Supporting Information: Deconvoluting the Reactivity of Two Intermediates Formed From Modified Pyrimidines.

Liwei Weng ${ }^{\text {a }}$, Sonia M. Horvat ${ }^{\text {b,c }}$, Carl H. Schiesser ${ }^{\text {b,c }}$, and Marc M. Greenberg*a

${ }^{\text {a}}$ Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218.
${ }^{\text {b }}$ Australian Research Council Centre of Excellence for Free Radical Chemistry and Biotechnology, Australia. ${ }^{\text {c }}$ School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
mgreenberg@jhu.edu

Contents:

1. Experimental Methods. (S1-6)
2. Supporting Information Table 1. Response factors and retention time using MeU as internal standard. (S3)
3. Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $3^{\prime}, 5^{\prime}-O$-diacetyl-5-(N-methoxymethylamine)-2'-deoxyuridine and $3^{\prime}, 5^{\prime}-O-$ diacetyl-5-(t-butylthiomethyl)-2'-deoxyuridine. (S7)
4. Figure S2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 11. (S8)
5. Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4}$. (S9)
6. Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5}$. (S10)
7. Figure S5. Effect of methoxyamine on product distribution from $\mathbf{5}$ under anaerobic conditions. (S11)
8. Figure S6. Effect of methoxyamine on interstrand cross-link formation from 5 (17) under anaerobic conditions. (S11)
9. Figure S7. Chomatograms of digested duplex $\mathbf{1 7}$ photolyzed in the presence of methoxyamine. (S12)
10. Figure S8. Chomatograms of digested duplex 17 photolyzed in the presence of HO-TEMPO (13). (S12)
11. Figure S9. BHandHLYP/6-311G(d,p) generated orbitals for the key bond-forming interactions in 21. (S13)
12. Table S2. Effect of HO-TEMPO (13) on interstrand cross-link (ICLs) yields from $\mathbf{1 7}$ under anaerobic conditions. (S14)
13. Table S3. Effect of HO-TEMPO (13) on interstrand cross-link (ICLs) yields from 17 under aerobic conditions. (S14)
14. Table S4. Calculated energy barriers ($\Delta \mathrm{E}^{\ddagger}$, Scheme 5) at all levels of theory used. (S14)
15. Optimized geometries (Gaussian Archive Entries) for 21. (S15-21)

General Methods. All solvents were distilled before use. tert-Butylthiol was distilled over CaO . Dichloromethane, benzene, triethylamine and DMF were distilled from CaH_{2}. All photolyses were conducted in Pyrex tubes using a Rayonet photoreactor (RPR-100) equipped with 16 lamps with a maximum output at 350 nm . Anaerobic photolyses were carried out in sealed Pyrex tubes using standard freeze-pump-thaw cycles (three times). The oligonucleotide used here was the same as previously reported. ${ }^{[1]}$ Radiolabeling was conducted using standard protocols, ${ }^{[2]}$ which was followed
by hybridization with 1.5 eq. of complementary oligonucleotide in 10 mM potassium phosphate (pH 7.2) and 100 mM NaCl at $65{ }^{\circ} \mathrm{C}$ for 15 min and cooled to room temperature. Quantification of radiolabel oligonucleotides was carried out using a Molecular Dynamics phosphorimager equipped with ImageQuant Version TL software. LC samples were analyzed using an Agilent 1290 Infinity, with a RP-18 column (VARIAN, Microsorb-MV 100-5 C18 $250 \times 4.6 \mathrm{~mm}$).

Photoreaction of oligonucleotides. Photoreactions of duplex DNA (20 nM) were carried out in 100 mM sodium phosphate (pH 7.2) buffer. The stock solution of $\mathrm{MeO}-\mathrm{NH}_{2} \bullet \mathrm{HCl}(2 \mathrm{M})$ was titrated with 5 M NaOH solution to adjust the pH to ~ 7.0. It was then added to the photolysis mixture as appropriate for the desired concentration. HO-TEMPO (13) was dissolved in $\mathrm{H}_{2} \mathrm{O}$ without adjusting the pH . After 1.5 h photolysis, an aliquot was mixed in $1: 1$ ratio with 90% formamide loading buffer and subjected to 20% denaturing PAGE analysis.

Photoreaction of monomers 4 and 5. Monomers $\mathbf{4}$ or $\mathbf{5}$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ in stock solution (20 mM) and diluted with $\mathrm{H}_{2} \mathrm{O}$ in reactions. Photoreaction solutions typically contained 50 $\mu \mathrm{M}$ of $\mathbf{4}$ or 5 and 100 mM phosphate buffer (pH 7.2), together with $10 \mu \mathrm{M}$ of the internal standard 5-methyl-uridine (MeU). Photolyses were carried out for 1.5 h . Methoxyamine and HO-TEMPO solutions were prepared and added as described above. t-Butylthiol was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{M})$ and diluted by $\mathrm{H}_{2} \mathrm{O}$ in the photolysis reaction as appropriate for the desired concentration. The general gradient employed to analyze the photolysate was $0-12.5 \mathrm{~min}, 3-11.5 \% \mathrm{~B}$ in $\mathrm{A} ; 12.5-15 \mathrm{~min}, 11.5-50 \%$ B in $\mathrm{A} ; 15-20 \mathrm{~min}, 50-80 \% \mathrm{~B}$ in A ; at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. [A: $\mathrm{H} 2 \mathrm{O} ; \mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$]. The photoreactions containing 13 were analyzed using a different gradient: $0-1,3 \% \mathrm{~B}$ in $\mathrm{A} ; 1-13.5 \mathrm{~min}$, 3$11.5 \%$ B in A; 13.5-16 min, $11.5-15 \%$ B in A; $16-25 \mathrm{~min}, 15-35 \%$ B in A, $25-28 \mathrm{~min}, 35-80 \%$ B in A ; at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$. [A: $\mathrm{H} 2 \mathrm{O} ; \mathrm{B}: \mathrm{CH}_{3} \mathrm{CN}$].

