Supporting Information

Rhodium-catalyzed Directed C-H Cyanation of Arenes with N-Cyano- N-phenyl-p-toluenesulfonamide
Tian-Jun Gong, ${ }^{+}$Bin Xiao, ${ }^{+}$Wan-Min Cheng, Wei Su, Jun Xu, Zhao-Jing Liu, Lei Liu and Yao Fu*

I. General Remark
II. General Procedure for the Preparation of Starting Materials
III. General Procedure for Rhodium-Catalyzed C-H Cyanation and NMR Spectra of Products
IV. Conversion of Benzonitriles
V. Mechanistic Studies
VI. X-ray Crystal data

I. General Remark:

All solvents were obtained from commercial suppliers and used without further purification. Aromatic ring were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted ${ }^{[1]} .\left[\mathrm{RhCp}^{*}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ was prepared according to the literature ${ }^{[2]}$. Analytical TLC was done on pre-coated silica gel plates. Column chromatography was conducted with $300-400$ mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on 400 MHz spectrometers. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million relative to tetramethylsilane $(\delta=0)$. The following abbreviations were used to describe peak splitting patterns when appropriate: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet. Coupling constants, J, were reported in hertz unit (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 101 MHz spectrometers. Chemical shifts were reported in parts per million relative to tetramethylsilane ($\delta=0$). High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

II. General Procedure for the Preparation of Starting Materials

A. Synthesis of N-cyano- N-phenyl-p-methylbenzenesulfonamide (NCTS) ${ }^{[3]}$:

Dry 500 mL Schlenk flask was charged with phenylurea ($20.41 \mathrm{~g}, 150 \mathrm{mmol}$) and dissolved by addition of pyridine (100 mL). p-Toluenesulfonyl chloride ($71.25 \mathrm{~g}, 375 \mathrm{mmol}$) was added over 3 min at room temperature. The reaction mixture was stirred for additional 20 min and poured into to ice-cooled water (1000 mL) with Vigorous stirring. Precipitate formed during stirring was filtered and washed with water. Precipitated product was further purified by column chromatography using Petroleum ether: ethyl acetate (10:1) as eluent to yield N-cyano- N-phenyl-4-methylbenzenesulfonamide(NCTS) as colorless solid ($41 \mathrm{~g}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}$, 3H).
${ }^{13}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.72,134.56,132.30,130.23,129.98,129.84,128.43,126.50,108.65$,
21.83. Spectral data matched those previously reported.

B. General procedure for the preparation of O-methyl oximes ${ }^{[4]}$.

The parent ketone (1.0 equiv.) was dissolved in $\operatorname{EtOH}(0.50-0.80 \mathrm{M})$ and methoxylammonium chloride (1.5-5 equiv.) was added. The reaction mixture was stirred at room temperature for 10 min and then sodium hydrogencarbonate was gradully added until the medium became neutral.

Stirring was continued for further 4 h and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the reaction flask, followed by the same volume of distilled water. After being vigorously shaken, the organic layer was separated and washed with a dilute aqueous solution of sodium hydroxide, and with distilled water until neutral. The dried solution was filtered and the solvent evaporated. The crude product was purified in a chromatographic column using hexane-acetone (50:1-2:1) as eluent.

1-(4-(3-chloropropoxy)phenyl)ethanone O-methyl oxime

White solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.6,2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6,2 \mathrm{H}), 4.13(\mathrm{t}, J=5.8,2 \mathrm{H}), 3.98(\mathrm{~s}$, 2 H), $3.74(\mathrm{t}, J=6.3,2 \mathrm{H}), 2.24(\mathrm{dd}, J=12.2,6.1,1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.48,154.19,129.39,127.40,114.33,64.31,61.80,41.45,32.20$,
12.54 .

