, 72.2, 71.9, 71.7, 69.9 (d, *J_{CF}* = 3.9 Hz), 67.4, 62.6, 55.2 (3C), 13.8. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -103.2 (d, *J_{FF}* = 255.5 Hz), -109.5 (d, *J_{FF}* = 255.5 Hz). IR (neat, cm⁻¹) 2936, 1763, 1611, 1513, 1301, 1246, 1075, 1030. HRMS (ESI+): calcd for [M+NH₄]⁺ C₃₄H₄₂F₂NO₉: 646.2828 found: 646.2839 (+1.7 ppm). [*α*]²⁰_D = -25.5° (c = 0.20, CHCI₃).

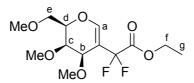

1,5-anhydro-3,4,6-tri-O-acetyl-2-deoxy-2-(ethyl difluoro acetate)-D-arabino-hex-1-enitol 2f. Prepared following the procedure **B** from 3,4,6-tri-O-acetyl-D-glucal **1f**. Compound **2f** was obtained as a colorless oil in 65% yield (62 mg) after flash chromatography (SiO₂, pentane/Et₂O 3: 2, R_f = 0.22).

¹H NMR (CDCl₃, 300 MHz) δ 7.08 (brs, 1H, H_a), 5.61 (d, 1H, H_b, J_{HH} = 4.3 Hz), 5.16 (t, 1H, H_c, J_{HH} = 4.3 Hz), 4.47-4.18 (m, 5H, H_{d,e,f}), 2.10 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.03 (s, 3H, Ac), 1.36 (t, 3H, H_g, J_{HH} = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 170.3, 169.4, 169.3, 163.3 (dd, J_{CF} = 35.8, 35.8 Hz), 148.7 (t, J_{CF} = 10.5 Hz), 112.6 (dd, J_{CF} = 250.9, 250.9 Hz), 104.0 (t, J_{CF} = 24.8 Hz), 74.1, 66.1, 63.1, 62.8 (dd, J_{CF} = 3.3, 2.2 Hz), 60.8, 20.7, 20.6, 20.5, 13.7. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -104.3 (d, J_{FF} = 262.6 Hz), -105.4 (d, J_{FF} = 262.6 Hz). IR (neat, cm⁻¹) 2990, 1743, 1661, 1369, 1216, 1198, 1021. HRMS (ESI+): calcd for [M+Na]⁺ C₁₆H₂₀F₂O₉Na: 417.0980 found: 417.0973 (-1.7 ppm). [α]²⁰_D = +31.2° (c = 0.25, CHCl₃).



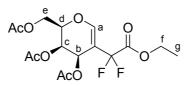
1,5-anhydro-3,4,6-tri-O-methyl-2-deoxy-2-(ethyl difluoro acetate)-D-arabino-hex-1-enitol 2g. Prepared following the procedure **B** from 3,4,6-tri-O-methyl-D-glucal **1g**. Compound **2g** was obtained as a colorless oil in 51% yield (38 mg) after flash chromatography (SiO₂, pentane/Et₂O 4: 1, R_f = 0.28).

¹H NMR (CDCI₃, 300 MHz) δ 6.89 (d, 1H, H_a, *J*_{HF} = 3.0 Hz), 4.38-4.21 (m, 3H, H_{c,f}), 3.82 (d, 1H, H_b, *J*_{HH} = 4.2 Hz), 3.70-3.52 (m, 3H, H_{d,e}), 3.49 (s, 3H, Me), 3.40 (s, 3H, Me), 3.39 (s, 3H, Me), 1.33 (t, 3H, H_g, *J*_{HH} = 7.2 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 164.0 (dd, *J*_{CF} = 38.0, 33.6 Hz), 146.3 dd, *J*_{CF} = 12.7, 8.8 Hz), 113.2 (t, *J*_{CF} = 250.3 Hz), 106.1 (dd, *J*_{CF} = 26.4, 21.5 Hz), 76.0, 74.4, 72.4 (dd, *J*_{CF} = 3.9 Hz), 69.9, 62.7, 59.1, 58.3, 58.1, 13.9. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -102.9 (d, *J*_{FF} = 256.5 Hz), -110.4 (d, *J*_{FF} = 256.5 Hz). IR (neat, cm⁻¹) 2935, 1765, 1667, 1456, 1371, 1294, 1203, 1081, 1198. HRMS (ESI+): calcd for [M+NH₄]⁺ C₁₃H₂₄F₂NO₆: 328.1572 found: 328.1558 (-4.2 ppm). $[\alpha]_D^{20}$ = +77.6° (c = 0.25, CHCI₃).



1,5-anhydro-3,4,6-tri-O-pivaloyl-2-deoxy-2-(ethyl difluoro acetate)-D-arabino-hex-1*enitol* **2h.** Prepared following the procedure **B** from 3,4,6-tri-O-pivaloyl-D-glucal **1h**. Compound **2h** was obtained as a colorless oil in 67% yield (84 mg) after flash chromatography (SiO₂, pentane/Et₂O 9: 1, $R_f = 0.21$). ¹H NMR (CDCl₃, 300 MHz) δ 7.08 (brs, 1H, H_a), 5.53 (d, 1H, H_b, *J*_{HH} = 3.4 Hz), 5.10 (t, 1H, H_c, *J*_{HH} = 3.4 Hz), 4.41-4.52 (m, 2H, H_e), 4.32 (q, 2H, H_f, *J*_{HH} = 7.2 Hz), 4.11 (q, 1H, H_d, *J*_{HH} = 7.6 Hz), 1.35 (t, 3H, H_g, *J*_{HH} = 7.2 Hz), 1.21 (s, 9H, Piv), 1.19 (s, 9H, H_g, Piv), 1.17 (s, 9H, Piv). ¹³C NMR (CDCl₃, 75 MHz) δ 177.7, 176.5, 176.2, 163.0 (t, *J*_{CF} = 35.8 Hz), 148.6 (dd, *J*_{CF} = 11.0, 9.9 Hz), 112.8 (t, *J*_{CF} = 251.4 Hz), 103.6 (dd, *J*_{CF} = 25.9, 24.2 Hz), 73.9, 65.6, 62.9, 61.8 (t, *J*_{CF} = 2.2 Hz), 60.8, 38.59, 38.57, 38.56, 26.9 (3C), 26.69 (3C), 26.67 (3C), 13.7. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -100.7 (d, *J*_{FF} = 265.7 Hz), -105.0 (d, *J*_{FF} = 265.7 Hz). IR (neat, cm⁻¹) 2975, 1734, 1661, 1481, 1277, 1122. HRMS (ESI+): calcd for [M+NH₄]⁺ $C_{25}H_{42}F_2NO_9$: 538.2828 found: 538.2831 (+0.6 ppm). [α]_D²⁰ = +4.0° (c = 0.25, CHCl₃).

1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-2-(ethyl difluoro acetate)-D-lyxo-hex-1-enitol 2i. Prepared following the procedure **B** from 3,4,6-tri-O-benzyl-D-galactal **1i**. Compound **2i** was obtained as a colorless oil in 49% yield (63 mg) after flash chromatography (SiO₂, pentane/Et₂O 9: 1, R_f = 0.29).


