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Obara-Saika Scheme for the Computation of Fourier Transform Integrals. In order to

compute the matrix elements
[
Ih

]
µν

given by Eq. (17) of the manuscript, it is necessary to

evaluate the Fourier Transform Integrals (FTIs) that appear in the just mentioned equation. To

accomplish this task we have implemented an Obara-Saika scheme exploiting both vertical and

horizontal recurrence relations1,2 that allows to express each FTI in terms of other integrals of

lower angular momentum. In fact, by means of repeated applications of the recurrence formula,

all the FTIs can be reduced to integrals involving only zero angular momentum s functions that

can be easily evaluated.

Now, since

(R jr) · (Bh) = r ·
(
RT

j Bh
)

(S1)

let us focus on the following integral

∫
dr χµ(r) χν(r) e ik·r (S2)

where k= 2π r ·(RT
j Bh) and where the basis functions χµ(r) and χν(r) are linear combinations

of unnomalized Cartesian Gaussian functions (primitives):

χµ(r) =
mµ

∑
i=1

Ciµ Niµ Φiµ(r) (S3)

χν(r) =
mν

∑
i=1

Ciν Niν Φiν(r) (S4)

with mµ and mν as the degrees of the contractions, and
{

Niµ
}

and
{

Niν
}

as the normalization

constants for the primitives.

Considering Eqs. (S3) and (S4), and bearing in mind that a generic unnormalized Cartesian

Gaussian function can be expressed like this

Φ
(
r;α,A,a

)
=

(
x−Ax

)ax
(
y−Ay

)ay
(
z−Az

)az e−α(r−A)2

=
(
x−Ax

)ax
(
y−Ay

)ay
(
z−Az

)az e−α

[
(x−Ax)

2+(y−Ay)
2+(z−Az)

2
]

(S5)

where A=
(
Ax, Ay, Az

)
is the center of the primitive, a=

(
ax, ay, az

)
is the vector of the angular
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momentum indexes and α is the Gaussian exponent, it is easy to show that the FTI given by

Eq. (S2) is a simple linear combination of integrals that have the following form:

I =
∫

dr Φa
(
r;α,A,a

)
Φb
(
r;β ,B,b

)
e ik·r (S6)

Since it is well known that

e−α(r−A)2
e−β (r−B)2

= EAB e−(α+β )(r−P)2
(S7)

with

EAB = e−
αβ

α+β
(A−B)2

(S8)

and

P =
αA+βB

α +β
(S9)

the integral I (see Eq. (S6)) becomes

I = EAB

∫
dx
(
x−Ax

)ax
(
x−Bx

)bx e−(α+β )(x−Px)
2
e i kx x×∫

dy
(
y−Ay

)ay
(
y−By

)by e−(α+β )(y−Py)
2
e i ky y×∫

dz
(
z−Az

)az
(
z−Bz

)bz e−(α+β )(z−Pz)
2
e i kz z =

= EAB Ix
(
ax, bx

)
Iy
(
ay, by

)
Iz
(
az bz

)
(S10)

where we have explicitly indicated the functional dependence on the Cartesian angular compo-

nents.

Without loss of generality, let us simply consider Ix
(
ax, bx

)
:

Ix
(
ax, bx

)
=
∫

dx
(
x−Ax

)ax
(
x−Bx

)bx e−(α+β )(x−Px)
2
e i kx x (S11)

It is possible to show that

(
x−Ax

)ax
(
x−Bx

)bx =

ax

∑
ix=0

bx

∑
jx=0

(
ax

ix

)(
bx

jx

)(
x−Px

)ix+ jx(Px−Ax
)ax−ix(Px−Bx

)bx− jx (S12)
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and, therefore, Eq. (S11) can be rewritten like this:

Ix
(
ax, bx

)
=

ax

∑
ix=0

bx

∑
jx=0

(
ax

ix

)(
bx

jx

)(
Px−Ax

)ax−ix(Px−Bx
)bx− jx×

∫
dx
(
x−Px

)ix+ jx e−(α+β ) (x−Px)
2

e i kx x (S13)

Bearing in mind that:

∫
dx
(
x−Px

)l e−η(x−Px)
2

e i kx x =

√
π

η

(
i

2
√

η

)l

Hl

[
kx

2
√

η

]
e−

k2
x

4η e i kx Px (S14)

and that Hl

[
kx

2
√

η

]
represents a Hermite polynomial having this form

Hn
[
y
]
= (−1)n ey2 dn

dyn e−y2
= n!