1-(4-(oxiran-2-ylmethoxy)phenyl)ethanone O-methyl oxime

White solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.8,2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8,2 \mathrm{H}), 4.24$ (dd, $\left.J=11.0,3.0,1 \mathrm{H}\right)$, $4.03-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~d}, J=1.5,1 \mathrm{H}), 2.91(\mathrm{t}, J=4.5,1 \mathrm{H}), 2.76(\mathrm{dd}, J=4.5,2.7,1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.21,154.11,129.74,127.40,114.44,68.74,61.80,50.06,44.70$, 12.53.

2-(4-(1-(methoxyimino)ethyl)phenyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

White solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone) $\delta 7.70$ (d, $J=8.0,2 \mathrm{H}$), 7.56 (d, $\left.J=8.0,2 \mathrm{H}\right), 4.38$ (d, $\left.J=17.1,2 \mathrm{H}\right), 4.18$ (d, $J=17.1,2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetone) $\delta 169.58,154.86,137.98,133.43,126.13,62.78,62.09,48.29,12.34$.

(2R,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(4-((E)-1-(methoxyimino)ethyl)phenoxy)tetrahydro-2 H-pyran-3,4,5-triyl triacetate with ethyl acetate (1:1)
White solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.7,2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7,2 \mathrm{H}), 5.29(\mathrm{p}, J=9.1,2 \mathrm{H}), 5.17(\mathrm{t}$, $J=9.2,1 \mathrm{H}), 5.09(\mathrm{~d}, J=7.1,1 \mathrm{H}), 4.29(\mathrm{dd}, J=12.3,5.2,1 \mathrm{H}), 4.17(\mathrm{~d}, J=13.2,1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2$, $2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 15 \mathrm{H}), 1.26(\mathrm{t}, J=7.2,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.06,171.18,170.60,170.26,169.41,169.31,157.45,153.81,131.89$, $127.41,116.73,98.95,72.66,72.11,71.11,68.21,61.90,60.41,21.07,20.73,20.65,20.64,20.61$, 14.21, 12.57.

(E)-methyl 2-(10-(methoxyimino)-10,11-dihydrodibenzo[b,f|thiepin-2-yl)propanoate (5) Thick oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=7.7,1.7,1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.7,1.4$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=1.9,1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=7.9,2.0,1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{q}, J=7.2,1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (d, $J=7.2,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.59,153.56,141.51,140.36,134.87,134.64,133.74,131.41,130.10$, 129.06, 128.94, 128.85, 126.67, 126.11, 62.00, 52.11, 45.06, 34.07, 18.50.

HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+1]^{+}\right): 342.1159$; found: 342.1157 .

III. General Procedure for Rhodium-Catalyzed C-H Cyanation and

 NMR Spectra of Products.A. General Procedure for Rhodium-Catalyzed C-H Cyanation

A 10 mL Schlenk tube equipped with a magnetic stirrer was charged with $\left[\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(5 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$, N-cyano- N-phenyl- p-methylbenzene sulfonamide $2(0.4 \mathrm{mmol})$. The tube was evacuated and backfilled with argon for three times. Then aryl ketone O-methyl oxime or other aryl substrates $(0.2 \mathrm{mmol})(0.2 \mathrm{~mol})$ in dioxane $(1 \mathrm{~mL})$ was added. After addition of all substrates, the reaction mixture was stirred and heated at $120^{\circ} \mathrm{C}$ for 24 h . Then reaction was cooled to room temperature. Solvent and volatile reagents were removed by rotary evaporation and the residue was purified by flash column chromatography on silica gel to give the target product.

B. NMR Spectra of Products:

2-(1-(methoxyimino)ethyl)benzonitrile (3a)

This compound was obtained in $86 \%(30 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30:1).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.7,1.0,1 \mathrm{H}), 7.63-7.56((\mathrm{td}, J=7.7,1.0,1 \mathrm{H}), 7.52(\mathrm{dd}, J$ $=7.8,0.9,1 \mathrm{H}), 7.44(\mathrm{td}, J=7.6,1.0,1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{3} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.98,140.53,134.15,132.59,128.84,128.55,118.29,110.80,62.29$, 14.66.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 174.0793 ; found: 174.0791.