¹H NMR (CDCI₃, 300 MHz) δ 7.37-7.28 (m, 15H, Bn), 6.89 (d, 1H, H_a, *J_{HF}* = 2.8 Hz), 4.79-4.39 (m, 7H, H_d, Bn), 4.33-4.32 (m, 1H, H_b), 4.04 (q, 2H, H_f, *J_{HH}* = 7.2 Hz), 4.00-3.97 (m, 1H, H_c), 3.73 (dd, 1H, H_e, *J_{HH}* = 10.6, 6.6 Hz), 3.60 (dd, 1H, H_e', *J_{HH}* = 10.6, 4.5 Hz), 1.09 (t, 3H, H_g, *J_{HH}* = 7.2 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 163.8 (dd, *J_{CF}* = 38.5, 33.0 Hz), 146.2 (dd, *J_{CF}* = 13.2, 9.4 Hz), 137.9, 137.8, 137.7, 128.48 (2C), 128.45 (2C), 128.2 (2C), 128.0 (2C), 127.94, 127.92 (2C), 127.8, 127.73 (2C), 127.67, 113.3 (dd, *J_{CF}* = 249.8, 248.1 Hz), 106.7 (dd, *J_{CF}* = 26.4, 20.4 Hz), 76.1, 73.9, 73.5, 72.9, 72.1, 69.5, 67.8, 62.6, 13.7. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -101.9 (d, *J_{FF}* = 257.5 Hz), -109.8 (d, *J_{FF}* = 257.5 Hz). IR (neat, cm⁻¹) 2923, 2863, 1761, 1296, 1211, 1096. HRMS (ES+): calcd for [M+NH₄]⁺ C₃₁H₃₆F₂NO₆: 556.2511 found: 556.2527 (+2.87 ppm). [*α*]_D²⁰ = -11.5° (c = 0.4, CHCI₃).

1,5-anhydro-3,4,6-tri-O-methyl-2-deoxy-2-(ethyl difluoro acetate)-D-lyxo-hex-1-enitol 2j. Prepared following the procedure **B** from 3,4,6-tri-O-methyl-D-galactal **1j**. Compound **2j** was obtained as a colorless oil in 50% yield (37 mg) after flash chromatography (SiO₂, pentane/Et₂O 7: 3, R_f = 0.31).

¹H NMR (CDCl₃, 300 MHz) δ 6.84 (d, 1H, H_a, J_{HF} = 2.8 Hz), 4.40-4.24 (m, 3H, H_{c,f}), 4.06-4.05 (m, 1H, H_b), 3.77-3.62 (m, 3H, H_{d,e}), 3.56 (s, 3H, Me), 3.43 (s, 3H, Me), 3.41 (s, 3H, Me), 1.34 (t, 3H, H_g, J_{HH} = 7.0 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 163.8 (dd, J_{CF} = 38.5, 33.6 Hz), 146.0 (dd, J_{CF} = 12.7, 9.4 Hz), 113.2 (dd, J_{CF} = 250.3, 248.1 Hz), 106.7 (dd, J_{CF} = 26.4, 20.9 Hz), 75.8, 73.9, 71.2 (d, J_{CF} = 3.9 Hz), 69.9, 62.6, 59.4, 59.3, 59.2, 13.9. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -102.2 (d, J_{FF} = 258.5 Hz), -109.4 (d, J_{FF} = 258.5 Hz). IR (neat, cm⁻¹) 2942, 2841,

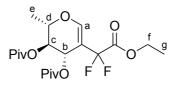
1767, 1665, 1275, 1199, 1095. **HRMS** (ES+): calcd for $[M+NH_4]^+ C_{13}H_{24}F_2NO_6$: 328.1572 found: 328.1570 (-0.6 ppm). $[\alpha]_D^{20} = 27.5^\circ$ (c = 0.6, CHCl₃).


1,5-anhydro-3,4,6-tri-O-acetyl-2-deoxy-2-(ethyl difluoro acetate)-D-lyxo-hex-1-enitol 2k. Prepared following the procedure **B** from 3,4,6-tri-O-acetyl-D-galactal **1k**. Compound **2k** was obtained as a colorless oil in 40% yield (38 mg) after flash chromatography (SiO₂, pentane/Et₂O 3: 2, $R_f = 0.26$).

¹H NMR (CDCI₃, 300 MHz) δ 7.02 (d, 1H, H_a, J_{HF} = 1.1 Hz), 5.80 (d, 1H, H_b, J_{HH} = 4.1 Hz), 5.44 (dd, 1H, H_c, J_{HH} = 4.1, 2.6 Hz), 4.44-4.22 (m, 5H, H_{d,e,f}), 2.10 (s, 6H, Ac), 2.00 (s, 3H, Ac), 1.35 (t, 3H, H_g, J_{HH} = 7.2 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 170.5, 169.7, 169.5, 163.3 (dd, J_{CF} = 35.8, 35.8 Hz), 148.1 (dd, J_{CF} = 10.4, 10.4 Hz), 112.4 (t, J_{CF} = 250.9 Hz), 104.2 (dd, J_{CF} = 25.3, 23.7 Hz), 73.3, 63.1, 63.0, 61.9, 61.3, 20.7, 20.5, 20.3, 13.9. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -104.2 (d, J_{FF} = 265.7 Hz), -105.3 (d, J_{FF} = 265.7 Hz). IR (neat, cm⁻¹) 2996, 1743, 1671, 1374, 1204, 1090, 1029. HRMS (ES+): calcd for [M+NH₄]⁺ C₁₆H₂₄F₂NO₉: 412.1419 found: 412.1418 (-0.2 ppm). $[\alpha]_{D}^{20}$ = -13.2° (c = 0.25, CHCI₃).

3,4-di-O-benzyl-6-deoxy-L-glucal 1I. To a solution of 3,4-di-O-acetyl-6-deoxy-L-glucal (1.5 g, 7 mmol) in MeOH (40 mL) was added K_2CO_3 (39 mg, 0.28 mmol). After 12h at room temperature, the solvent was removed under vacuum. The viscous residue was dissolved in CHCl₃ and concentrated under vacuum. This procedure was repeated two times. DMF (25 mL) and TBAI (259 mg, 0.7 mmol) were added to the crude yellow solid and the solution was cooled to 0 °C. NaH (784 mg, 19.6 mmol, 60% in oil) was added portionwise over 30min. Then BnBr (2.33 mL, 19.6 mmol) was added dropwise at 0 °C and the mixture was allowed to warm up to room temperature. After 12h, the reaction mixture was quenched with sat. aq. NH₄Cl (30 mL) and extracted with Et₂O (3 x 30 mL). The combined organic layers were washed with water (2 x 30 mL), brine (2 x 20 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 19: 1, $R_f = 0.40$) to afford **1I** as a colorless oil in 78% yield (1.7 g).

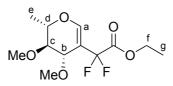
¹H NMR (CDCl₃, 300 MHz) δ 7.39-7.29 (m, 10H, Bn), 6.38 (dd, 1H, H_a, *J* = 6.2, 1.3 Hz), 4.92-4.87 (m, 2H, H_b, Bn), 4.74-4.57 (m, 3H, Bn), 4.24 (ddd, 1H, H_c, *J* = 6.4, 2.1, 1.3 Hz), 3.98 (dq, 1H, H_e, *J* = 8.9, 6.4 Hz), 3.51 (dd, 1H, H_d, *J* = 8.9, 6.4 Hz), 1.40 (d, 3H, H_f, *J* = 6.4 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 144.8, 138.4, 138.2, 128.4 (4C), 128.0 (2C), 127.7 (2C), 127.6 (2C), 100.1, 79.5, 76.4, 74.1, 73.9, 70.5, 17.5. IR (neat, cm⁻¹) 3035, 2870, 1644, 1453, 1237, 1098, 1057. HRMS (AP+): calcd for [M+Na]⁺ C₂₀H₂₂O₃Na: 333.1467 found: 333.1466 (-0.3 ppm). $[\alpha]_D^{20} = +37.2^{\circ}$ (c = 0.25, CHCl₃).