bn/2c

∑
j=0

(−1) j (2y)n−2 j

j!(n−2 j)!
(S15)

the integral Ix
(
ax, bx

)
becomes

Ix
(
ax, bx

)
=

ax

∑
ix=0

bx

∑
jx=0

γ

(
ix, jx,α,β ,kx

)(ax

ix

)(
bx

jx

)(
Px−Ax

)ax−ix(Px−Bx
)bx− jx e i kx Px (S16)

with

γ

(
ix, jx,α,β ,kx

)
=

√
π

α +β

(
i

2
√

α +β

)ix+ jx
Hix+ jx

[
kx

2
√

α +β

]
e−

k2
x

4(α+β ) (S17)

Now, considering Eq. (S11), the derivatives of the integral Ix
(
ax, bx

)
with respect to Ax and Bx

are respectively given by:

∂ Ix
(
ax, bx

)
∂Ax

=−ax Ix
(
ax−1, bx

)
+2α Ix

(
ax +1, bx

)
+2α (Ax−Px) Ix

(
ax, bx

)
(S18)

and

∂ Ix
(
ax, bx

)
∂Bx

=−bx Ix
(
ax, bx−1

)
+2β Ix

(
ax, bx +1

)
+2β (Bx−Px) Ix

(
ax, bx

)
(S19)
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If we take into account Eq. (S16), the expressions for the derivatives are:

∂ Ix
(
ax, bx

)
∂Ax

= ax

(
α

α +β
−1
)

Ix
(
ax−1, bx

)
+bx

α

α +β
Ix
(
ax, bx−1

)
+ i kx

α

α +β
Ix
(
ax, bx

)
(S20)

and

∂ Ix
(
ax, bx

)
∂Bx

= bx

(
β

α +β
−1
)

Ix
(
ax, bx−1

)
+ax

β

α +β
Ix
(
ax−1, bx

)
+ i kx

β

α +β
Ix
(
ax, bx

)
(S21)

Comparing Eq. (S18) with Eq. (S20), we obtain the first vertical recurrence relation

Ix
(
ax +1, bx

)
=

(
Px−Ax +

i kx

2
(
α +β

)) Ix
(
ax, bx

)
+

ax

2
(
α +β

) Ix
(
ax−1, bx

)
+

bx

2
(
α +β

) Ix
(
ax, bx−1

)
(S22)

while, comparing Eq. (S19) with Eq. (S21), we have the second vertical recurrence relation

Ix
(
ax, bx +1

)
=

(
Px−Bx +

i kx

2
(
α +β

)) Ix
(
ax, bx

)
+

ax

2
(
α +β

) Ix
(
ax−1, bx

)
+

bx

2
(
α +β

) Ix
(
ax, bx−1

)
(S23)

Finally, rearranging Eqs. (S22) and (S23), we respectively obtain:

Ix
(
ax +1, bx

)
+

(
Ax−Px−

i kx

2
(
α +β

)) Ix
(
ax, bx

)
=

ax

2
(
α +β

) Ix
(
ax−1, bx

)
+

bx

2
(
α +β

) Ix
(
ax, bx−1

)
(S24)

Ix
(
ax, bx +1

)
+

(
Bx−Px−

i kx

2
(
α +β

)) Ix
(
ax, bx

)
=

ax

2
(
α +β

) Ix
(
ax−1, bx

)
+

bx

2
(
α +β

) Ix
(
ax, bx−1

)
(S25)

and subtracting Eq. (S25) from Eq. (S24) the last two equations we have the horizontal recur-
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rence relation for our integrals:

Ix
(
ax, bx +1

)
= Ix

(
ax +1, bx

)
+
(
Ax−Bx

)
Ix
(
ax, bx

)
(S26)

Hence, through proper and repeated applications of Eqs. (S22), (S23) and (S26), the generic

FTI Ix
(
ax, bx

)
can be expressed in function of the only integral Ix

(
0, 0
)

that involves only two

primitive s functions and that is equivalent to:

Ix
(
0, 0
)
=
∫

dxe−(α+β )(x−Px)
2
e i kx x =

√
π

α +β
e−

k2
x

4(α+β ) e i kx Px (S27)
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Bar-graphs of the integrated net atomic charges.