Determination of response factors. Response factors for compounds at 260 nm were calculated versus 5-methyluridine (MeU) as an internal standard. The following formula was used to calculate response factors $([\mathrm{X}] /[\mathrm{IS}])=\operatorname{Rf}(\mathrm{A}(\mathrm{X}) / \mathrm{A}(\mathrm{IS}))$, where $[\mathrm{X}]$ is the concentration of the compound of interest and [IS] is the concentration of the internal standard. $\mathrm{A}(\mathrm{X})$ and $\mathrm{A}(\mathrm{IS})$ are the areas under the peaks corresponding to the compound of interest and the internal standard, respectively (SI Table 1).

Supporting Information Table 1. Response factors and retention time using MeU as internal standard.

Compound	Response Factor	Retention time (min)
Thymidine	0.83	7.59
$\mathbf{4}$	0.882	16.98
$\mathbf{5}$	1.036	16.94
$\mathbf{7}$	0.942	5.08
$\mathbf{8}$	0.942^{a}	5.75
$\mathbf{1 1}$	1.293	16.79
$\mathbf{1 4}$	0.779	20.72
$\mathbf{1 5}$	0.844	7.04

${ }^{\text {a. }}$ The response factor for $\mathbf{8}$ was assumed to be the same as 7 .

Digestion of photolyzed duplex 17. The hybridized 17 (2 nmol) with the complementary strand (2.5 nmol) was photolyzed at 350 nm in the presence of 300 mM methoxyamine or 200 mM 13 for 4 h . The stock solutions of 3 M methoxyamine and 2 M 13 were prepared as described above. The photolyzed duplex was precipitated twice from $0.3 \mathrm{M} \mathrm{NaOAc}(\mathrm{pH} 5.2$) followed by washing with 70% cold ethanol. The pallet was then suspended in $17.5 \mu \mathrm{~L} 1 \times$ Antarctic phosphatase buffer (50 mM Bis-TrisPropane $\mathrm{HCl}, 1 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mM} \mathrm{ZnCl}_{2}$, pH 6.0 at $25^{\circ} \mathrm{C}$), to which was added $1 \mu \mathrm{~L}$ of nuclease P 1 (1 unit $/ \mu \mathrm{L}$), $1 \mu \mathrm{~L}$ phosphodiesterase II (bovine spleen, 10 unit $/ \mu \mathrm{L}$) and $0.5 \mu \mathrm{~L}$ DNase II (10 unit $/ \mu \mathrm{L}$). After the mixture was incubated at $37^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 3 \mu \mathrm{~L}$ of $10 \times$ NEB buffer $3(1 \mathrm{M} \mathrm{NaCl}, 500 \mathrm{mM}$ Tris$\mathrm{HCl}, 100 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mg} / \mathrm{mL}$ BSA, pH 7.9 at $25{ }^{\circ} \mathrm{C}$) with $2.4 \mu \mathrm{~L} 500 \mathrm{mM} \mathrm{MgCl} 2,1 \mu \mathrm{~L}$ phosphodiesterase I (snake venom, 0.105 unit $/ \mu \mathrm{L}$), $1 \mu \mathrm{~L}$ shrimp alkaline phosphatase ($1 \mathrm{unit} / \mu \mathrm{L}$) and
$2.6 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ were added. The resulting solution was incubated at $37{ }^{\circ} \mathrm{C}$ for 2 h followed by filtration through $0.22 \mu \mathrm{~m}$. Half of the filtrate ($\sim 15 \mu \mathrm{~L}$) was directly subject to LC analysis. The remaining solution ($\sim 15 \mu \mathrm{~L}$) was mixed with 200 pmol of $\mathbf{1 5}$ or 250 pmol of $\mathbf{1 4}$ before LC analysis.

Synthesis of 5-(N-methoxymethylamine)-2'-deoxyuridine (15). To a solution of 3', 5'-O-diacetyl-2'-deoxyuridine ($150 \mathrm{mg}, 0.46 \mathrm{mmol}$) in distilled benzene $(5 \mathrm{~mL})$ was added N -bromosuccinimide ($106 \mathrm{mg}, 0.6 \mathrm{mmol}$) and azobisisobutyronitrile (AIBN, 8 $\mathrm{mg}, 0.06 \mathrm{mmol}$). The mixture was heated to reflux for 3 h , during which time the color changed from colorless to orange. The solution was cooled down and the solvent was removed to give the crude allylic bromide (12), which was used without purification. To a solution of $\mathrm{MeO}-\mathrm{NH}_{2} \cdot \mathrm{HCl}(76.8 \mathrm{mg}$, $0.92 \mathrm{mmol})$ in DMF (2.5 mL), was added triethylamine (TEA, $130 \mu \mathrm{~L}, 0.92 \mathrm{mmol}$) via syringe. White precipitate crushed out upon the addition of TEA. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h . A solution of $\mathbf{1 2}$ in DMF (2.5 mL) was then added. After stirring overnight, the mixture was poured into a beaker containing 30 mL of water and extracted with methylene chloride. The organic phases were combined, washed with water, and brine. Evaporation of the solvent gave the crude product, which was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 50: 1\right)$ to give a pale yellow foam $(45 \mathrm{mg}, 26 \%$ for two steps): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.13(\mathrm{br}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{dd}, 1 \mathrm{H}, J=7.2,4.8 \mathrm{~Hz}), 5.18-5.15(\mathrm{~m}$, 1 H), 4.39-4.17 (m, 3H), 3.81-3.64 (m, 2H), $3.47(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{ddd}, 1 \mathrm{H}, J=11.9,4.1,1.4 \mathrm{~Hz}), 2.15$ (ddd, $1 \mathrm{H}, J=11.9,7.5,3.2 \mathrm{~Hz}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .3$ ', 5'-O-Diacetyl-5-(N-methoxymethylamine)-2'-deoxyuridine ($45 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in methanol (3 mL), to which was added a concentrated solution of ammonia in methanol ($1 \mathrm{~mL}, 7 \mathrm{M}$). The resulting yellow solution was stirred overnight at room temperature. The solvent was evaporated and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 10: 1\right)$ to give $\mathbf{1 5}$ as a colorless solid (28 mg , $81 \%):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{t}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.45-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{q}, 1 \mathrm{H}, J$
$=3.6 \mathrm{~Hz}), 3.85-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 164.2,150.7$, $139.4,109.7,87.5,85.1,70.7,61.4,59.8,39.9$; IR (neat) $3394,2940,2345,1734,1691,1679,1469$, $1276 \mathrm{~cm}^{-1} ;$ HRMS $m / z\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc. 288.1190, found 288.1187.