1,5-anhydro-2,6-dideoxy-3,4-di-O-benzyl-2-(ethyl difluoro acetate)-L-arabino-hex-1*enitol 2I.* Prepared following the procedure **B** from 3,4-di-O-benzyl-6-deoxy-L-glucal **1I** using Cul (5 mg, 0.024 mmol) as a catalyst. Compound **2I** was obtained as a colorless oil in 51% yield (53 mg) after flash chromatography (SiO₂, pentane/Et₂O 19: 1, R_f = 0.27).

¹H NMR (CDCl₃, 300 MHz) δ 7.39-7.29 (m, 10H, Bn), 6.93 (d, 1H, H_a, *J*_{HF} = 2.6 Hz), 4.68-4.56 (m, 4H, Bn), 4.41-4.30 (m, 1H, H_d), 4.17-4.16 (m, 1H, H_b), 4.14-3.97 (m, 2H, H_f), 3.59 (t, 1H, H_c, *J*_{HH} = 4.3 Hz), 1.39 (d, 3H, H_e, *J*_{HH} = 6.8 Hz), 1.15 (t, 3H, H_g, *J*_{HH} = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 163.7 (dd, *J*_{CF} = 38.5, 34.1 Hz), 146.0 (dd, *J*_{CF} = 12.7, 8.8 Hz), 137.4, 137.0, 128.1 (2C), 127.8 (2C), 127.6, 127.4 (2C), 127.3 (2C), 127.2, 113.2 (t, *J*_{CF} = 249.8 Hz), 105.1 (dd, *J*_{CF} = 26.4, 21.5 Hz), 76.0, 73.3, 72.2, 72.1, 70.5 (d, *J*_{CF} = 3.9 Hz), 62.2, 15.9, 13.3. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -103.1 (d, *J*_{FF} = 256.5 Hz), -109.6 (d, *J*_{FF} = 256.5 Hz). IR (neat, cm⁻¹) 2986, 2870, 1762, 1661, 1455, 1212, 1202, 1066. HRMS (AP+): calcd for [M+NH₄]⁺ C₂₄H₃₀F₂NO₅: 450.2092 found: 450.2096 (+0.9 ppm). [*α*]²⁰_D = +51.2° (c = 0.25, CHCl₃).

3,4-di-O-pivaloyl-6-deoxy-L-glucal 1m. To a solution of 3,4-di-O-acetyl-6-deoxy-L-glucal (1.5 g, 7 mmol) in MeOH (40 mL) was added K_2CO_3 (39 mg, 0.28 mmol). After 12h at room temperature, the solvent was removed under vacuum. The viscous residue was dissolved in CHCl₃ and concentrated under vacuum. This procedure was repeated two times. The crude yellow solid was dissolved in THF (50 mL) and cooled to 0 °C. DMAP (3.4 g, 28 mmol) and PivCl (3.4 mL, 28 mmol) were added. The suspension was allowed to warm up to room temperature. After 12h, the reaction mixture was diluted with water (40 mL) and DCM (40 mL). The aqueous phase was extracted with DCM (2 x 40 mL). The combined organic phases were washed with brine (40 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 19: 1, $R_f = 0.37$) to afford **1m** as a white solid in 57% yield (1.2 g).

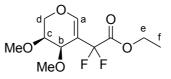
¹H NMR (CDCl₃, 300 MHz) δ 6.43 (dd, 1H, H_a, *J* = 6.0, 1.1 Hz), 5.36 (ddd, 1H, H_c, *J* = 6.6, 2.8, 1.1 Hz), 5.09 (dd, 1H, H_d, *J* = 8.7, 6.6 Hz), 4.75 (dd, 1H, H_b, *J* = 6.0, 2.8 Hz), 4.11 (dq, 1H, H_e, *J* = 8.7, 6.6 Hz), 1.30 (d, 3H, H_f, *J* = 6.6 Hz), 1.20 (s, 9H, Piv), 1.18 (s, 9H, Piv). ¹³C NMR (CDCl₃, 75 MHz) δ 178.0, 177.1, 145.8, 99.2, 72.7, 71.3, 68.4, 38.74, 38.69, 27.0 (6C), 16.6. IR (neat, cm⁻¹) 2970, 1739, 1717, 1649, 1481, 1237, 1134, 1042. HRMS (ES+): calcd for for [M+NH₄]⁺ C₁₆H₃₀NO₅: 316.2124 found: 316.2119 (-1.6 ppm). $[\alpha]_D^{20}$ = +63.6° (c = 0.25, CHCl₃). Mp: 58-59°C.


1,5-anhydro-2,6-dideoxy-3,4-di-O-pivaloyl-2-(ethyl difluoro acetate)-L-arabino-hex-1enitol 2m. Prepared following the procedure **B** from 3,4-di-O-pivaloyl-6-deoxy-L-glucal **1m** except that the reaction mixture was heated at 110 °C for 30h instead of 24h. Compound **2m** was obtained as a colorless oil in 50% yield (50 mg) after flash chromatography (SiO₂, pentane/Et₂O 9: 1, $R_f = 0.34$).

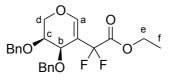
¹H NMR (CDCI₃, 300 MHz) δ 7.06 (brs, 1H, H_a), 5.55 (d, 1H, H_b, *J*_{HH} = 3.9 Hz), 4.94 (t, 1H, H_c, *J*_{HH} = 3.9 Hz), 4.38-4.33 (m, 1H, H_d), 4.31 (q, 2H, H_f, *J*_{HH} = 7.2 Hz), 1.38 (d, 3H, H_e, *J*_{HH} = 6.4 Hz), 1.35 (t, 3H, H_g, *J*_{HH} = 7.2 Hz), 1.18 (s, 18H, Piv). ¹³C NMR (CDCI₃, 75 MHz) δ 176.9, 176.8, 163.3 (t, *J*_{CF} = 35.8 Hz), 149.1 (dd, *J*_{CF} = 11.0, 9.4 Hz), 113.2 (t, *J*_{CF} = 250.9 Hz), 103.1 (dd, *J*_{CF} = 25.9, 24.2 Hz), 72.6, 69.7, 63.1, 62.7 (t, *J*_{CF} = 2.2 Hz), 38.77, 38.75, 26.91 (3C), 26.87 (3C), 15.9, 13.9. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -100.2 (d, *J*_{FF} = 263.6 Hz), -104.6 (d, *J*_{FF} = 263.6 Hz). IR (neat, cm⁻¹) 2978, 2880, 1773, 1737, 1277, 1132. HRMS (ES+): calcd for [M+NH₄]⁺ C₂₀H₃₄F₂NO₇: 438.2303 found: 438.2299 (-0.9 ppm). $[\alpha]_D^{20} = +24.4^{\circ}$ (c = 0.80, CHCI₃).

3,4-di-O-methyl-6-deoxy-L-glucal 1n. To a solution of 3,4-di-O-acetyl-6-deoxy-L-glucal (1.5 g, 7.0 mmol) in MeOH (40 mL) was added K₂CO₃ (39 mg, 0.28 mmol). After 12h at room temperature, the solvent was removed under vacuum. The viscous residue was dissolved in CHCl₃ and concentrated under vacuum. This procedure was repeated two times. DMF (30 mL) was added to the crude yellow solid and the solution was cooled to 0 °C. NaH (616 mg, 15.4 mmol, 60% in oil) was added portionwise over 30min. Then, MeI (0.96 mL, 15.4 mmol) was added dropwise at 0 °C and the mixture was allowed to warm up to room temperature. After 12h, the reaction mixture was quenched with MeOH (10 mL), stirred for 15min and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water (2 x 30 mL), brine (2 x 30 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 19: 1, $R_f = 0.33$) to afford **1n** as a colorless oil in 23% yield (255 mg).

