Supporting Information

For

Diboran(4)yl Platinum(II) Complexes

Holger Braunschweig,* Alexander Damme and Thomas Kupfer

Institut für Anorganische Chemie Julius-Maximilians Universität Würzburg Am Hubland, 97074 Würzburg (Germany) Fax: (+49)931-31-84623

Experimental Section

General Considerations

All manipulations were conducted either under an atmosphere of dry argon or *in vacuo* using standard Schlenk line or glovebox techniques. Solvents were purified by distillation from CaH₂ under dry argon and stored over molecular sieves. C_6D_6 and CD_2Cl_2 was degassed by three freeze-pump-thaw cycles and stored over molecular sieves. *trans*-[Pt(PEt₃)₄],^[1] Cl₂B₂mes₂,^[2] Cl₂B₂dur₂,^[2] and I₂B₂mes₂,^[3] (mes = mesityl, dur = duryl) were prepared according to published procedures. NMR spectra were acquired on a Bruker Avance 400 (¹H: 400.1 MHz, ¹¹B: 128.3 MHz, ¹³C: 100.6 MHz; ³¹P{¹H}: 161.9 MHz) and Avance 500 (¹H: 500.1 MHz, ¹¹B: 160.4 MHz, ¹³C: 125.7 MHz; ³¹P{¹H}: 202.2 MHz) FT-NMR spectrometer. ¹H, ¹³C and ¹³C{¹H} NMR spectra were referenced to external TMS *via* the residual protons of the solvent (¹H) or the solvent itself (¹³C). ¹¹B{¹H} NMR spectra were referenced to external 85% H₃PO₄ Microanalyses (C, H, N) were performed on a Leco Instruments elemental analyzer, type CHNS 932.

Preparation of 1: $[Pt(PEt_3)_4]$ (150 mg, 0.22 mmol) was placed in a Schlenk flask and heated at 55 °C over a period of one hour under high vacuum to remove one PEt₃ ligand. Orange oily $[Pt(PEt_3)_3]$ was subsequently dissolved in pentane (2 mL) and treated with Cl₂B₂mes₂ (148 mg, 0.44 mmol). After 15 minutes, the colorless precipitate was filtered off and all volatiles were removed in vacuo. The remaining solid was recrystallized from dichloromethane/pentane at -25 °C to afford *trans*-[(Et₃P)₂Pt(Cl){B(mes)B(mes)(Cl)}] (1; 41.0 mg, 0.05 mmol, 24%) as a crystalline material.

¹**H NMR** (400.1 MHz, CD₂Cl₂, 300 K): $\delta = 7.01$ (s, 1H; CH), 6.98 (s, 1H; CH), 6.94–6.60 (br m, 2H; CH), 3.42 (s, 3H; CH₃), 3.09 (br s, 3H; CH₃), 2.54 (s, 3H; CH₃), 2.25 (s, 3H; CH₃), 2.24 (s, 3H; CH₃), 2.20–1.96 (m, 3H; P²CH₂), 1.80–1.58 (m, 3H; P²CH₂), 1.55–1.23 (m, 6H; P¹CH₂), 1.09–0.96 (br m, 9H; P²(CH₂CH₃)₃), 0.95–0.79 ppm (br m, 9H; P¹(CH₂CH₃)₃); ¹¹B{¹H} **NMR** (128.3 MHz, CD₂Cl₂, 300 K): $\delta = 105$ (vbr s; FWHM = 1646 Hz), 59.9 ppm (br s; FWHM =

1735 Hz); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂, 300 K): $\delta = 146.3$ (s; *C*_i), 144.7 (s; *C*_i), 142.9 (s; *C*_i), 140.2 (s; *C*_i), 139.8 (s; *C*_i), 139.0 (s; *C*_i), 129.8 (s; *C*H), 129.7 (s; *C*H), 128.3 (br s; *C*H), 29.8 (sv *C*H₃), 28.4 (s; *C*H₃), 26.1 (br s; *C*H₃), 23.3 (br s; *C*H₃), 21.6 (s; *C*H₃), 21.1 (s; *C*H₃), 17.1–16.1 (m; PCH₂), 9.24–8.57 ppm (m; PCH₂CH₃); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂, 300 K): $\delta = 11.42$ (d, ¹*J*_{P-Pt} = 2916 Hz, ²*J*_{P-P} = 327 Hz), 8.06 ppm (d, ¹*J*_{P-Pt} = 2972 Hz, ²*J*_{P-P} = 327 Hz); El. Anal. (%) calc. for C₃₀H₅₂B₂Cl₂P₂Pt (762.28 g·mol⁻¹): C 47.27, H 6.88; found: C 47.57, H 7.02.