Synthesis of 5-(t-butylthiomethyl)-2'-deoxyuridine (11). The allylic bromide (12,

$214 \mathrm{mg}, 0.46 \mathrm{mmol}$) was obtained by the same procedure as described above. To a suspension of $\mathrm{NaH}(44 \mathrm{mg}, 60 \%$ in oil, 1.84 mmol$)$ in DMF $(2.5 \mathrm{~mL})$ was added t butylthiol ($104 \mathrm{~mL}, 0.92 \mathrm{mmol}$) via syringe. After stirring the mixture at room temperature for 1 h , a solution of the allylic bromide in DMF $(2.5 \mathrm{~mL})$ was added. The resulting solution was stirred at room temperature overnight. The reaction was quenched by pouring into 30 mL water and extracted with methylene chloride. The organic phases were separated, washed with water, and brine. Evaporation of the solvent gave the crude product, which was purified by flash chromatography (hexane:ethyl acetate, 1:1) to give a yellow solid ($80 \mathrm{mg}, 42 \%):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.71-9.56(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{t}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.21(\mathrm{dd}, 1 \mathrm{H}, J=6.4,1.6 \mathrm{~Hz}), 4.37-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}$, $2 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$. Similarly, the purified $3^{\prime}, 5^{\prime}-O-$ diacetyl-5-t-butylthiomethyl-2'-deoxyuridine ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) was deprotected by a concentrated solution of ammonia in methanol ($1 \mathrm{~mL}, 7 \mathrm{M}$). The solvent was evaporated after overnight stirring and the residue was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 20: 1\right)$ to give $\mathbf{1 1}$ as a white foam (63 mg, 100\%): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.45-4.42(\mathrm{~m}, 1 \mathrm{H})$, $3.96(\mathrm{dd}, 1 \mathrm{H}, J=7.0,3.4 \mathrm{~Hz}), 3.82(\mathrm{dd}, 1 \mathrm{H}, J=11.8,3.4 \mathrm{~Hz}), 3.77(\mathrm{dd}, 1 \mathrm{H}, J=11.8,3.8 \mathrm{~Hz}), 3.56-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 163.6,150.6,138.4,112.1$, 87.5, 85.1, 70.8, 61.5, 42.3, 39.9, 29.8, 23.6, 20.7; IR (neat) 3369, 2926, 2346, 1734, 1666, 1469, 1277 $\mathrm{cm}^{-1} ;$ HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc. 331.1322, found 331.1316.

Synthesis of 14. Monomer $\mathbf{4}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ was mixed with $\mathbf{1 3}(216.8 \mathrm{mg}, 1.3$ mmol) in $3 \mathrm{~mL} \mathrm{CH} \mathrm{H}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (1:1) in a Pyrex tube. Argon was bubbled through the solution for 0.5 h . The photolysis was carried out for 3 h under argon. The solvent was evaporated in vacuo to yield the crude product, which was subjected to flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 10: 1\right)$ to give $\mathbf{1 4}$ as a white foam $(5 \mathrm{mg}, 9 \%):{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 6.3$ $(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.42-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.82$ $(\mathrm{m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, 1 \mathrm{H}, J=11.8,3.4 \mathrm{~Hz}), 3.72(\mathrm{dd}, 1 \mathrm{H}, J=11.8,3.4 \mathrm{~Hz}), 2.35-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{MeOH}-\mathrm{d}_{4}\right)$ $\delta 150.8,139.6,128.0,110.6,87.6,85.2,71.0,70.6,62.0,61.5,60.0,40.1,32.3,29.0,20.1$; IR (neat) $3369,2926,1678,1470,1275,1050 \mathrm{~cm}^{-1} ;$ HRMS m/z $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc. 414.2235, found 414.2244.
[1] Hong, I. S.; Ding, H.; Greenberg, M. M. J. Am. Chem. Soc. 2006, 128, 485-491
[2] Maniatis, T.; Fritsch, E. F.; Sambrook, J. Molecular Cloning; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., 1982.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of 3 ', 5'-O-diacetyl-5-(N-methoxymethylamine)-2'-deoxyuridine and 3', 5'-O-diacetyl-5-(t-butylthiomethyl)-2'-deoxyuridine.

Figure S2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 1}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 5}$.

Figure S5. Effect of methoxyamine on product distribution from $\mathbf{5}$ under anaerobic conditions.

Figure S6. Effect of methoxyamine on interstrand cross-link formation from 5 (17) under anaerobic conditions.

Figure S7. Chomatograms of digested duplex 17 photolyzed in the presence of methoxyamine (blue line represents the digested duplex, the red dashed line is the coinjection with 200 pmol of 15).

Figure S8. Chomatograms of digested duplex 17 photolyzed in the presence of HO-TEMPO (13). (blue line represents the digested duplex, the red dashed line is the coinjection with 250 pmol of 14).

Figure S9. BHandHLYP/6-311G (d,p) generated depiction of the $\mathrm{LP}_{\mathrm{N}} \rightarrow$ SOMO interaction in 21.

Table S2. Effect of HO-TEMPO (13) on interstrand cross-link (ICLs) yields from $\mathbf{1 7}$ under anaerobic conditions.

[HO-TEMPO] $(\mathrm{mM}) \mathrm{ICL}(\%)$	
0	23.2 ± 0.1
1	22.8 ± 0.1
5	23.1 ± 0.5
10	22.8 ± 0.3
20	22.0 ± 0.9
100	22.1 ± 0.7

Table S3. Effect of HO-TEMPO (13) on interstrand cross-link (ICLs) yields from 17 under aerobic conditions.