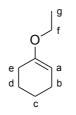
¹H NMR (CDCI₃, 300 MHz) δ 6.35 (dd, 1H, H_a, *J* = 6.2, 1.1 Hz), 4.82 (dd, 1H, H_b, *J* = 6.2, 2.5 Hz), 3.94-3.85 (m, 2H, H_{c,e}), 3.57 (s, 3H, Me), 3.41 (s, 3H, Me), 3.14 (dd, 1H, H_d, *J* = 8.7, 6.4 Hz), 1.37 (d, 3H, H_f, *J* = 6.4 Hz).¹³C NMR (CDCI₃, 75 MHz) δ 144.5, 99.5, 81.0, 77.3, 73.4, 59.4, 55.5, 17.0. IR (neat, cm⁻¹) 2934, 1646, 1236, 1104, 1088, 1054. Elemental analysis: calcd for C₈H₁₄O₃: C, 60.74; H, 8.92. found: C, 60.56; H, 8.80. MS (IE): calcd for [M]⁺ C₈H₁₄O₃: 158 found: 158. $[\alpha]_{D}^{20} = +36.8^{\circ}$ (c = 0.25, CHCI₃).


1,5-anhydro-2,6-dideoxy-3,4-di-O-methyl-2-(ethyl difluoro acetate)-L-arabino-hex-1*enitol 2n.* Prepared following the procedure **B** from 3,4-di-O-methyl-6-deoxy-L-glucal **1n**. Compound **2n** was obtained as a colorless oil in 60% yield (40 mg) after flash chromatography (SiO₂, pentane/Et₂O 9: 1, $R_f = 0.31$).

¹H NMR (CDCI₃, 300 MHz) δ 6.85 (d, 1H, H_a, *J_{HF}* = 2.8 Hz), 4.36-4.16 (m, 3H, H_{d,f}), 3.84 (d, 1H, H_b, *J_{HH}* = 4.3 Hz), 3.51 (s, 3H, Me), 3.41 (s, 3H, Me), 3.28 (t, 1H, H_c, *J_{HH}* = 4.3 Hz), 1.37 (d, 3H, H_e, *J_{HH}* = 6.8 Hz), 1.33 (t, 3H, H_g, *J_{HH}* = 7.0 Hz). ¹³C NMR (CDCI₃, 75 MHz) δ 164.6 (dd, *J_{CF}* = 38.5, 33.6 Hz), 146.6 (dd, *J_{CF}* = 12.7, 9.4 Hz), 114.0 (t, *J_{CF}* = 249.8 Hz), 106.5 (dd, *J_{CF}* = 26.4, 20.9 Hz), 79.9, 74.0, 73.8 (d, *J_{CF}* = 3.9 Hz), 63.0, 59.1, 58.7, 16.6, 14.3. ¹⁹F NMR (CDCI₃, CFCI₃, 282 MHz) δ -102.9 (d, *J_{FF}* = 256.5 Hz), -110.3 (d, *J_{FF}* = 256.5 Hz). IR (neat, cm⁻¹) 2989, 2939, 1764, 1667, 1287, 1195, 1083. HRMS (ES+): calcd for [M+NH₄]⁺ C₁₂H₂₂F₂NO₅: 298.1463 found: 298.1466 (+1.0 ppm). $[\alpha]_D^{20}$ = -55.0° (c = 0.30, CHCI₃).

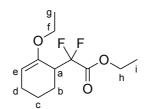

3,4-di-O-methyl-L-arabinal 10. To a solution of 3,4-di-O-acetyl-L-arabinal (1.5 g, 7.5 mmol) in MeOH (35 mL) was added K₂CO₃ (41 mg, 0.30 mmol). After 12h at room temperature, the solvent was removed under vacuum. The viscous residue was dissolved in CHCl₃ and concentrated under vacuum. This procedure was repeated two times. DMF (35 mL) was added to the crude yellow solid and the solution was cooled to 0 °C. NaH (656 mg, 16.4 mmol, 60% in oil) was added portionwise over 30min. Then, MeI (1.0 mL, 16.4 mmol) was added dropwise at 0 °C and the mixture was allowed to warm up to room temperature. After 12h, the reaction mixture was quenched with MeOH (10 mL), stirred for 15min and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water (2 x 30 mL), brine (2 x 30 mL) and dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (cyclohexane/EtOAc 9: 1, $R_f = 0.22$) to afford **10** as a colorless oil in 23% yield (251 mg).

¹H NMR (CDCI₃, 300 MHz) δ 6.37 (d, 1H, H_a, *J* = 6.0 Hz), 4.88 (dd, 1H, H_b, *J* = 6.0, 3.8 Hz), 3.96-3.88 (m, 2H, H_e), 3.85 (t, 1H, H_c, *J* = 3.8 Hz), 3.54 (ddd, 1H, H_d, *J* = 9.4, 4.5, 3.8 Hz), 3.43 (s, 3H, Me), 3.40 (s, 3H, Me). ¹³C NMR (CDCI₃, 75 MHz) δ 146.5, 98.2, 75.2, 68.9, 62.7, 57.0, 56.2. IR (neat, cm⁻¹) 2932, 2888, 1639, 1235, 1121, 1070. Elemental analysis: calcd for C₇H₁₂O₃: C, 58.32; H, 8.39. found: C, 58.50; H, 8.53. MS (IE): calcd for [M]⁺ C₇H₁₂O₃: 144 found: 144. $[\alpha]_D^{20}$ = -245.2° (c = 0.25, CHCI₃).


1,5-anhydro-2,3-di-O-methyl-4-deoxy-4-(ethyl difluoro acetate)-D-erythro-pent-4-enitol 20. Prepared following the procedure **B** from 3,4-di-O-methyl-L-arabinal **10** using Cul (5 mg, 0.024 mmol) as a catalyst. Compound **20** was obtained as a colorless oil in 39% yield (25 mg) after flash chromatography (SiO₂, pentane/Et₂O 4: 1, $R_f = 0.37$).

¹H NMR (CDCl₃, 300 MHz) δ 6.89 (d, 1H, H_a, *J*_{HF} = 2.6 Hz), 4.38-4.27 (m, 2H, H_e), 4.10-3.92 (m, 3H, H_{b,d}), 3.55 (ddd, 1H, H_c, *J*_{HH} = 11.1, 4.2, 3.2 Hz), 3.50 (s, 3H, Me), 3.49 (s, 3H, Me), 1.35 (t, 3H, H_f, *J*_{HH} = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 164.1 (dd, *J*_{CF} = 37.4, 34.1 Hz), 148.5 (dd, *J*_{CF} = 12.1, 9.4 Hz), 113.1 (dd, *J*_{CF} = 250.9, 249.8 Hz), 106.4 (dd, *J*_{CF} = 27.0, 23.1 Hz), 76.1, 68.2 (d, *J*_{CF} = 3.3 Hz), 62.9, 62.5, 59.9, 57.7, 13.9. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -101.3 (d, *J*_{FF} = 251.4 Hz), -108.2 (d, *J*_{FF} = 251.4 Hz). IR (neat, cm⁻¹) 2933, 1765, 1660, 1295, 1209, 1079. HRMS (ES+): calcd for [M+NH₄]⁺ C₁₁H₂₀F₂NO₅: 284.1310 found: 284.1314 (+1.4 ppm). [*α*]²⁰_D = -80.1° (c = 0.45, CHCl₃).

1,5-anhydro-2,3-di-O-benzyl-4-deoxy-4-(ethyl difluoro acetate)-D-erythro-pent-4enitol 2p. Prepared following the procedure **B** from 3,4-di-O-benzyl-L-arabinal **1p** using Cul (5 mg, 0.024 mmol) as a catalyst. Compound **2p** was obtained as a colorless oil in 42% yield (42 mg) after flash chromatography (SiO₂, pentane/Et₂O 19: 1, $R_f = 0.18$).