2-(1-(methoxyimino)ethyl)-5-methylbenzonitrile (3b)

This compound was obtained in 79% (30 mg) yield as thick oil by following the general procedure (PE: EA=30:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}$,
3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.94,139.22,137.71,134.50,133.40,128.43,118.49,110.52,62.21$, 20.87, 14.65.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([M]^{+}\right)$: 188.0950; found: 188.0953.

2-(1-(methoxyimino)ethyl)-4-methylbenzonitrile (3c)
This compound was obtained in 94% (36 mg) yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0,1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$, 2.43 ($\mathrm{s}, 3 \mathrm{H}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.33,143.63,140.49,133.98,129.64,129.30,118.54,107.77,62.24$,
21.78, 14.82.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([M]^{+}\right)$: 188.0950 ; found: 188.0951.

2-(1-(methoxyimino)ethyl)-3-methylbenzonitrile (3d)
This compound was obtained in $40 \%(15 \mathrm{mg})$ yield as thick oil by following the general procedure
(PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7,1 \mathrm{H}), 4.01(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.73,140.79,137.68,134.75,130.58,128.71,117.75,112.37,62.07$, 19.58, 16.04.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 188.0950; found: 188.0955.

5-methoxy-2-(1-(methoxyimino)ethyl)benzonitrile (3e)
This compound was obtained in 80% (33 mg) yield as thick oil by following the general procedure (PE : EA=10:1)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.7,2.7,1 \mathrm{H})$, $4.03(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.53,152.65,132.99,129.92,118.93,118.74,118.23,111.60,62.15$, 55.74, 14.66.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\left[\mathrm{M}^{+}\right)\right.$: 204.0899 ; found: 204.0911.

Methyl 3-cyano-4-(1-(methoxyimino)ethyl)benzoate (3f)
This compound was obtained in $74 \%(34 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, J=1.5,1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.3,1.5,1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3,1 \mathrm{H})$,
$4.08(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.85,152.14,143.98,135.38,133.35,130.72,128.71,117.56,111.13$, 62.56, 52.75, 14.36.

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}]^{+}\right)$: 232.0848; found: 232.0809.

5-fluoro-2-(1-(methoxyimino)ethyl)benzonitrile (3g)
This compound was obtained in $81 \%(31 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30 : 1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=8.7,5.3,1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.0,2.7,1 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.7$, $8.0,2.7,1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.87(\mathrm{~d}, J=252.2$), $152.01,136.95(\mathrm{~d}, J=3.7), 130.65(\mathrm{~d}, J=8.4)$, $120.94(\mathrm{~d}, J=24.8), 120.18(\mathrm{~d}, J=21.3), 117.08(\mathrm{~d}, J=2.7), 112.31(\mathrm{~d}, J=9.4), 62.34,14.62$. HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 192.0699; found: 192.0726.

5-chloro-2-(1-(methoxyimino)ethyl)benzonitrile (3h)
This compound was obtained in $70 \%(29 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30 : 1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,2.0,1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5,1 \mathrm{H})$, 4.05 (s, 3H), 2.27 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.89,138.83,134.89,133.74,132.86,129.79,117.08,112.17,62.42$, 14.42.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$ ([M] $]^{+}$): 208.0403; found: 208.0425.

5-bromo-2-(1-(methoxyimino)ethyl)benzonitrile (3i)
This compound was obtained in 82% (41 mg) yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=2.0,1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.5,2.0,1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5,1 \mathrm{H})$, 4.05 ($\mathrm{s}, 3 \mathrm{H}$), 2.27 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.96,139.26,136.58,135.78,129.88,122.52,116.95,112.40,62.44$, 14.37.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right): 251.9898$; found: 251.9911 .