Preparation of 2: [Pt(PEt₃)₄] (148 mg, 0.22 mmol) was placed in a Schlenk flask and heated at 55 °C over a period of one hour under high vacuum to remove one PEt₃ ligand. Orange oily [Pt(PEt₃)₃] was subsequently dissolved in pentane (5 mL) and reacted with Cl₂B₂dur₂ (160 mg, 0.44 mmol). After 15 minutes, the colorless precipitate was filtered off and all volatiles were removed in vacuo. The remaining orange-red solid was taken up into CH₂Cl₂ and layered with pentane until a colorless precipitate formed, which was again removed by filtration. The filtrate was stored at -25 °C to afford *trans*-[(Et₃P)₂Pt(Cl){B(dur)B(dur)(Cl)}] (**2**; 87.0 mg, 0.11 mmol, 49%) as a orange-red material.

¹**H** NMR (400.1 MHz, CD₂Cl₂, 300 K): δ = 7.28 (s, 1H; Dur¹, CH), 6.94 (s, 1H; Dur², CH), 3.44 (br s, 3H; Dur¹, CH₃), 3.08 (s, 3H; Dur², CH₃), 2.54 (br s, 3H; Dur¹, CH₃), 2.31 (s, 3H; Dur¹, CH₃), 2.25 (s, 3H; Dur², CH₃), 2.09 (s, 3H; Dur¹, CH₃), 2.09 (s, 3H; Dur², CH₃), 2.20–2.06 (m, 3H; P²CH₂), 2.05 (s, 3H; Dur², CH₃), 1.80–1.56 (m, 3H; P²CH₂), 1.55–1.23 (m, 6H; P¹CH₂), 1.15–0.95 (br m, 9H; P²(CH₂CH₃)₃), 0.94–0.66 (br m, 9H; P¹(CH₂CH₃)₃); ¹¹B{¹H} NMR (128.3 MHz, CD₂Cl₂, 300 K): δ = 109 (vbr s; FWHM = 1830 Hz), 57.7 ppm (br s; FWHM = 1739 Hz); ¹³C{¹H} NMR (100.6 MHz, CD₂Cl₂, 300 K): δ = 143.9 (s; *C*_i), 143.0 (s; *C*_i), 139.6 (s; *C*_i), 136.3 (s, 1C; CH), 135.1 (s; *C*_i), 134.9 (s; *C*_i), 134.7 (s; *C*_i), 133.6 (s; *C*_i), 132.4 (s; CH), 27.7 (br s; CH₃), 27.7 (br s; CH₃), 23.4 (br s; CH₃), 21.3 (s; CH₃), 20.6 (s; CH₃), 20.5 (s; CH₃), 20.4 (s; CH₃), 20.3 (s; CH₃), 17.3–15.9 (m; PCH₂), 8.86 ppm (s; PCH₂CH₃); ³¹P{¹H} NMR (161.9 MHz, CD₂Cl₂, 300 K): δ = 11.21 (d, ¹*J*_{P-Pt} = 2929 Hz, ²*J*_{P-P} = 326 Hz); FI. Anal. (%) calc. for C₃₂H₅₆B₂Cl₂P₂Pt (790.33 g·mol⁻¹): C 48.63, H 7.14; found: C 48.85, H 7.02.