¹H NMR (CDCl₃, 300 MHz) δ 7.40-7.28 (m, 10H, Bn), 6.90 (d, 1H, H_a, *J*_{HF} = 2.8 Hz), 4.98-4.59 (m, 4H, Bn), 4.32 (d, 1H, H_b, *J*_{HH} = 2.3 Hz), 4.18-4.06 (m, 4H, H_{d,e}), 3.81 (ddd, 1H, H_c, *J*_{HH} = 10.6, 4.9, 2.3 Hz), 1.21 (t, 3H, H_f, *J*_{HH} = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ 164.0 (dd, *J*_{CF} = 38.0, 34.1 Hz), 148.6 (dd, *J*_{CF} = 12.1, 8.8 Hz), 138.4, 137.6, 128.6 (2C), 128.1 (2C), 128.0 (2C), 127.47 (2C), 127.45 (2C), 113.1 (dd, *J*_{CF} = 250.9, 248.7 Hz), 106.4 (dd, *J*_{CF} = 26.4, 22.6 Hz), 74.1, 74.0, 71.7 (2C), 67.2 (d, *J*_{CF} = 3.9 Hz), 62.8, 13.8. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -101.0 (d, *J*_{FF} = 251.4 Hz), -108.1 (d, *J*_{FF} = 251.4 Hz). IR (neat, cm⁻¹) 2923, 1767, 1659, 1296, 1199, 1084. HRMS (ES+) : calcd for [M+NH₄]⁺ C₂₃H₂₈F₂NO₅: 436.1936 found: 436.1939 (+0.7 ppm). $[\alpha]_D^{20} = -124.2^\circ$ (c = 0.45, CHCl₃).

1-ethoxycylohex-1-ene 4. At -20 °C, TMSOTf (11.5 mL, 63.8 mmol) was added dropwise to a solution of cyclohexanone diethyl acetal (10.0 g, 58.1 mmol) and *N*,*N*-diisopropylethylamine (12.1 mL, 69.7 mmol) in DCM (100 mL). The reaction mixture was allowed to warm to room temperature and stirred for 3 days. Aqueous sodium hydroxide

solution (1 N, 11.6 mmol) was added and the reaction mixture was stirred vigorously for 5 minutes. The organic layer was separated, diluted with pentane (200 mL) and cooled overnight. The precipitate was removed by filtration. The solvent was removed under vacuum and the residue was distilled (110 °C, 12 mmHg) to afford **4** as a colorless oil in 44% yield (3.2 g).

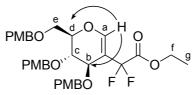
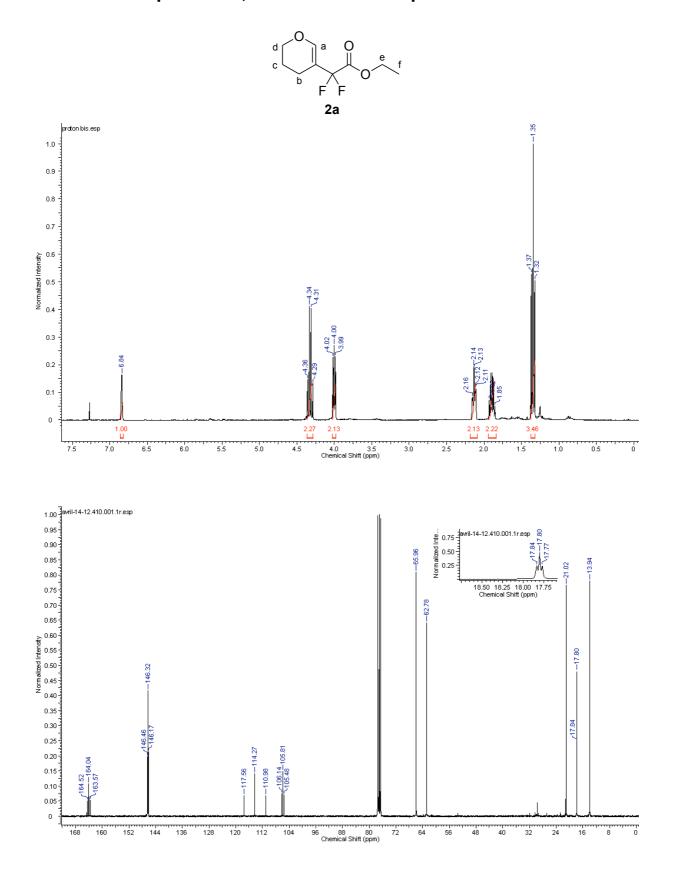
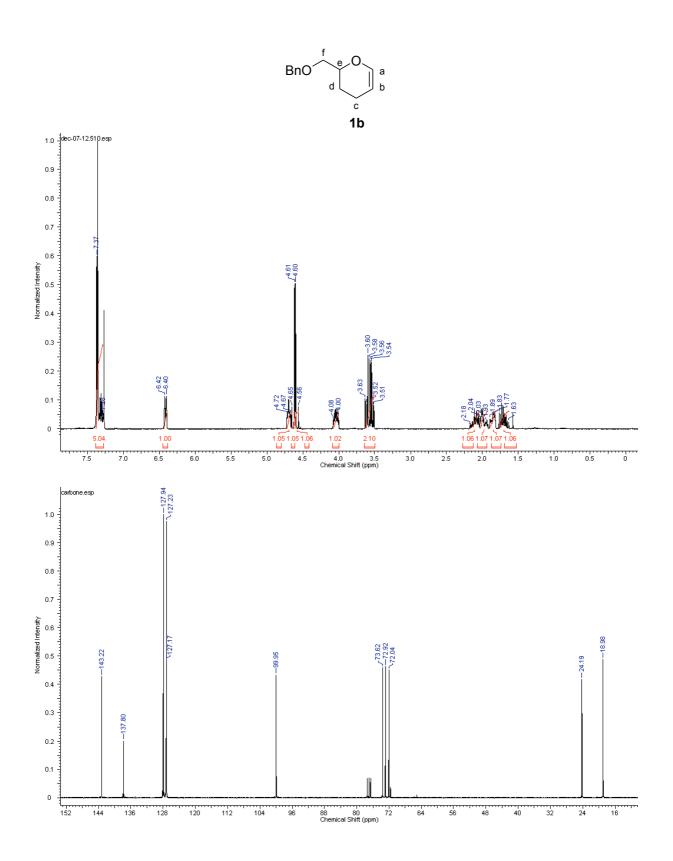
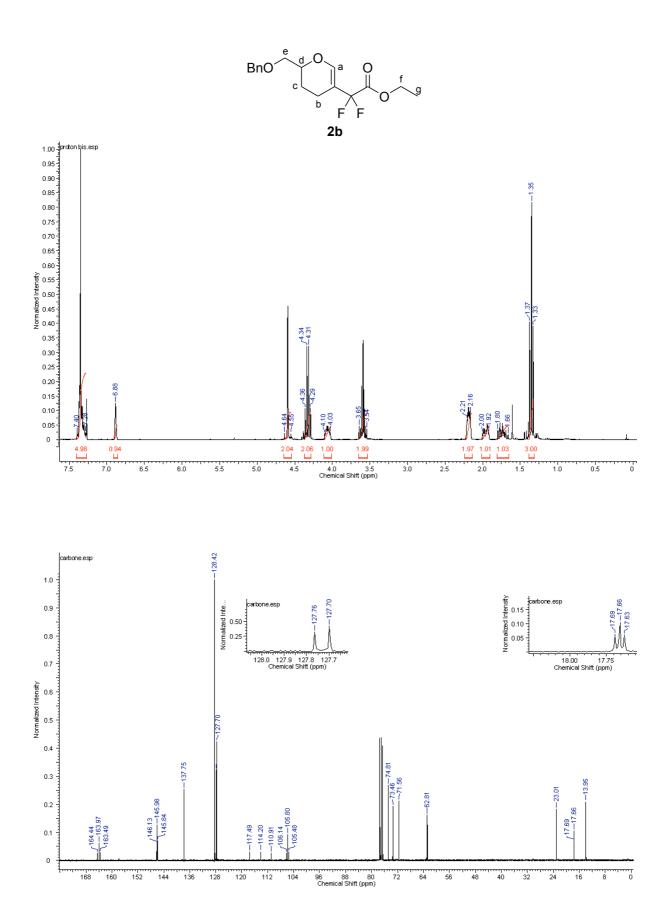
¹**H NMR (CDCI₃, 300 MHz)** δ 4.60 (t, 1H, H_a, *J* = 3.2 Hz), 3.69 (q, 2H, H_f, *J* = 7.0 Hz), 2.08-2.02 (m, 4H, H_{b,e}), 1.72-1.62 (m, 2H, H_{c or d}), 1.58-1.50 (m, 2H, H_{c or d}), 1.29 (t, 3H, H_g, *J* = 7.0 Hz). ¹³**C NMR (CDCI₃, 75 MHz)** δ 154.4, 93.3, 61.3, 27.8, 23.4, 22.8, 22.7, 15.5. **IR** (neat, cm⁻¹) 2935, 2864, 1721, 1658, 1450, 1381, 1185, 1112, 1049. **HRMS** (EI): calcd for [M] C₈H₁₄O: 126.1045 found: 126.1048 (+2.4 ppm).

