Supporting Information

Highly cross-linked and biocompatible polyphosphazene coated superparamagnetic Fe₃O₄ nanoparticles for magnetic resonance imaging

Ying Hu[†], Lingjie Meng^{*,‡}, Lvye Niu[†], and Qinghua Lu^{*,†,§}

[†] School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

[‡] School of Science, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China

[§]State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Figure S1. ¹H NMR spectra of TREG on Fe₃O₄ nanoparticles, TEA and TREG+TEA

Figure S2. (a,b)TEM images and (c) SAED pattern of Fe₃O₄.

Figure S3. The size distribution of (a) Fe₃O₄@PZS-1, (b) Fe₃O₄@PZS-2 and (c) Fe₃O₄@PZS-3, analyzed from the SEM images in Figure 1.

Figure S4. The size distribution of Fe₃O₄@PZS-1,2,3 by DLS.

Figure S5. The liquid chromatography-mass spectroscopy of BPS and the degradation product of $Fe_3O_4@PZS-2$.

Figure S6. TEM images of $Fe_3O_4@PZS-2$ before (a) and after (b) 160 days degradation in pH 7.4 PBS solution.

Figure S7. The size distribution of $Fe_3O_4@PZS-2$ after 160 days degradation in pH 7.4 PBS solution.