[HO-TEMPO] $(\mathrm{mM}) \mathrm{ICL}(\%)$	
0	22.9 ± 1.5
0.5	23.2 ± 0.6
5	23.3 ± 0.2
50	23.9 ± 0.1

Table S4. Calculated energy barriers $\left(\Delta \mathrm{E}^{\ddagger}\right)$ for the reaction of ademine (17) with the uridinylmethyl radical (18) (Scheme 5), and (imaginary) frequency (v) for the transition state vector in 21.

Method	$\Delta E_{1} \ddagger$	$\Delta E_{1} \ddagger+$ ZPE	v
ROHF/6-31G(d)	210.7	217.0	1846 i
ROHF/6-311G(d,p)	213.5	219.5	1858 i
BHandHLYP/6-311G(d,p)	94.9	103.2	460 i
BHandHLYP/cc-pVDZ	90.3	97.1	452 i
BHandHLYP/aug-cc-pVDZ	99.9	114.2	392 i
BHandHLYP/6-311G(2d,p)	96.5	103.7	464 i
BHandHLYP/6-311++G(2d,p)	100.4	108.2	468 i
MO6-2X/6-311G(d,p)	58.8	64.9	455 i
ROMP2/6-311G(d,p)//BHandHLYP/6-311G(d,p)	65.2		
ROMP2/cc-pVDZ//BHandHLYP/cc-pVDZ	64.7		
ROMP2/6-311G(2d,p)//BHandHLYP/6-311G(2d,p)	57.9		
ROMP2/6-311++G(2d,p)//BHandHLYP/6-311++G(2d,p)	58.1		
ROMP2/6-311G(d,p)//MO6-2X/6-311G(d,p)	65.3		

Gaussian Archive Entries for optimized geometries for 21.

ROHF/6-31G(d)

Abstract

$1 \backslash 1 \backslash G I N C-M E R R I 044 \backslash F T S \backslash R O H F \backslash 6-31 G(d) \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash 17-A p r-2013 \backslash$ $0 \backslash \backslash$ \#ROHF/6-31G* 6D INT(grid=ultrafine) OPT=(TS, readfc, noeigentest,maxc $y c=200) \operatorname{IOP}(2 / 17=4)$ Freq=noraman geom=checkpoint guess=check \backslash thymine/ adenine radical ts $\backslash \backslash 0,2 \backslash \mathrm{C}, 0.5032523234,-2.3588875548,-3.8729616905 \backslash \mathrm{H}, 0$ $.3675272135,-2.9373306415,-4.7641795795 \backslash N,-0.1525746527,-1.2908869192$, $-3.5836257915 \backslash C, 0.3459349135,-0.9055947534,-2.3535438574 \backslash C, 0.100260955$ $4,0.2099119308,-1.5506561651 \backslash N,-0.7734351482,1.212488094,-1.8744003275$ $\backslash \mathrm{H},-0.5708686676,2.1031483565,-1.4716282839 \backslash \mathrm{H},-1.0373749608,1.25018645$ $95,-2.8356002953 \backslash \mathrm{C}, 1.7471783053,-0.6111114562,-0.1226586153 \backslash \mathrm{H}, 2.305742$ $6784,-0.4348376906,0.7785556501 \backslash N, 2.0799119424,-1.6282644599,-0.837953$ $8416 \backslash \mathrm{C}, 1.3272291672,-1.7732755104,-1.9395828174 \backslash \mathrm{~N}, 1.4119679117,-2.7191$ $153336,-2.9273446635 \backslash \mathrm{H}, 2.0414806629,-3.4874802442,-2.9601798248 \backslash \mathrm{~N}, 0.72$ $10992687,0.2829759014,-0.3394474773 \backslash C,-0.3854841237,0.272889436,1.1057$ $023987 \backslash \mathrm{H}, 0.0419451207,-0.5287425858,1.6829040215 \backslash \mathrm{H},-0.192689531,1.2380$ $040861,1.5306216815 \backslash \mathrm{C},-1.7799923792,0.0636160444,0.7287728306 \backslash \mathrm{C},-2.285$ $1369188,-1.1297449739,0.3842990415 \backslash \mathrm{C},-2.6508059876,1.2425372279,0.5822$ $860235 \backslash \mathrm{H},-1.7107501157,-2.0341530834,0.4359551665 \backslash \mathrm{C},-4.4664338348,-0.2$ $563576827,-0.1810545669 \backslash \mathrm{~N},-3.5833734297,-1.2898509995,-0.0420806713 \backslash \mathrm{H}$, $-3.925415846,-2.184723133,-0.3104245112 \backslash 0,-5.588555051,-0.4002151391,-$ $0.5663963785 \backslash \mathrm{~N},-3.943146281,0.9606044931,0.1745033507 \backslash \mathrm{H},-4.5564122368$, $1.7413718522,0.0722109361 \backslash 0,-2.3225495068,2.371915098,0.8049647644 \backslash \backslash \mathrm{Ve}$ rsion=AM64L-G09RevC. $01 \backslash$ State $=2-A \backslash H F=-915.3221327 \backslash$ RMSD $=7.414 e-09 \backslash \mathrm{RMSF}=6$ $.434 e-06 \backslash$ Dipole $=1.292966,-1.7488343,-0.3664768 \backslash$ Quadrupole $=-12.6602956$, $8.3003253,4.3599703,-2.2546981,-3.9311686,0.5669545 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 10 \mathrm{~N} 7$ O2)]
@

ROHF/6-311G(d,p)