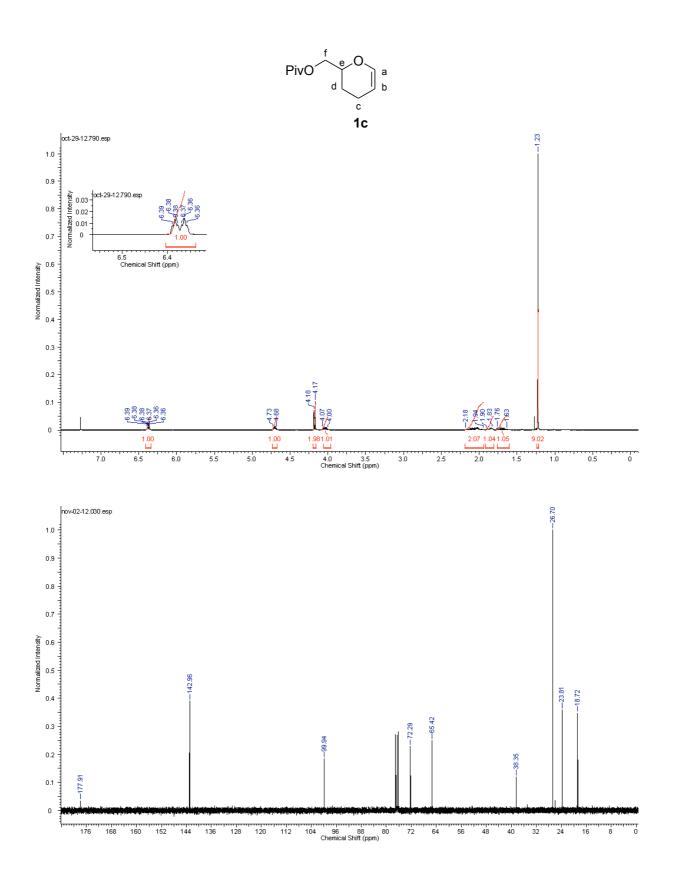
1-ethoxy-6-(ethyl difluoro acetate)-cylohex-1-ene 5. Prepared following the procedure **B** from enol ether **4** except that the reaction mixture was heated at 80 °C for 4h. Compound **5** was obtained as a colorless oil in 34% yield (20 mg) after flash chromatography (SiO₂, pentane/Et₂O 49: 1, $R_{\rm f}$ = 0.35).

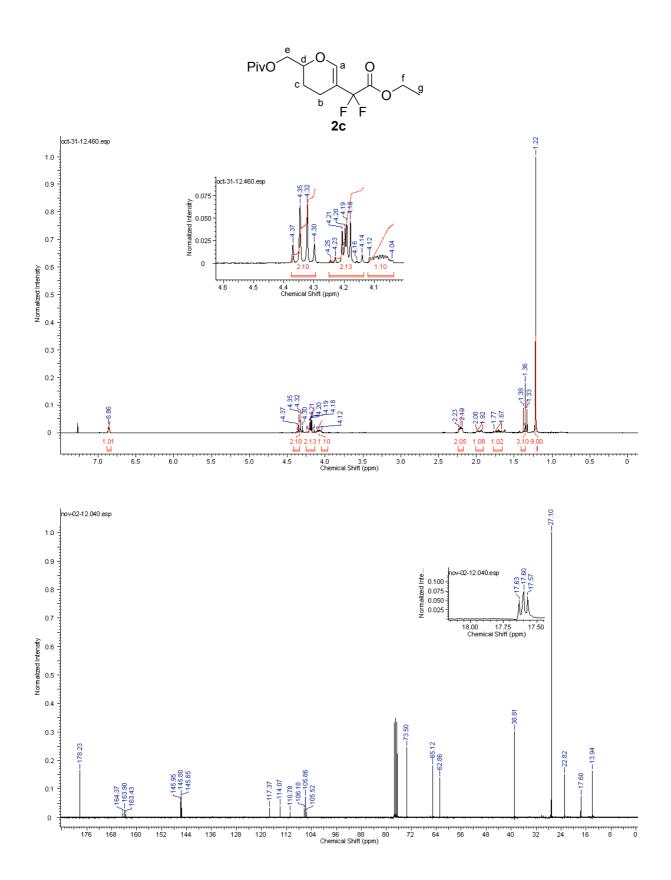
¹H NMR (CDCl₃, 300 MHz) δ 4.83-4.80 (m, 1H, H_e), 4.29 (q, 2H, H_h, J_{HH} = 7.2 Hz), 3.71-3.56 (m, 2H, H_f), 3.28-3.11 (m, 1H, H_a), 2.18-2.04 (m, 2H, H_d), 1.94-1.74 (m, 3H, H_{b,c}), 1.56-1.44 (m, 1H, H_c), 1.36 (t, 3H, H_i, J_{HH} = 7.2 Hz), 1.19 (t, 3H, H_g, J_{HH} = 7.0 Hz). ¹³C NMR (CDCl₃, **75 MHz)** δ 164.0 (dd, J_{CF} = 34.1, 30.8 Hz), 148.7 (d, J_{CF} = 9.9 Hz), 115.4 (dd, J_{CF} = 258.0, 245.9 Hz), 97.7, 61.75, 61.68, 41.3 (dd, J_{CF} = 24.8, 22.6 Hz), 22.7, 21.1 (dd, J_{CF} = 6.1, 1.7 Hz), 20.1, 13.6, 13.5. ¹⁹F NMR (CDCl₃, CFCl₃, 282 MHz) δ -108.3 (d, J_{FF} = 253.4 Hz), -119.9 (d, J_{FF} = 253.4 Hz). IR (neat, cm⁻¹) 2983, 2926, 1773, 1760, 1667, 1285, 1209, 1037. HRMS (ESI+): calcd for [M] C₁₂H₁₈F₂O₃: 248.1224 found: 248.1226 (+0.8 ppm).