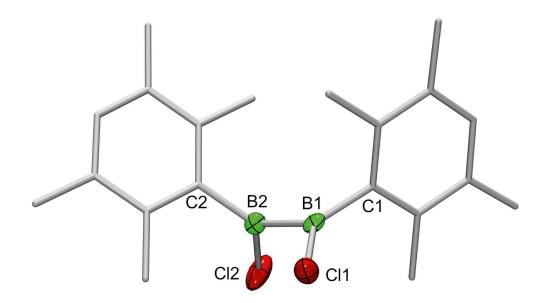
Preparation of 3: $[Pt(PEt_3)_4]$ (102 mg, 0.15 mmol) was placed in a Schlenk flask and heated at 55 °C over a period of one hour under high vacuum to remove one PEt₃ ligand. Orange oily

[Pt(PEt₃)₃] was subsequently dissolved in pentane (1 mL) and reacted with $I_2B_2mes_2$ (160 mg, 0.31 mmol). After 15 minutes, the colorless precipitate was filtered off and all volatiles were removed in vacuo. The remaining orange-red solid was dissolved in CH₂Cl₂ and layered with pentane until a colorless precipitate formed, which was again removed by filtration. The filtrate was stored at -25 °C to afford *trans*-[(Et₃P)₂Pt(I){B(mes)B(mes)(I)}] (**3**; (42.0 mg, 0.04 mmol, 28%) as a red material.

¹**H NMR** (400.1 MHz, C₆D₆, 300 K): $\delta = 6.94$ (s, 2H; *m*-CH), 6.86 (s, 1H; *m*-CH), 6.59 (s, 1H; *m*-CH), 3.57 (s, 3H; CH₃), 3.42 (s, 3H; CH₃), 3.03 (s, 3H; CH₃), 2.31 (s, 3H; CH₃), 2.12 (s, 3H; CH₃), 2.05 (s, 3H; CH₃), 2.31 (m, ¹J_{H-P} = 304 Hz, 6H; PCH₂), 2.01–1.14 (br m, 6H; PCH₂), 0.97–0.82 (m, 9H; PCH₂CH₃), 0.69 ppm (m, 9H; PCH₂CH₃); ¹¹B{¹H} NMR (128.3 MHz, C₆D₆, 300 K): $\delta = 106$ (vbr s; FWHM = 1772 Hz), 50.0 ppm (br s; FWHM = 1567 Hz). ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 300 K): $\delta = 147.4$ (s; C_i), 145.0 (s; C_i), 143.1 (s; C_i), 140.7 (s; C_i), 138.8 (s; C_i), 138.3 (s; C_i), 135.0 (s; C_i), 130.8 (s; *m*-CH), 130.1 (s; *m*-CH), 129.8 (s; *m*-CH), 127.8 (s; *m*-CH), 32.1 (s; CH₃), 29.9 (s; CH₃), 28.7 (s; CH₃), 24.1 (s; CH₃), 21.4 (s; CH₃), 21.0 (s; CH₃), 19.7–18.3 (m; PCH₂), 10.2–9.27 ppm (m; PCH₂CH₃). ³¹P{¹H} NMR (161.9 MHz, C₆D₆, 300 K): $\delta = 2.48$ (d, ¹J_{P-Pt} = 2812 Hz, ²J_{P-P} = 335 Hz), 1.82 ppm (d, ¹J_{P-Pt} = 2837 Hz, ²J_{P-P} = 335 Hz); **El. Anal.** (%) calc. for C₃₀H₅₂B₂I₂P₂Pt (945.19 g·mol⁻¹): C 38.12, H 5.55; found: C 38.61, H 5.66.

Crystal structure determination

The crystal data of **1-3** and $Cl_2B_2dur_2$ were collected on a Bruker X8APEX diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure were solved using direct methods, refined with the ShelX software package and expanded using Fourier techniques.^[4] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factors calculations.


The crystals of **1** were racemic twins [TWIN -1 0 0, 0 -1 0, 0 0 -1]. The BASF parameter was refined to 51.9%. The crystals of $Cl_2B_2dur_2$ were pseudo-merohedral twins with domains rotated by 180° around reciprocal axis [0.000, 0.000, 1.000]. The BASF parameter was refined to 13%.