$1 \backslash 1 \backslash G I N C-M E R R I 044 \backslash F T S \backslash R O H F \backslash 6-311 G(d, p) \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash 17-A p r-20$ $13 \backslash 0 \backslash \backslash$ ROHF/6-311G** 6D INT(grid=ultrafine) OPT=(TS, readfc, noeigentest , maxcyc=200) IOP(2/17=4) Freq=noraman geom=checkpoint guess=check \backslash thy mine/adenine radical ts $\backslash \backslash 0,2 \backslash \mathrm{C}, 0.5544282166,-2.3552418113,-3.878077705$ $7 \backslash \mathrm{H}, 0.433457313,-2.9371138307,-4.769969944 \backslash \mathrm{~N},-0.1315091074,-1.30879400$
$52,-3.5868531212 \backslash C, 0.356883986,-0.9083192665,-2.3573339407 \backslash C, 0.0806812$ $883,0.1991537484,-1.5538988853 \backslash N,-0.8089933737,1.1862704374,-1.8842430$ $5 \backslash \mathrm{H},-0.6147459166,2.0821044255,-1.4920225983 \backslash \mathrm{H},-1.0785992086,1.2050482$ $044,-2.8426710146 \backslash \mathrm{C}, 1.7556104661,-0.5722651836,-0.1326711682 \backslash \mathrm{H}, 2.31251$ $39375,-0.3794343241,0.7671787847 \backslash N, 2.1164470021,-1.5767913572,-0.84896$ $34383 \backslash \mathrm{C}, 1.3632296055,-1.7459723145,-1.9460989696 \backslash \mathrm{~N}, 1.47627614,-2.68799$ $37863,-2.9346329444 \backslash \mathrm{H}, 2.1253445364,-3.4376686341,-2.9671249317 \backslash \mathrm{~N}, 0.700$ $9064544,0.2879249524,-0.3449257505 \backslash \mathrm{C},-0.3966626317,0.2201774389,1.1097$ $199672 \backslash \mathrm{H}, 0.0271258722,-0.6133436035,1.6434439239 \backslash \mathrm{H},-0.1919356882,1.165$ $1443429,1.5740655474 \backslash C,-1.7947473774,0.0388527404,0.7330840121 \backslash \mathrm{C},-2.31$ $79135434,-1.1396654397,0.3704074338 \backslash C,-2.6505773142,1.2324676099,0.614$ $3555354 \backslash \mathrm{H},-1.7541506637,-2.0522663929,0.405805399 \backslash \mathrm{C},-4.4893378326,-0.2$ $27648883,-0.1697376243 \backslash \mathrm{~N},-3.6180712775,-1.2746296991,-0.0576569578 \backslash \mathrm{H},-$ $3.9724939993,-2.1598106197,-0.3351365787 \backslash 0,-5.6096056415,-0.3486221693$ $,-0.549233803 \backslash \mathrm{~N},-3.948219639,0.9757196848,0.2055848224 \backslash \mathrm{H},-4.5515037958$ $, 1.7644782693,0.1227629554 \backslash 0,-2.3053060159,2.3473162853,0.8519005514 \backslash \backslash$ Version=AM64L-G09RevC. $01 \backslash$ State $=2-A \backslash H F=-915.5446845 \backslash$ RMSD $=3.943 \mathrm{e}-09 \backslash$ RMSF $=1.146 e-05 \backslash$ Dipole $=1.2675493,-1.7617657,-0.4190002 \backslash$ Quadrupole $=-12.24744$ $25,8.2293744,4.0180682,-2.4153309,-4.0515167,0.5579053 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 1$ 0N702)]
@

BHandHLYP/6-311G(d,p)

$1 \backslash 1 \backslash G I N C-M E R R I 060 \backslash F T S \backslash U B H A N A H L Y P \backslash 6-311 G(d, p) \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash 27-$ Mar-2013\0
\#BHandHLYP/6-311G** 6D INT(grid=ultrafine) OPT=(TS,readfc, noeigentest, maxcyc=200) IOP (2/17=4) Freq=noraman geom=checkpoint guess $=$ check $\backslash \backslash$ thymine/adenine radical ts $\backslash \backslash 0,2 \backslash C, 1.8274824604,-1.5374069691$,$4.5044220189 \backslash \mathrm{H}, 2.1639533154,-1.709423479,-5.507809202 \backslash \mathrm{~N}, 1.1112264634,-$ $0.5339091378,-4.1190011624 \backslash C, 0.9353621882,-0.7407900828,-2.7754104272 \backslash$ C, 0. $2249692943,0.0007273605,-1.8142801884 \backslash N,-0.4280012944,1.106151795$, $-2.1094379064 \backslash \mathrm{H},-1.0999244082,1.5609335576,-1.4747188076 \backslash \mathrm{H},-0.43463755$ $56,1.3689467045,-3.0745344778 \backslash C, 0.9259602006,-1.6355661949,-0.28968381$ $83 \backslash \mathrm{H}, 0.8902970291,-1.9436295825,0.741765151 \backslash \mathrm{~N}, 1.5830536891,-2.38977996$ $08,-1.1218869105 \backslash \mathrm{C}, 1.5631627486,-1.895342389,-2.3623031333 \backslash \mathrm{~N}, 2.1350215$ $75,-2.4010575844,-3.4864733408 \backslash \mathrm{H}, 2.6695508428,-3.2434483937,-3.5447517$

```
442\N,0.2737308277,-0.4946573619,-0.5604438882\C,-0.6110118015,0.30582
01167,0.7834629163\H,-0.057210165,-0.1841422786,1.5698582113\H,-0.2799
785326,1.3136336133,0.603023389\C,-2.0066451996,0.1159442105,0.7800593
136\C,-2.6350468084,-1.040377663,1.3382594909\C,-2.8018227875,1.100888
2139,0.1404519713\H,-2.1406356691,-1.6589365412,2.0662252784\C,-4.8452 \(754035,-0.1056880645,0.8493701738 \backslash N,-4.0356953699,-1.0423497378,1.4015\) \(716057 \backslash \mathrm{H},-4.5200044241,-1.8260180199,1.7865095943 \backslash \mathrm{O},-6.0479125364,-0.1\) \(639952542,0.8618358216 \backslash \mathrm{~N},-4.1707691397,0.9417875963,0.2481931796 \backslash \mathrm{H},-4\). \(7439903387,1.639809494,-0.1822680201 \backslash 0,-2.3766774086,2.0709528517,-0.4\) \(961045444 \backslash\) VVersion=AM64L-G09RevC.01 \State=2-A \(\backslash \mathrm{HF}=-920.4854706 \backslash \mathrm{~S} 2=0.759\) \(89 \backslash \mathrm{~S} 2-1=0 . \backslash \mathrm{S} 2 \mathrm{~A}=0.750051 \backslash \mathrm{RMSD}=9.181 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.237 \mathrm{e}-06 \backslash \mathrm{Dipole=3.2739991}\) ,-1. \(6250425,-1.2770185 \backslash Q u a d r u p o l e=-11.4623297,1.2420596,10.2202701,-3\). \(6937055,-2.452673,3.015119 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 10 \mathrm{~N} 7 \mathrm{O} 2)] \backslash \backslash @\)
```