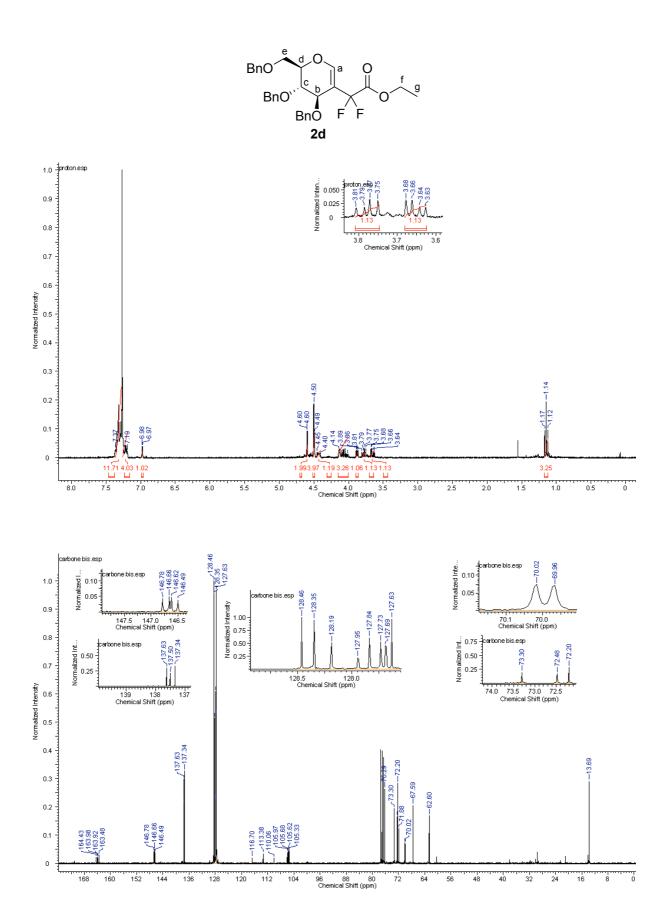
Elucidation of the difluoromethylene moiety's position in the glycal skeleton

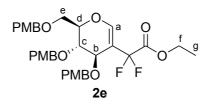
The structure of 1,5-anhydro-3,4,6-tri-*O*-(p-methoxybenzyl)-2-deoxy-2-(ethyl difluoro acetate)-D-*arabino*-hex-1-enitol **2e** was established by NMR studies. Assignment of resonances for protons and carbons given in the list of spectral data were deduced from 1D NMR (¹H, ¹³C and ¹³C-JMOD) and 2D NMR (COSY, HMQC and HMBC) spectra. Subsequent long range C-H correlation by HMBC experiment was helpful in establishing the position of the difluoromethylene moiety in the glycal skeleton. Indeed, significant long range coupling between H_a with C_b and C_d of glycal skeleton had confirmed the formation of the *b*-adduct: the C2-CF₂CO₂Et glycal derivative.

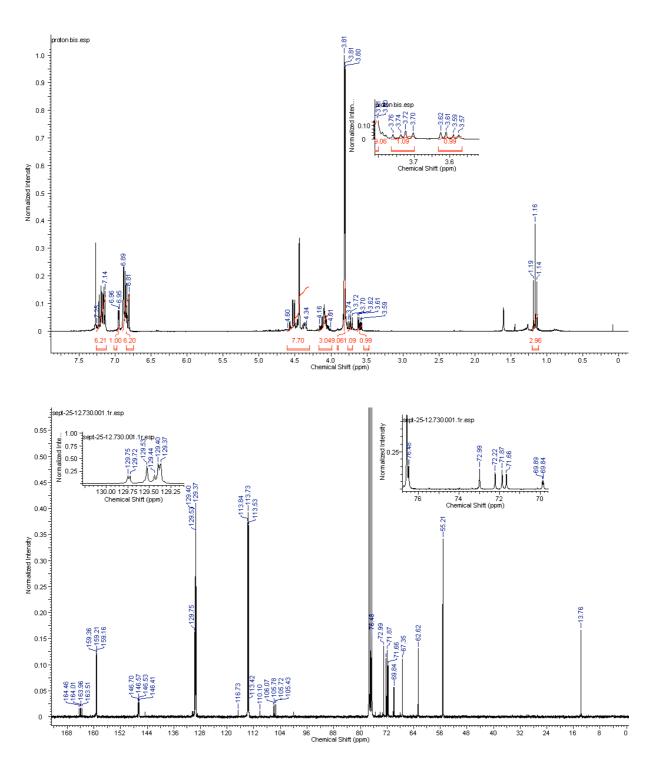





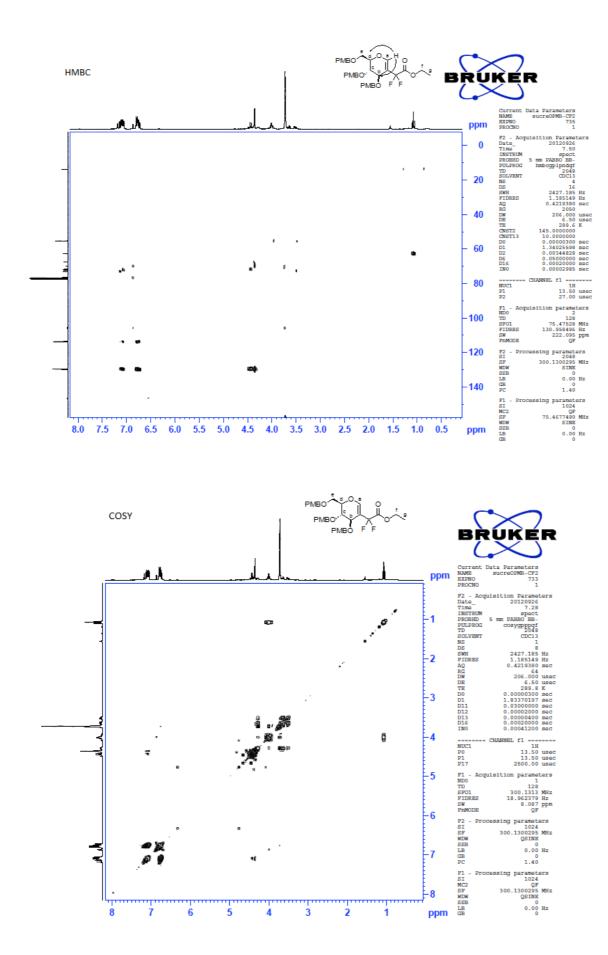

Figure 1. Elucidation of the difluoromethylene moity's position in the glycal skeleton by NMR spectroscopy