Crystal data for 1: $C_{30}H_{52}B_2Cl_2P_2Pt$, $M_r = 762.27$, yellow block, $0.40 \times 0.30 \times 0.20 \text{ mm}^3$, Monoclinic space group $P2_1$, a = 9.9318(8) Å, b = 14.4156(13) Å, c = 11.6055(11) Å, $\beta = 94.726(3)^\circ$, V = 1655.9(3) Å³, Z = 2, $\rho_{calcd} = 1.529 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 4.513 \text{ mm}^{-1}$, F(000) = 768, T = 100(2) K, $R_I = 0.0112$, $wR^2 = 0.0254$, 6345 independent reflections $[20 \le 5212^\circ]$ and 346 parameters.

Crystal data for **2**: $C_{32}H_{56}B_2Cl_2P_2Pt$, $M_r = 790.32$, orange block, $0.349 \times 0.295 \times 0.245 \text{ mm}^3$, Monoclinic space group $P2_1/n$, a = 12.4828(9) Å, b = 19.9323(15) Å, c = 14.2861(11) Å, $\beta = 99.094(2)^\circ$, V = 3509.9(5) Å³, Z = 4, $\rho_{calcd} = 1.496 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 4.261 \text{ mm}^{-1}$, F(000) = 1600, T = 100(2) K, $R_I = 0.0223$, $wR^2 = 0.0511$, 7454 independent reflections $[2\theta \le 53.54^\circ]$ and 360 parameters.

Crystal data for **3**: C₃₀H₅₂B₂I₂P₂Pt, $M_r = 945.17$, yellow block, 0.044×0.124×0.197 mm³, Monoclinic space group $P2_1$, a = 10.2358(8) Å, b = 14.2110(12) Å, c = 11.9534(10) Å, $\beta = 90.376(4)^\circ$, V = 1738.7(2) Å³, Z = 2, $\rho_{calcd} = 1.805$ g·cm⁻³, $\mu = 5.921$ mm⁻¹, F(000) = 912, T = 100(2) K, $R_I = 0.0185$, $wR^2 = 0.0455$, 6852 independent reflections $[2\theta \le 52.2^\circ]$ and 347 parameters. Crystal data for **Cl₂B₂dur₂**: C₂₀H₂₆B₂Cl₂, $M_r = 358.93$, colourless block, $0.92 \times 0.45 \times 0.30 \text{ mm}^3$, Monoclinic space group $P2_1/c$, a = 9.1831(7) Å, b = 15.2072(12) Å, c = 14.8233(12) Å, $\beta = 105.077(3)^\circ$, V = 1998.8(3) Å³, Z = 4, $\rho_{calcd} = 1.193 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.323 \text{ mm}^{-1}$, F(000) = 760, T = 100(2) K, $R_I = 0.0602$, $wR^2 = 0.1419$, 4015 independent reflections $[20 \le 52.22^\circ]$ and 226 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC 928667 (1), CCDC 928668 (2), 928669 (3), and CCDC 928691 (Cl₂B₂dur₂). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data_request/cif</u>

Figure S1. Molecular structure of the $Cl_2B_2dur_2$ in the solid state. Thermal ellipsoids are displayed at the 50% probability level. For clarity, hydrogen atoms and thermal ellipsoids of the carbon atoms have been omitted. Selected bond lengths (Å) and angles (deg): B1–C1 1.561(4), B1–B2 1.690(4), B1–Cl1 1.777(3), B2–C2 1.564(3), B2–Cl2 1.761(3), C1–B1–B2 127.4(2), C1–B1–Cl1 118.30(18), B2–B1–Cl1 114.25(19), C2–B2–B1 126.5(2), C2–B2–Cl2 117.19(18), B1–B2–Cl2 116.29(18), C1–B1–B2–C2 -97.4(3), C11–B1–B2–C2 80.5(3), C1–B1–B2–Cl2 82.6(3).