5-iodo-2-(1-(methoxyimino)ethyl)benzonitrile (3j)
This compound was obtained in 67% (40 mg)yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=30: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=1.8,1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.4,1.8,1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4,1 \mathrm{H})$, $4.05(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 152.06,142.30,141.61,139.73,129.79,116.77,112.40,93.33,62.43$, 14.29.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}\left([M]^{+}\right)$: 299.9760; found: 299.9762 .

3-cyano-4-(1-(methoxyimino)ethyl)phenyl 4-methylbenzenesulfonate (3k)
This compound was obtained in $73 \%(50 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6,1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.31$
(dd, $J=8.6,2.5,1 \mathrm{H}), 7.27(\mathrm{~d}, J=2.5,1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.86,149.19,146.28,139.14,131.69,130.17,130.08,128.49,127.69$, 127.06, 116.96, 111.92, 62.41, 21.79, 14.47.

HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ ([M] $]^{+}$): 344.0831; found: 344.0841.

N-(3-cyano-4-(1-(methoxyimino)ethyl)phenyl)acetamide (31)

This compound was obtained in 72% (33 mg) yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=3: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.1,1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.6,2.1,1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=8.6,1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.38,152.47$, 138.97, 135.44, 129.27, 124.65, 123.58, 118.37, 110.69, 62.21, 24.42, 14.38.

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$: 231.1008; found: 230.1028.

5-hydroxy-2-(1-(methoxyimino)ethyl)benzonitrile (3m)
This compound was obtained in 53% (20 mg) yield as white solid by following the general
procedure ($\mathrm{PE}: \mathrm{EA}=5: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4,1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$, 2.25 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.58,153.09,132.49,130.10,120.76,120.53,118.11,111.09,62.11$, 14.73.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ ([M] $\left.{ }^{+}\right)$: 190.0742; found: 190.0753.

(E)-2-(1-(methoxyimino)ethyl)-5-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)benzonitril e (3n)
This compound was obtained in $64 \%(42 \mathrm{mg})$ yield as white solid by following the general procedure (PE : EA=1:2)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.90(\mathrm{~d}, J=1.2,1 \mathrm{H}), 7.80(\mathrm{dd}, J=7.9,1.2,1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $4.39(\mathrm{~d}, J=17.2,2 \mathrm{H}), 4.18(\mathrm{~d}, J=17.2,2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 169.17,152.94,139.40,138.26,137.09,127.84,118.63,108.99,79.12$, 62.15, 61.78, 47.79, 14.20.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BN}_{3} \mathrm{O}_{5}\left([\mathrm{M}+1]^{+}\right)$: 330.1256 ; found: 330.1249 .

5-(3-chloropropoxy)-2-(1-(methoxyimino)ethyl)benzonitrile (30)
This compound was obtained in 79% (42 mg) yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.7,2.7,1 \mathrm{H})$,
$4.15(\mathrm{t}, J=5.9,2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, J=6.0,2 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}^{1}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.63,152.57,133.15,129.97,119.43,119.23,118.14,111.62,64.90$, 62.15, 41.09, 31.89, 14.62.

HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2}\left([M]^{+}\right): 266.0822$; found: 266.0793.

2-(acetoxymethyl)-6-(3-cyano-4-(1-(methoxyimino)ethyl)phenoxy)tetrahydro-2H-pyran-3,4,5

-triyl triacetate (3p)

This compound was obtained in $69 \%(72 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=1: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.7,2.6,1 \mathrm{H})$, $5.35-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=16.5,8.7,2 \mathrm{H}), 4.22(\mathrm{qd}, J=12.3,4.2,2 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{ddd}, J$ $=10.0,5.8,2.6,1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.58,170.12,169.39,169.19,156.43,152.19,135.59,130.04,121.85$, 121.47, 117.84, 111.82, 98.66, 72.53, 71.02, 68.17, 62.27, 62.00, 20.72, 20.60, 20.57, 14.54.

HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{11}\left([\mathrm{M}+1]^{+}\right): 521.1766$; found: 521.1752 .

