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Modeling

Eq. 1 numerically integrates the evolution of the density matrix elements from the initial ρgg pop-

ulation to the ρeg output coherence. The program implements this integration in the form

∆ρ(t) = (
i
2

Ω(t) ·ρ(t)−Γρ(t))∆t. (1)

∆ρ (Eq. 1) is found at successive points in time with time increment ∆t. The ρ vector con-

tains the Liouville densities in each relevant state of the WMEL diagram and the Γ vector contains

corresponding dephasing parameters. All density begins in ρgg but propagates through the states

by the action of Ω. The Ω matrix contains nonzero Ωi j elements only where the chosen pathway

allows density to move from ρi to ρ j. In this case the matrix element within the rotating wave

approximation is ±µi jEo
k (t)e

±iωkte∓iωi jt , with positive terms representing ket-side transitions and

negatives term bra-side, and the phase of the exponential determined by the phase of the interac-

tion. The complex field Ek(t) is calculated at each time increment and is defined by a Gaussian

envelope with frequency ωk. The model requires two time orderings—one for each infrared beam

supplying the first interaction—and the resulting ρeg values were added at each point in time. The

output frequency distribution was obtained by Fourier transformation of the ρeg time dependence,

and in cases where the monochromator was simulated, the distribution was apodized with the

monochromator filter function. Ω1, Ω2, ρ , and Γ for benzene TSF are the following:

Ω1 =



0 0 0 0 0

µageiωagtE1 0 0 0 0

0 µ2aaeiω2aatE2 0 0 0

0 µbaeiωbatE2 0 0 0

0 0 µe2aeωe2aE3 µebeωebE3 0


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Ω2 =



0 0 0 0 0

µageiωagtE2 0 0 0 0

0 µ2aaeiω2aatE1 0 0 0

0 µbaeiωbatE1 0 0 0

0 0 µe2aeωe2aE3 µebeωebE3 0


ρ =

[
ρgg ρag ρ2ag ρbg ρeg

]

Γ =



Γgg = 0

Γag

Γ2ag

Γbg

Γeg = f ast


Further discussion of TSF 2D frequency scan

Simulations were performed for the Triple Sum Frequency (TSF) spectra in Fig. 3. Fig. S1(a)

shows the same experimental data as Fig. 3 but at the amplitude level, and S1(c) performs the same

scan with the monochromator tracking ωm = ω1 +ω2 +ω3. A comparison is done to simulations

generated using the approach described in the theoretical section (Figs. S1(b) and S1(d)). As

discussed for Fig. 3, these time delays emphasize free induction decay such that ω4 = ωv′g. Since

ωv′g is narrower than the 20 cm−1 FWHM pulses of ω1 and ω2, ωm = ω1 +ω2 +ω3 will not be

equal to ω4 where ω1 and ω2 are either both higher or both lower than the peak central frequency,

and the monochromator resolved scan will lose signal at those locations. This gives the peak an

antidiagonal character.

One must be cautious in interpretation of these spectra. As discussed in the theory section,

driven signal will have the characteristic ∆2 ≡ ωv′g−ω1−ω2− iΓv′g, and this will also result in an

antidiagonal lineshape. However, this lineshape will be antidiagonal even without monochromator

resolution, a characteristic we have observed in spectra collected near zero delay. In the case of
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purely driven signal, we predict that tracking the monochromator with ωm = ω1 +ω2 +ω3 should

not result in a change in lineshape.

Finally, it has been noted that the peaks in Figs. 3 and S1 appear especially broad. It is not

entirely clear what this is due to, but one contributor is likely poor pulse compression. Models

are carried out with pulses having defined temporal duration, matching that which is measured

experimentally. This intrinsically defines spectral width, but these spectral widths in reality are

often measured to be∼5 cm−1 broader than the Fourier transform of their temporal duration would

indicate (i.e. 20 cm−1 rather than 15 cm−1). Thus the simulation does not perfectly represent the

experimental parameters.

Figure S1: TSF Spectra of 2D frequency scans with τ21=-1.2 ps, τ31=1 ps; all plots at Amplitude
level. The left hand spectra ((a) and (c)) are experimental data while the right ((b) and (d)) are
simulations of the data using the frequencies and line-widths reported by Bertie.S1 The top two
spectra ((a) and (b)) have the monochromator at zero order (and experimentally use filters to reject
ω3), while the bottom two ((c) and (d)) have spectrally resolved output following ωm = ω1 +ω2 +
ω3 with 11 cm−1 resolution.
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TSF 2D frequency scan with 2~k2+~k3 leak

Figure S2: This figure shows the result of subtraction of the average value of the~k4’ signal on the
TSF spectrum in Fig. 5 where τ21=1.5 ps and τ31=3 ps. Black data points show the maximum of
ω2 for the~k4 signal at each ω1 frequency. The inset plots the maximum ω2 value as a function
of ω1. The minimum at (ω1,ω2)= 1478, 1473.7) cm−1 occurs when the~k4 TSF process is fully
resonant with the fundamental and overtone states.