	-	
Data	1	2
Empirical formula	$C_{30}H_{52}B_2Cl_2P_2Pt$	$C_{32}H_{56}B_2Cl_2P_2Pt$
Formula weight (g·mol ⁻¹)	762.27	790.32
Temperature (K)	100(2)	100(2)
Radiation, λ (Å)	Mo _{Kα} 0.71073	Mo _{Kα} 0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1$	$P2_1/n$
Unit cell dimensions		
<i>a</i> (Å)	9.9318(8)	12.4828(9)
<i>b</i> (Å)	14.4156(13)	19.9323(15)
<i>c</i> (Å)	11.6055(11)	14.2861(11)
α (°)	90.00	90.00
β (°)	94.726(3)	99.094(2)
γ (°)	90.00	90.00
Volume (Å ³)	1655.9(3)	3509.9(5)
Z	2	4
Calculated density (Mg⋅m ⁻³)	1.529	1.496
Absorbtion coefficient (mm ⁻¹)	4.513	4.261
F(000)	768	1600
Theta range for collection	1.76 to 26.06°	1.77 to 26.77°
Reflections collected	51179	57289
Independent reflections	6345	7454
Minimum/maximum transmission	0.5833/0.7453	0.5169/0.7454
Refinement method	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2
Data / parameters / restrains	6345 / 346 / 1	7454 / 360 / 0
Goodness-of-fit on F^2	1.005	1.086
Einel Dindiana [L 2-(L)]	$R_1 = 0.0108,$	$R_1 = 0.0200,$
Final R indices $[I>2\sigma(I)]$	$wR^2 = 0.0253$	$wR^2 = 0.0500$
R indices (all data)	$R_1 = 0.0112,$	$R_1 = 0.0223,$
	$wR^2 = 0.0254$	$wR^2 = 0.0511$
Maximum/minimum residual electron	0.550 / -0.281	1.159 / -0.557
density (e·Å ⁻³)		

 Table S1. Crystallographic data of 1 and 2.

Data	3	Cl ₂ B ₂ dur ₂
Empirical formula	$C_{30}H_{52}B_2I_2P_2Pt$	$C_{20}H_{26}B_2Cl_2$
Formula weight (g·mol ⁻¹)	945.17	358.93
Temperature (K)	100(2)	100(2)
Radiation, λ (Å)	Mo _{Kα} 0.71073	Mo _{Kα} 0.71073
Crystal system	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁	$P2_{1}/c$
Unit cell dimensions		
a (Å)	10.2358(8)	9.1831(7)
b (Å)	14.2110(12)	15.2072(12)
c (Å)	11.9534(10)	14.8233(12)
α (°)	90.00	90.00
β (°)	90.376(4)	105.077(3)
γ (°)	90.00	90.00
Volume (Å ³)	1738.7(2)	1998.8(3)
Z	2	4
Calculated density (Mg·m ^{-3})	1.805	1.193
Absorbtion coefficient (mm ⁻¹)	5.921	0.323
F(000)	912	760
Theta range for collection	1.70 to 26.10°	1.95 to 26.11°
Reflections collected	95789	3955
Independent reflections	6852	4015
Minimum/maximum transmission	0.5798/0.7453	0.400285/0.745318
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / parameters / restrains	6852 / 347 / 1	4015 / 226 / 0
Goodness-of-fit on F^2	1.118	1.081
Final R indices [I>2 σ (I)]	$R_1 = 0.0171, wR^2 = 0.0439$	$R_1 = 0.0502, \\ wR^2 = 0.1368$
R indices (all data)	$R_1 = 0.0185, wR^2 = 0.0455$	$R_1 = 0.0602,$ $wR^2 = 0.1419$
Maximum/minimum residual electron density (e·Å ⁻³)	1.625 / -1.156	0.641 / -0.551

 $Table \ S2. \ Crystallographic \ data \ of \ 3 \ and \ Cl_2B_2dur_2.$

References

- [1] Matsuda, T.; Otsuka, S.; Yoshida, T. Inorg. Syn. 1979, 28, 122.
- [2] Hunold, R. *PhD Thesis*, Philipps-Universität Marbug, **1998**.
- [3] Hommer, H.; Nöth, H.; Knizek, J.; Ponikwar, W.; Schenk-Kirchner, H. *Eur. J. Inorg. Chem.* 1998, 1519.
- [4] Sheldrick, G. M. Acta Crystallogr., Sect.A: Found.Crystallogr., 2008, A64, 112.