2-(1-(methoxyimino)ethyl)-5-(oxiran-2-ylmethoxy)benzonitrile (3q)

This compound was obtained in $80 \%(39.4 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=5: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.7,1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.7,1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.7,2.7,1 \mathrm{H})$, $4.32(\mathrm{dd}, J=11.1,2.6,1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{dd}, J=11.1,6.0,1 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=4.8,2.6,1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.41,152.51,133.49,130.00,119.56,119.49,118.07,111.65,69.35$, 62.16, 49.80, 44.42, 14.59.

HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+1]^{+}\right)$: 247.1077 ; found: 247.1070

2-((methoxyimino)methyl)benzonitrile (3r)

This compound was obtained in $69 \%(22 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.45(\mathrm{td}, J=7.6,1.2,1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.83,135.12,133.06,132.82,129.74,126.29,116.88,111.57,62.64$. HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right): 160.0637$; found: 160.0645 .

2-((methoxyimino)(phenyl)methyl)benzonitrile (3s)
This compound was obtained in $57 \%(27 \mathrm{mg})$ yield as white solid by following the general procedure (PE : $\mathrm{EA}=30: 1$)
1 H NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.73(\mathrm{dd}, \mathrm{J}=7.7,1.2,1 \mathrm{H}), 7.54(\mathrm{td}, \mathrm{J}=7.7,1.4,1 \mathrm{H}), 7.49-7.39(\mathrm{~m}$, $6 \mathrm{H}), 7.37$ (dd, J = 7.7, 1.0, 1H), 4.07 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.63,139.87,134.22,132.28,132.04,130.64,129.83,129.80,129.09$, 128.25, 117.84, 112.24, 62.82.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 236.0950; found: 236.0951.

2-(1-(methoxyimino)propyl)benzonitrile (3t)
This compound was obtained in $81 \%(31 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, J=7.7,1.3,1 \mathrm{H}), 7.60(\mathrm{td}, J=7.7,1.3,1 \mathrm{H}), 7.51-7.39(\mathrm{~m}$, $2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{q}, J=7.6,2 \mathrm{H}), 1.09(\mathrm{t}, J=7.6,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.16,139.64,134.02,132.51,128.81,128.75,118.17,111.57,62.20$,
21.73, 10.51.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([M]^{+}\right)$: 188.0950; found: 188.0948.

8-(methoxyimino)-5,6,7,8-tetrahydronaphthalene-1-carbonitrile (3u)
This compound was obtained in 78% (31 mg) yield as thick oil by following the general procedure
(PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dd}, J=7.6,1.2,1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.0,1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6,1 \mathrm{H})$, 4.09 (s, 3H), 2.74 (dd, $J=13.3,6.6,4 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.36,141.42,133.75,132.59,132.52,128.28,119.45,108.96,62.51$, 30.25, 24.20, 20.71.

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 200.0950; found: 200.0958 .

4-(methoxyimino)chroman-5-carbonitrile (3v)
This compound was obtained in 82% (33 mg) yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{dd}, J=7.6,1.4,1 \mathrm{H}), 7.28(\mathrm{t}, J=8.2,2 \mathrm{H}), 7.11(\mathrm{dd}, J=8.2,1.4$, $1 \mathrm{H}), 4.23(\mathrm{t}, J=6.3,2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, J=6.3,2 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, CDCl_{3}) $\delta 157.01,145.80,130.04,129.12,122.45,119.72,118.73,108.53,65.02$, 62.69, 23.65.

HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right):$202.0742; found: 202.0742.

3-chloro-2-(1H-pyrazol-1-yl)benzonitrile (3w)

This compound was obtained in 84% (34 mg) yield as thick oil by following the general procedure (PE: EA=15:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=1.5,1 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{t}, J=8.0,1 \mathrm{H}), 6.57(\mathrm{t}, J$ $=2.1,1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.05,140.23,134.92,132.83,132.19,131.62,130.07,114.84,113.83$, 107.75.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClN}_{3}\left([\mathrm{M}]^{+}\right)$: 203.0250 ; found: 203.0240.