Fig. 5 contains contributions form both the~k4=~k1 + ~k2 + ~k3 and~k4’=2~k2 + ~k3 TSF signal. The

central ω2 values of the~k4’ horizontal stripe were found by Gaussian fit as discussed in the main

body of the paper to extract 2ωvg−δ

2 = 1477.2 cm−1. In order to find the central ω2 values of~k4

signal, ~k4’ first had to be subtracted. This separation was achieved by subtracting the average

intensity of each ω2 point in the ~k4’ region (ω1=1520-1570 cm−1) from the 2D spectrum to leave

only the ~k4 diagonal peak. Diagonal peak ω2 slices were then fit to a Gaussian profile to accurately

define the peak ω2 frequency as function of ω1 (Fig. S2 black dots and inset). These central

values varied smoothly and showed that the peak center occurs at ω2=1473.7 cm−1. The difference

between the ~k4 and ~k4’ peak positions (δ/2) is 3.5 cm−1 so δ = 7 cm−1.
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Further discussion of TSF Wigner scan

Figure S3: (a) Wigner plot collected with τ21 = 0, ω1=1480 cm−1, and ωm = ω1+ω2+ω3, and (b)
model of the same, using dephasing rates predicted in Table 1 and not including additional states.
With τ21 = 0, ω1=1480 cm−1, and ω2=1465 cm−1, beating is present as a function of ωm and τ31
even if ω2 is not scanned (c). This is simulated in (d) with the inclusion of a secondary state with
frequency 2936 cm1 as appears in the Raman spectrum, and which is excited in proportion to its
Raman intensity relative to the 2948 cm−1 peak. (All plots at amplitude level.)

The Wigner plot in Fig. S3 traces out the overtone and cross-peak lifetimes of the TSF states.

Simulations of this spectrum were obtained using the approach described in the Theory section

and assuming dephasing rates predicted by the Raman linewidths of Table 1. The delay times in

the simulations were adjusted by 1 ps in order to correct for error in setting the experimental delay

times. It was observed that if the monochromator was used to spectrally isolate the output in a

Wigner plot, beating occured along for the 2ν13 state as a function of the τ31 delay time. The peri-
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odicity of this beating (∼2.3 ps) indicates a state of about 14 cm−1 away generating an interfering

output. A mode is visible 12.5 cm−1 to the red in the Raman spectrum, and is incorporated into (d)

along with a monochromator on the output. It is unclear whether that state is populated directly, or

by coherence transfer, and the nature of this state (some combination band) is unconfirmed.

Further discussion of TSF M-factors

Since Triple Sum Frequency (TSF) Coherent Multidimensional Spectroscopy (CMDS) cannot be

phase matched for normal refractive index dispersion, it is expected that multidimensional spectra

would be strongly influenced by the sample path length, absorption of the excitation beams, and

the refractive index dispersion. In order to understand the effects, a series of simulations were

performed using the M-factor defined in Eq. 6 and the TSF-CMDS intensity defined in Eq. 7.

Eq. 7 assumes the resonances for the first two interactions occur at the peaks of the absorption

spectrum but the resonance associated with the second interaction is shifted by 8 cm−1 by the

Fermi resonance and anharmonic coupling. Thus, the absorption coefficient in the numerator that

corresponds to the CMDS enhancements is offset from the absorption coefficients associated with

the M-factor. In addition, the line shape of the second resonance is better represented by the line

shape of the 2948.5 cm−1 Raman in Table 1 and Fig. 2(b). These effects were incorporated into

the simulations.
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Figure S4: (a) M-factor calculated according to Eq. 6 for a benzene sample with 15 µm path length
and ±10◦ phase-matching angles using the indices from BertieS2,S3 plotted in (b). In (b), the blue
trace shows indices as a function of IR frequency, the green and black traces shows the index of
refraction at the ω3 (12,500 cm−1) and ω4 (∼15,500 cm−1) frequencies, and the red trace gives the
absorption through the same region of the infrared. (c) shows the M-factor weighted intensities as
a function of path length and (d) shows the same on a logarithmic scale. (e)-(h) show changes in
lineshape for 5, 25, 50, and 150 µm path lengths, respectively.

S8



Fig. S4 shows a series of graphs that illustrate the different effects of M-factor. Fig. S4(a)

shows the two dimensional dependence of the M-factor on the excitation frequencies using the

absorption and refractive index data of Bertie. Fig. S4(b) shows the absorption spectrum and

refractive index dispersion over the same region. Fig. S4(c) shows the dependence of the TSF-

CMDS intensity on the sample path length and the ω1 fundamental excitation frequency with

ω2 = 1470 cm−1. The intensity reaches a maximum and then becomes independent of the path

length as the increased absorption of the excitation pulses becomes the limiting factor. The peak

position also shifts to lower frequency at longer path lengths, as the absorption and refractive index

dispersion become more important. The four wave mixing efficiency is improved at ω1 frequencies

that excite the fundamental resonance but are off-set from the strong absorption and asymmetrical

phase matching effects (occuring at the center of the fundamental absorption spectrum and to the

higher energy side of it, respectively). Fig. S4(d) shows the logarithmic intensity dependence at

longer path lengths. The modulations apparent in the spectrum are caused by Brewster fringes

arising from the sinc function in Eq. 7. Figs. S4(e)-(h) show a series of two dimensional TSF-

CMDS spectral simulations for path lengths ranging from 5 to 150 µm. The peak is off-set from

the diagonal by the shift in the resonances for the first and second interactions. There are changes

in the asymmetry of the peak and there is the same shift of the peak position along the ω1 axis.

Note that in a true experiment this peak variation of a few cm−1 would be convoluted by spectral

width of the exciting fields, and would not likely manifest strongly.
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