BHandHLYP/cc-pVDZ

$1 \backslash 1 \backslash G I N C-M E R R I 016 \backslash F T S \backslash U B H a n d H L Y P \backslash C C-p V D Z \backslash C 10 H 10 N 7 O 2$ (2) \SHORVAT $\backslash 27-M a r-$ $2013 \backslash 0 \backslash \backslash$ BHandHLYP/cc-pvdz 6D INT(grid=ultrafine) OPT=(TS, readfc, noeig entest, maxcyc=200) IOP (2/17=4) Freq=noraman geom=checkpoint guess=chec $\mathrm{k} \backslash$ thymine/adenine radical ts $\backslash \backslash 0,2 \backslash \mathrm{C}, 1.8377829474,-1.5334025243,-4.514$ $1936627 \backslash \mathrm{H}, 2.17735349,-1.7039197404,-5.5249818446 \backslash \mathrm{~N}, 1.1081584036,-0.532$ $8751394,-4.1291983653 \backslash C, 0.9375251215,-0.7434658315,-2.7832270295 \backslash C, 0.2$ $201391493,-0.0077854019,-1.8172193372 \backslash N,-0.4450094693,1.0940679571,-2$. $10797083 \backslash \mathrm{H},-1.1243255513,1.5463372575,-1.4667092748 \backslash \mathrm{H},-0.4546231386,1$. $3541863168,-3.0786306992 \backslash \mathrm{C}, 0.9432988728,-1.6404986887,-0.2928479169 \backslash \mathrm{H}$, $0.9123088471,-1.9496738388,0.7464421276 \backslash N, 1.6105659272,-2.3924221538,-$ $1.125783865 \backslash \mathrm{C}, 1.5805855311,-1.8942043173,-2.3687888316 \backslash \mathrm{~N}, 2.1568800412$, $-2.3942370154,-3.4954663706 \backslash \mathrm{H}, 2.7036341973,-3.233630324,-3.5567977158 \backslash$ $\mathrm{N}, 0.2758752912,-0.5047572637,-0.5610022498 \backslash \mathrm{C},-0.6129567716,0.295932222$ $1,0.7864345561 \backslash \mathrm{H},-0.0540422455,-0.2012941764,1.5748971641 \backslash \mathrm{H},-0.2784391$ $038,1.3089406441,0.5970780634 \backslash C,-2.0118045035,0.1103314536,0.785022503$ $\backslash C,-2.650570682,-1.0408805055,1.3511595224 \backslash C,-2.8036042163,1.100907445$ $4,0.1417850314 \backslash \mathrm{H},-2.1575360213,-1.6612046884,2.0907242076 \backslash \mathrm{C},-4.8540619$ $678,-0.0893635394,0.8554657324 \backslash N,-4.0515890924,-1.0292645759,1.4168806$

```
876\H,-4.5466496881,-1.8146113237,1.7968765956\O,-6.0612031241,-0.1436
398654,0.8610970553\N,-4.1731162704,0.9569190322,0.2559325727\H,-4.745
6087631,1.6547612598,-0.1862244756\0,-2.3704354189,2.0678241441,-0.503 \(696844 \backslash\) VVersion=AM64L-G09RevC. \(01 \backslash\) State=2-A \(\backslash H F=-920.3300653 \backslash S 2=0.759955\) \(\backslash S 2-1=0 . \backslash S 2 A=0.750052 \backslash R M S D=7.341 e-09 \backslash R M S F=4.404 e-07 \backslash D i p o l e=3.1589321,-\) \(1.5637333,-1.2765861 \backslash Q u a d r u p o l e=-10.8838889,1.3105088,9.5733802,-3.775\) \(7633,-2.585439,2.922077 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 10 \mathrm{~N} 7 \mathrm{O} 2)] \backslash \backslash @\)
```


BHandHLYP/aug-cc-pVDZ

$1 \backslash 1 \backslash G I N C-M E R R I 022 \backslash F T S \backslash R O B H a n d H L Y P \backslash A u g-C C-p V D Z \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash 06$ -May-2013\0
\#BHandHLYP/aug-cc-pvdz scf=(conver=5) 6D INT(grid=ultrafi ne) $\mathrm{OPT}=(\mathrm{TS}$, readfc, noeigentest,maxcyc=200) IOP(2/17=4) Freq=noraman ge om=checkpoint guess=check
thymine/adenine radical ts $\backslash \backslash 0,2 \backslash c,-4.614380$ $7282,-0.8400948877,-1.087070129 \backslash \mathrm{H},-5.4819553373,-1.2786302225,-1.55100$ $1428 \backslash N,-3.5757792429,-1.4954801861,-0.6713722714 \backslash \mathrm{C},-2.7452536356,-0.52$ $61804907,-0.1614314799 \backslash \mathrm{C},-1.4633715992,-0.6146323775,0.4164472863 \backslash \mathrm{~N},-0$ $.822390966,-1.7621699774,0.5600918012 \backslash \mathrm{H}, 0.167123714,-1.8377291435,0.83$ $77814881 \backslash \mathrm{H},-1.2838872019,-2.5775750887,0.2050143847 \backslash \mathrm{C},-1.5932061869,1$. $7138363798,0.6514529925 \backslash \mathrm{H},-1.0754175193,2.5938393723,1.0095015263 \backslash \mathrm{~N},-2$ $.7684976223,1.8878031776,0.1081450882 \backslash C,-3.310755701,0.7279783706,-0.2$ $822693277 \backslash \mathrm{~N},-4.5151819942,0.5120506064,-0.880998969 \backslash \mathrm{H},-5.1893273841,1$. $2121323173,-1.1230437193 \backslash \mathrm{~N},-0.9343160406,0.5577175258,0.8272495207 \backslash \mathrm{C}, 0$ $.7234878825,0.6277445651,1.6166603266 \backslash \mathrm{H}, 0.570192387,1.6177042575,2.028$ $9077995 \backslash \mathrm{H}, 0.5616505973,-0.1699731006,2.3273704906 \backslash \mathrm{C}, 1.8096211257,0.462$ $9931274,0.7383312389 \backslash \mathrm{C}, 2.3632953311,1.5408069228,-0.0235804784 \backslash \mathrm{C}, 2.328$ $4067017,-0.8503943161,0.5605620728 \backslash \mathrm{H}, 2.1973580015,2.5742691415,0.24269$ $15994 \backslash \mathrm{C}, 4.1011163824,0.0611724656,-0.9031885379 \backslash \mathrm{~N}, 3.5401738426,1.28540$ $26174,-0.7385584279 \backslash \mathrm{H}, 3.9741711758,2.0117286331,-1.2729169641 \backslash 0,5.0796$ $90297,-0.1445465967,-1.5880532611 \backslash N, 3.4593794554,-0.9608550949,-0.2276$ $208492 \backslash \mathrm{H}, 3.8475282026,-1.8774030943,-0.3497511776 \backslash \mathrm{O}, 1.8485923882,-1.88$ $74362269,1.0426323998 \backslash$ Version=AM64L-G09RevC. $01 \backslash$ State $=2-A \backslash H F=-920.3890$ $672 \backslash \mathrm{RMSD}=4.718 \mathrm{e}-06 \backslash \mathrm{RMSF}=3.982 \mathrm{e}-06 \backslash \mathrm{Dipole=}=-3.6455986,1.1468182,0.167279$ $3 \backslash Q u a d r u p o l e=-0.3252967,1.8975609,-1.5722642,3.5182508,11.6847914,1.53$