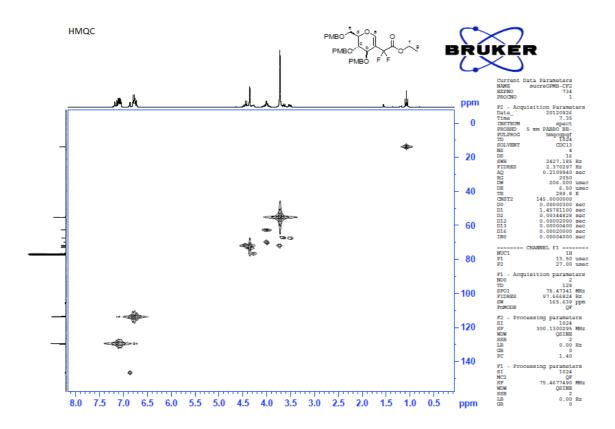

Section D: Copies of ¹H, ¹⁹F and ¹³C NMR spectra

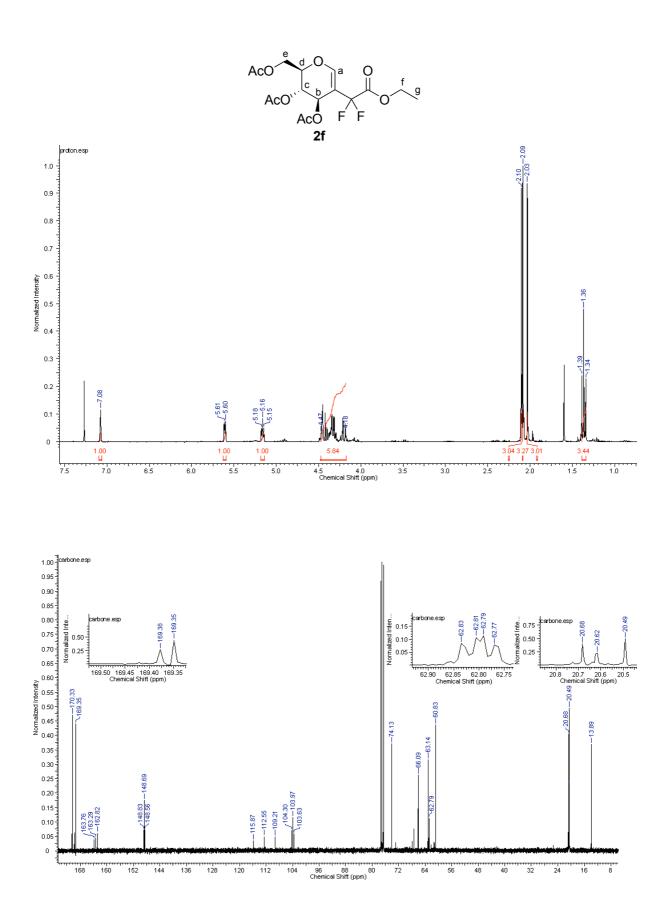


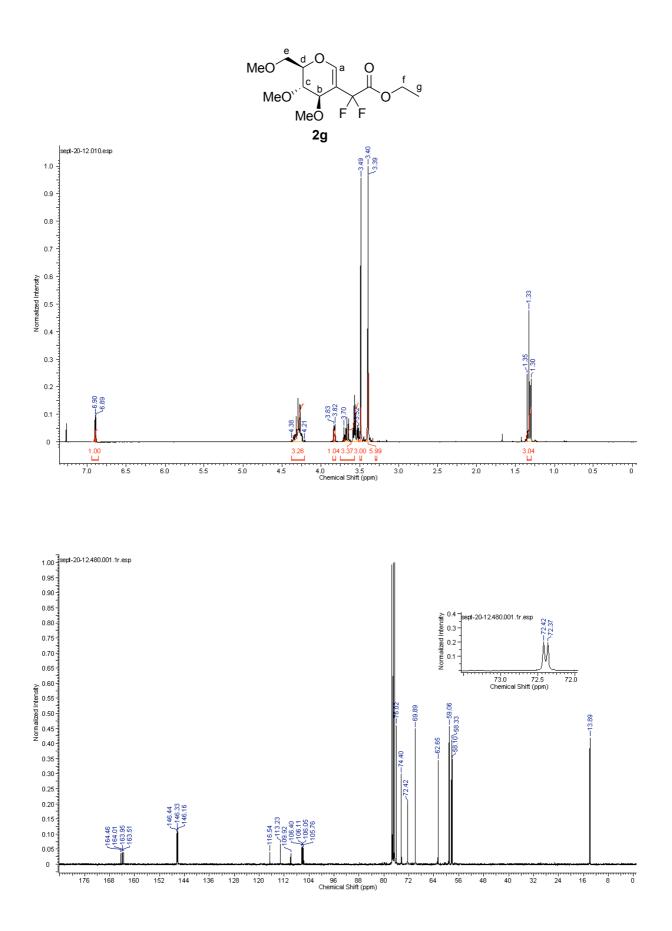


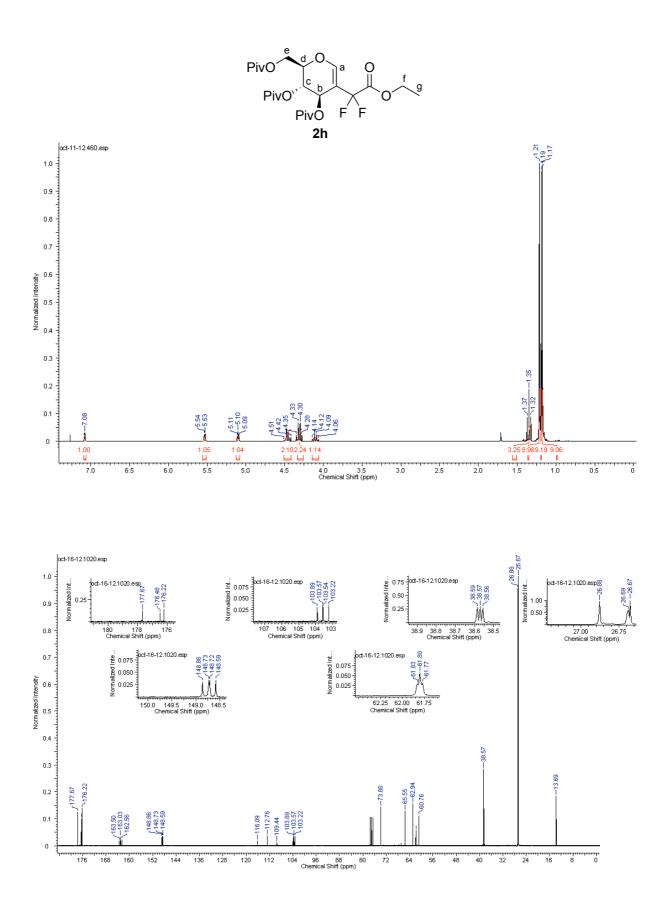


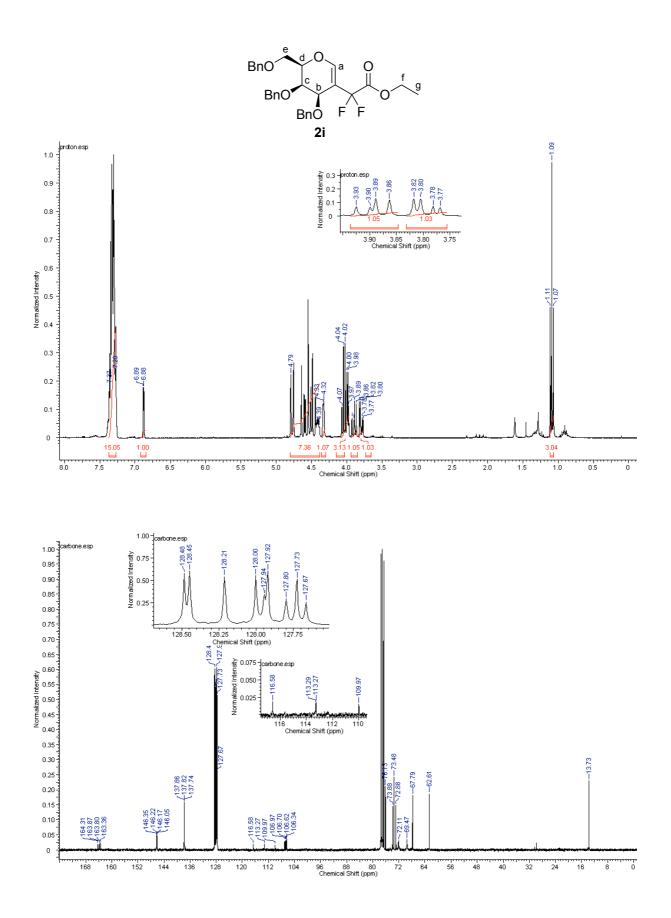











S-24