2-(1-tosyl-4,5-dihydro-1H-imidazol-2-yl)benzonitrile (3x)

This compound was obtained in 58% (38 mg) yield as white solid by following the general procedure (PE: EA=5:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3,2 \mathrm{H}), 3.99(\mathrm{dd}$, $J=13.6,5.0,2 \mathrm{H}), 3.85(\mathrm{dd}, J=13.6,5.0,2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.06,145.18,134.38,134.00,133.12,131.85,131.04,130.61,130.14$, 127.51, 117.03, 112.61, 54.52, 48.88, 21.64.

HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ ([M] $]^{+}$): 325.0885; found: 325.0888.

2-(4,5-dihydrooxazol-2-yl)benzonitrile (3y)
This compound was obtained in $76 \%(26 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=7.7,1.0,1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.7,1.1,1 \mathrm{H}), 7.65(\mathrm{td}, J=7.7$, $1.4,1 \mathrm{H}), 7.57(\mathrm{td}, J=7.7,1.4,1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.6,2 \mathrm{H}), 4.17(\mathrm{t}, J=9.6,2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.01,134.66,132.43,131.09,130.10,130.05,117.90,111.75,68.15$, 55.43.

HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}\left([M]^{+}\right)$: 172.0637; found: 172.0629.

2-(pyridin-2-yl)benzonitrile (3z)
This compound was obtained in $64 \%(23 \mathrm{mg})$ yield as white solid by following the general
procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82-8.76(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{td}, J=7.7,1.3,1 \mathrm{H})$, $7.52(\mathrm{td}, J=7.6,1.2,1 \mathrm{H}), 7.37$ (ddd, $J=7.4,4.9,1.2,1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.22,149.91,143.41,136.93,134.15,132.86,130.03,128.80,123.38$, $123.31,118.68,111.11$. Spectral data matched those previously reported

2-(1-(methoxyimino)ethyl)furan-3-carbonitrile (4a)

This compound was obtained in $67 \%(22 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=2.0,1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0,1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.91,145.89,143.04,113.83,113.61,94.28,63.02,11.24$.
HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\left([M]^{+}\right)$: 164.0586; found: 164.0577.

2-(1-(methoxyimino)ethyl)thiophene-3-carbonitrile (4b)

This compound was obtained in $63 \%(23 \mathrm{mg})$ yield as thick oil by following the general procedure (PE: EA=30:1)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=5.3,1 \mathrm{H}), 7.23(\mathrm{~d}, J=5.3,1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.95,148.85,130.50,126.53,115.39,107.30,62.65,13.58$.
HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}\left([\mathrm{M}]^{+}\right)$: 180.0357; found: 180.0354.

3-(1-(methoxyimino)ethyl)thiophene-2-carbonitrile (4c)

This compound was obtained in $72 \%(26 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=30:1)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=5.3,1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.3,1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.39,146.46,131.38,127.15,114.29,106.11,62.46,13.47$.
HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}\left([\mathrm{M}]^{+}\right)$: 180.0357; found: 180.0349.

2-(1H-pyrazol-1-yl)thiophene-3-carbonitrile (4d)

This compound was obtained in 85% (30 mg) yield as thick oil by following the general procedure (PE : EA=10:1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.6,1 \mathrm{H}), 7.11(\mathrm{~d}, J=5.7,1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=5.7,1 \mathrm{H}), 6.58-6.50(\mathrm{~m}, 1 \mathrm{H})$.
$\left.{ }^{13} \mathrm{CNMR}^{(101 ~ M H z}, \mathrm{CDCl}_{3}\right) \delta 152.02,142.46,128.49,127.64,120.34,114.57,109.54,95.17$.
HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{~S}\left([\mathrm{M}]^{+}\right)$: 175.0204; found: 175.0200.

2-(1-(methoxyimino)ethyl)benzofuran-3-carbonitrile (4e)

This compound was obtained in $75 \%(32 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=20:1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H})$,
2.35 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.47,153.54,146.31,127.03,126.70,124.98,120.29,113.27,112.02$, 90.69, 63.35, 11.46.