BHandHLYP/6-311G(2d,p)

Abstract

$1 \backslash 1 \backslash G I N C-M E R R I 016 \backslash F T S \backslash U B H a n d H L Y P \backslash 6-311 G(2 d, p) \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash 27$ -Mar-2013\0
\#BHandHLYP/6-311G(2d,p) 6D INT(grid=ultrafine) OPT=(TS, re adfc, noeigentest, maxcyc=200) IOP(2/17=4) Freq=noraman geom=checkpoint guess=check $\backslash \backslash$ thymine/adenine radical ts $\backslash \backslash 0,2 \backslash \mathrm{C}, 1.8125691766,-1.5414570$ $259,-4.5015463878 \backslash \mathrm{H}, 2.144238502,-1.7150003205,-5.5058301785 \backslash \mathrm{~N}, 1.089818$ $6441,-0.5445326989,-4.1175707502 \backslash C, 0.924447906,-0.7459063646,-2.772353$ $3208 \backslash \mathrm{C}, 0.2155892175,-0.0093651388,-1.8106478692 \backslash \mathrm{~N},-0.448680407,1.08830$ $51822,-2.1024103302 \backslash \mathrm{H},-1.1143735233,1.5417857239,-1.4598936035 \backslash \mathrm{H},-0.46$ $86879694,1.3458889571,-3.0681101388 \backslash C, 0.9404712847,-1.6281182479,-0.28$ $68479387 \backslash \mathrm{H}, 0.9148802117,-1.9321472076,0.7457200186 \backslash \mathrm{~N}, 1.5994440501,-2.3$ $776097424,-1.1188591325 \backslash C, 1.5654981029,-1.8895032846,-2.3598834235 \backslash N, 2$ $.1349832454,-2.3950489526,-3.4834308743 \backslash \mathrm{H}, 2.6775062098,-3.2312377136$, $3.5427765608 \backslash N, 0.2758478536,-0.4983234323,-0.5579171988 \backslash C,-0.610112614$ $9,0.3041416674,0.7897671573 \backslash \mathrm{H},-0.0569126401,-0.1910724305,1.5719558438$ $\backslash \mathrm{H},-0.2765772195,1.3097338327,0.6083070863 \backslash \mathrm{C},-2.0025013357,0.118927748$ $8,0.7841426814 \backslash C,-2.6340443789,-1.0363521516,1.3323517191 \backslash C,-2.7936108$ $816,1.1091759763,0.1524492146 \backslash \mathrm{H},-2.1436512041,-1.655273103,2.062326917$ $5 \backslash \mathrm{C},-4.8331973608,-0.1008897778,0.8327266326 \backslash \mathrm{~N},-4.0318239857,-1.037733$ $1784,1.3892903647 \backslash \mathrm{H},-4.5205161611,-1.8323250763,1.7435640601 \backslash \mathrm{O},-6.0352$ $61324,-0.1674905786,0.82338968 \backslash N,-4.160183332,0.9575478679,0.257684102$ $\backslash \mathrm{H},-4.7310921104,1.6509295682,-0.1815083495 \backslash \mathrm{O},-2.3655361641,2.08202672$ $01,-0.4770329145 \backslash \backslash$ Version=AM64L-G09RevC. $01 \backslash$ State=2-A $\backslash \mathrm{HF}=-920.5115921 \backslash \mathrm{~S}$ $2=0.760249 \backslash S 2-1=0 . \backslash S 2 A=0.750055 \backslash R M S D=5.799 e-09 \backslash R M S F=5.116 e-06 \backslash \mathrm{Dipole}=3$ $.1979303,-1.5971908,-1.2658021 \backslash Q u a d r u p o l e=-11.1780045,1.3238366,9.8541$ $678,-3.8467555,-2.5926875,2.9928387 \backslash \mathrm{PG}=\mathrm{C} 01 \quad[\mathrm{X}(\mathrm{C} 10 \mathrm{H} 10 \mathrm{~N} 7 \mathrm{O} 2)] \backslash \backslash @$

BHandHLYP/6-311++G(2d,p)