Figure S1: Bar-graph of the integrated net atomic charges (in a.u.) associated with the ELMO,
RHF, B3LYP and XC-ELMO-Ext charge distributions for the α-glycine (cc-pVDZ basis-set).

Figure S2: Bar-graph of the integrated net atomic charges (in a.u.) associated with the ELMO,
RHF, B3LYP and XC-ELMO-Ext charge distributions for the L-cysteine (cc-pVDZ basis-set).
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Figure S3: Bar-graph of the integrated net atomic charges (in a.u.) associated with the ELMO,
RHF, B3LYP and XC-ELMO-Ext charge distributions for the (aminomethyl)phosphonic acid
(cc-pVDZ basis-set).

Figure S4: Bar-graph of the integrated net atomic charges (in a.u.) associated with the ELMO,
RHF, B3LYP and XC-ELMO-Ext charge distributions for the N-(trifluoromethyl)formamide
(cc-pVDZ basis-set).
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Walker-Mezey similarity index. The Walker-Mezey similarity index3 L(ρx,ρy,a,a′) com-

pares point-by-point two electron densities ρx and ρy in a "density shell" S(ρx,a,a′) that can be

considered as the space bound by the isosurfaces characterized by the values a and a′ and that

is defined as

S(ρx,a,a′) =
{

r : a≤ ρx(r)≤ a′
}

(S28)

We have that

L(ρx,ρy,a,a′) = 100
L∗
(
ρx,ρy,a,a′

)
+L∗

(
ρy,ρx,a,a′

)
2

(S29)

where

L∗
(
ρx,ρy,a,a′

)
= 1−

[
∑

r∈S(ρx,a,a′)

∣∣∣ρx(r)−ρy(r)
∣∣∣

max
(

ρx(r),ρy(r)
) ]/n

(
S(ρx,a,a′)

)
(S30)

and

L∗
(
ρy,ρx,a,a′

)
= 1−

[
∑

r∈S(ρy,a,a′)

∣∣∣ρx(r)−ρy(r)
∣∣∣

max
(

ρx(r),ρy(r)
) ]/n

(
S(ρy,a,a′)

)
(S31)

with n
(

S(ρx,a,a′)
)

and n
(

S(ρy,a,a′)
)

as the number of grid points belonging to the "density

shells" S(ρx,a,a′) and S(ρy,a,a′), respectively.

Values of the Walker-Mezey Similarity Index in Different Real-Space Regions.

Table S1: Values of the Walker-Mezey similarity index in different regions of the real-space
and corresponding to the comparison of the ELMO charge distribution with the RHF, B3LYP
and X-ELMO-Ext electron densities for the α-glycine (cc-pVDZ basis-set).

System L(0.1,10) L(0.01,0.1) L(0.001,0.01)

RHF 99.53 98.85 96.81

B3LYP 97.78 95.85 91.85

X-ELMO-Ext 96.80 95.03 90.24
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Table S2: Values of the Walker-Mezey similarity index in different regions of the real-space
and corresponding to the comparison of the ELMO charge distribution with the RHF, B3LYP
and X-ELMO-Ext electron densities for the L-cysteine (cc-pVDZ basis-set).

System L(0.1,10) L(0.01,0.1) L(0.001,0.01)

RHF 99.48 98.66 96.81

B3LYP 98.06 96.56 93.12

X-ELMO-Ext 95.35 92.57 85.18

Table S3: Values of the Walker-Mezey similarity index in different regions of the real-space and
corresponding to the comparison of the ELMO charge distribution with the RHF, B3LYP and
X-ELMO-Ext electron densities for the (aminomethyl)phosphonic acid (cc-pVDZ basis-set).

System L(0.1,10) L(0.01,0.1) L(0.001,0.01)

RHF 99.32 97.65 95.13

B3LYP 97.97 94.74 90.34

X-ELMO-Ext 94.96 92.64 85.69

Table S4: Values of the Walker-Mezey similarity index in different regions of the real-space and
corresponding to the comparison of the ELMO charge distribution with the RHF, B3LYP and
X-ELMO-Ext electron densities for the N-(trifluoromethyl)formamide (cc-pVDZ basis-set).

System L(0.1,10) L(0.01,0.1) L(0.001,0.01)

RHF 99.12 97.80 96.07

B3LYP 97.66 95.38 92.30

X-ELMO-Ext 93.90 88.19 84.20
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