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$: 214.0742; found: 214.0732.

3-(1-(methoxyimino)ethyl)benzo[b]thiophene-2-carbonitrile (4f)
This compound was obtained in $87 \%(40 \mathrm{mg})$ yield as thick oil by following the general procedure
(PE : EA=30:1)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H})$, 2.44 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.94,142.97,140.80,135.67,128.09,126.01,125.94,122.38,114.24$, 107.90, 62.57, 15.49.

HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}\left([\mathrm{M}]^{+}\right): 230.0514$; found: 230.0513.

1-benzyl-2-(1-(methoxyimino)ethyl)-1H-pyrrole-3-carbonitrile (4g)
This compound was obtained in $82 \%(41.5 \mathrm{mg})$ yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=3.0,1 \mathrm{H}), 6.47(\mathrm{~d}$, $J=3.0,1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.68,137.07,135.09,128.79,127.85,126.99,124.99,116.63,112.64$, 94.59, 62.30, 52.78, 14.83.

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 253.1215 ; found: 253.1213.

2-(1-(methoxyimino)ethyl)-1-methyl-1H-pyrrole-3-carbonitrile (4h)
This compound was obtained in $71 \%(25 \mathrm{mg})$ yield as thick oil by following the general procedure (PE : EA=10:1)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~d}, J=2.9,1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.9,1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 2.34 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.77,134.96,125.58,116.88,112.32,93.98,62.36,37.60,14.68$. HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}]^{+}\right)$: 177.0902; found: 177.0898.

1-methyl-6-(1H-pyrazol-1-yl)-1H-indole-5-carbonitrile (4j)
This compound was obtained in 74% (33 mg) yield as white solid by following the general
procedure ($\mathrm{PE}: \mathrm{EA}=5: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=2.2,1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.6,1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.27-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=3.1,1 \mathrm{H}), 6.56-6.46(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.53,138.35,136.29,132.61,130.58,127.83,127.24,118.47,107.66$, 106.49, 102.36, 97.82, 33.29.

HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4}\left([\mathrm{M}]^{+}\right): 222.0905$; found: 222.0901 .

(E)-methyl 2-(9-cyano-10-(methoxyimino)-10,11-dihydrodibenzo[b,f]thiepin-2-yl)propanoate (6)

This compound was obtained in 74% (54.2 mg) yield as white solid by following the general procedure ($\mathrm{PE}: \mathrm{EA}=10: 1$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dd}, J=7.9,0.8,1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7,1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.9,1 \mathrm{H})$, $7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=7.9,1.7,1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{q}, J=14.4,7.2,1 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=7.2,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.41,151.40,141.95,139.36,138.13,137.73,134.41,133.33,133.09$, 131.99, 129.85, 128.65, 126.52, 118.42, 113.47, 62.49, 52.18, 45.01, 34.91, 18.46.

HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+1]^{+}\right)$: 367.1111; found: 367.1111.