$1 \backslash 1 \backslash G I N C-M E R R I 004 \backslash F T S \backslash U B H a n d H L Y P \backslash 6-311++G(2 d, p) \backslash C 10 H 10 N 7 O 2(2) \backslash S H O R V A T \backslash$ 28-Mar-2013\0
\#BHandHLYP/6-311++G(2d,p) 6D INT(grid=ultrafine) OPT=(T S,readfc, noeigentest, maxcyc=200) IOP(2/17=4) Freq=noraman geom=checkpo

```
int guess=check\\thymine/adenine radical ts\\0,2\C,1.8434848665,-1.534
5172099,-4.5042442502\H,2.1858783765,-1.7028792097,-5.5057051202\N,1.1
172042578,-0.5387895747,-4.1225146905\C,0.9358719012,-0.7458418026,-2.
7798355569\C,0.2169483195,-0.0143835163,-1.8223773024\N,-0.4442687495,
1.0862786767,-2.1155652438\H,-1.1132889599,1.536623566,-1.4765581932\H
,-0.4527267745,1.3567281082,-3.0781381595\C,0.9236925744,-1.6396301572
,-0.297664356\H,0.8893905331,-1.9492945141,0.7327360407\N,1.5906985144
,-2.3853292119,-1.1278108193\C,1.5713806788,-1.8923195549,-2.366791630
8\N,2.1532624385,-2.3934196573,-3.4866000898\H,2.6960163839,-3.2299835
738,-3.544904917\N,0.2624367995,-0.5087218017,-0.5712030183\C,-0.61822
88849,0.3031184334,0.7873515841\H,-0.0630570196,-0.1968310299,1.564385
4767\H,-0.2767926788,1.3052019907,0.6023843717\C,-2.0113181947,0.12276
78281,0.789258102\C,-2.6420247663,-1.0285041311,1.3427435863\C,-2.8061
278588,1.1071961191,0.151786988\H,-2.1434024152,-1.6659359846,2.049287
1884\C,-4.8408729173,-0.0927172475,0.8587448997\N,-4.0376092736,-1.026
048084,1.4171602166\H,-4.5230563971,-1.8136771158,1.791965117\O,-6.045
8651659,-0.1538953309,0.8671247596\N,-4.1728015475,0.9531938711,0.2581
536127\H,-4.7471245721,1.646735757,-0.1777334237\O,-2.3791676769,2.073
9511763,-0.4883786656\\Version=AM64L-G09RevC.01\State=2-A\HF=-920.5306
898\S2=0.760939\S2-1=0.\S2A=0.750061\RMSD=3.554e-09\RMSF=1.265e-06\Dip
ole=3.3308523,-1.6428258,-1.2234538\Quadrupole=-11.9647418,1.3025467,1
0.662195,-3.53201,-2.4217263,3.0734337\PG=C01 [X(C10H10N7O2)]\\@
```


M06-2X/6-311G(d,p

$1 \backslash 1 \backslash \mathrm{GINC}-\mathrm{MERRI} 017 \backslash \mathrm{FTS} \backslash \mathrm{UM} 062 \mathrm{X} \backslash 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p}) \backslash \mathrm{C} 10 \mathrm{H} 10 \mathrm{~N} 7 \mathrm{O} 2(2) \backslash \mathrm{SHORVAT} \backslash 27-\mathrm{Mar}-$ $2013 \backslash 0 \backslash \$ \#M062X/6-311G** 6D INT(grid=ultrafine) OPT=(TS, readfc, noeigent est, maxcyc=200) IOP(2/17=4) Freq=noraman geom=checkpoint guess=check $\backslash \backslash$ thymine/adenine radical ts $\backslash \backslash 0,2 \backslash \mathrm{C}, 1.6628227901,-1.6055992741,-4.492993$ $7522 \backslash \mathrm{H}, 1.9424224309,-1.8143588619,-5.5144401751 \backslash \mathrm{~N}, 1.0032279913,-0.5559$ $049806,-4.0931613948 \backslash C, 0.8914094411,-0.7317017911,-2.7338266054 \backslash C, 0.24$ $9548684,0.0553292157,-1.750313126 \backslash \mathrm{~N},-0.397088198,1.1748146461,-2.04144$ $30002 \backslash \mathrm{H},-1.0458867352,1.655214954,-1.3869973607 \backslash \mathrm{H},-0.4494412555,1.4071$ $23298,-3.0223863847 \backslash \mathrm{C}, 0.9724777346,-1.5806110094,-0.216047166 \backslash \mathrm{H}, 0.9752$ $439859,-1.8617696287,0.8327059905 \backslash N, 1.5573538774,-2.3890122653,-1.0668$

```
57851\C,1.4946666607,-1.9104659064,-2.3204877543\N,1.9880356965,-2.464
8773888,-3.4684732646\H,2.4881511012,-3.337956037,-3.5332866842\N,0.35
52365355,-0.4109468153,-0.4845969716\C,-0.5676480472,0.3935397512,0.84
91051227\H,-0.0166996546,-0.0924086834,1.6517925826\H,-0.2575027583,1.
4184136027,0.6748602128\C,-1.9582436953,0.1542308092,0.789875314\C,-2.
5623452479,-1.0429720567,1.2703077114\C,-2.7713861664,1.1437841738,0.1
491394204\H,-2.0560439226,-1.7252902013,1.9382686436\C,-4.8004251433,-
0.197378866,0.7070581117\N,-3.9628952456,-1.130817841,1.2440448924\H,-
4.4300052783,-1.9599868142,1.5746155654\0,-6.0051235245,-0.311603797,0
.6555299964\N,-4.1415100242,0.9222271269,0.197883652\H,-4.7333763415,1
.6187642332,-0.2320881995\O,-2.3564438991,2.159297226,-0.430731019\\Ve
rsion=AM64L-G09RevC.01\State=2-A\HF=-920.6773229\S2=0.758367\S2-1=0.\S \(2 A=0.750035 \backslash R M S D=5.933 e-09 \backslash R M S F=1.920 e-06 \backslash D i p o l e=2.9505803,-1.5874984\), \(-1.198524 \backslash Q u a d r u p o l e=-11.8084857,1.8004086,10.0080771,-4.2504621,-2.83\) 12329,3.1277721 \PG=C01 [X(C10H10N7O2)]\\@
```