IV. Conversion of Benzonitrile :

Synthesis of (E)-methyl 2-(1-(methoxyimino)ethyl)benzoate (7).
The hydrolysis of (E)-2-(1-(methoxyimino)ethyl)benzonitrile was performed by a modified literature procedure ${ }^{[5]}$. In a 10 mL round bottom flask containing a stirbar, (E)-2-(1-(methoxy-imino)ethyl)benzonitrile ($34.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{AcOH}(0.5 \mathrm{~mL})$ was added to form a homogenous solution. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ were added to create a heterogenous solution. the reaction was heated to $120^{\circ} \mathrm{C}$ for 5 h . After cooling to room temperature, $\mathrm{NaOH}(2 \mathrm{M})$ was added dropwise at $0^{\circ} \mathrm{C}$ until $\mathrm{pH}=14$. The suspension was diluted with $\mathrm{H}_{2} \mathrm{O}$ until all the solids dissolved. The solution was then washed with EtOAc ($3 \times 5 \mathrm{~mL}$). HCl (concentrated) was added dropwise until the $\mathrm{pH}=1$. The suspension was then extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The combied crude product was dissolved in $\mathrm{MeOH}(1 \mathrm{ml})$, two drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added. Then the reaction was maintained at room temperature for 5 h . The suspension was then extracted with $\mathrm{EtOAc}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with MgSO_{4}, filtered, and concentrated. The product obtained is a thick oil ($18 \mathrm{mg}, 48 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{dd}, J=7.6,1.0,1 \mathrm{H}), 7.57(\mathrm{td}, J=7.5,1.4,1 \mathrm{H}), 7.50(\mathrm{td}, J=7.6$, $1.4,1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.5,1.0,1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$.
$\delta^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.85,167.48,142.74,132.04,130.08,129.73,128.91,126.52,52.57$, 29.96. Spectral data matched those previously reported.

Synthesis of (E)-2-(1-(methoxyimino)ethyl)benzamide (8).
The hydrolysis of (E)-2-(1-(methoxyimino)ethyl)benzonitrile was performed by a modified literature procedure ${ }^{[5]}$. To a 10 mL vial, (E)-2-(1-(methoxyimino)ethyl)benzonitrile ($34.8 \mathrm{mg}, 0.2$ mmol) was dissolved in t-BuOH (0.5 mL). Solid $\mathrm{KOH}(168 \mathrm{mg}, 3.75 \mathrm{mmol})$ was added. The reaction was heated at $60^{\circ} \mathrm{C}$ for 4 h . The reaction was cooled to room temperature and extracted with EtOAc ($3 \times 10 \mathrm{ml}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure. The product obtained is a white solid ($30 \mathrm{mg}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.4,1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}$, 1 H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.99,146.75,132.26,131.75,129.53,123.87,122.37,76.72,63.58$, 22.64.

Synthesis of (2-(1H-pyrazol-1-yl)phenyl)methanamine (9).
To a solution of 2-(1H-pyrazol-1-yl)benzonitrile (0.2 mmol) in THF (2 mL) was added lithium
aluminum hydride (1.0 M in THF, 0.25 mmol) dropwise. After being stirred for 1 h , diluted with THF and quenched with water $(100 \mu \mathrm{~L}), \mathrm{NaOH}(15 \%$ in water, $100 \mu \mathrm{~L})$. The reaction mixture was stirred at room temperature for 1 h , then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel. The product obtained is a thick oil ($29 \mathrm{mg}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=6.1,2.0,2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.4,1.6,1 \mathrm{H}), 7.44-7.29(\mathrm{~m}$, $3 \mathrm{H}), 6.46(\mathrm{t}, J=2.1,1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.76,139.44,137.41,130.58,130.54,128.73,128.10,125.47,106.77$,
43.10. Spectral data matched those previously reported

V. Mechanistic Studies and NMR Spectra:

KIE intermolecular competition experiment

A 10 mL -vial equipped with a magnetic stirrer was charged with $\left[\mathrm{Cp} * \mathrm{Rh}_{\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(5)}\right.$ $\mathrm{mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%), \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{1 a}-\boldsymbol{d}_{5}(0.1 \mathrm{mmol}), N$-cyano- N-phenyl-4-Methylbenz -enesulfonamide $2(0.4 \mathrm{mmol})$ and dioxane $(1 \mathrm{~mL})$. The mixture was stirred and heated at $120^{\circ} \mathrm{C}$ for 100 min . The reaction was cooled down quickly in ice bath then purified by flash column chromatography to give the desired product. This KIE value was determined by ${ }^{1} \mathrm{H}$ NMR analysis. ($\mathrm{KIE} \approx 3.0$) was obtained.

VI. X-ray Crystal data of 3q:

Table 1 Crystal data and structure refinement for gtj130123

Identification code	gtj130123
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	246. 26
Temperature/K	290 (2)
Crystal system	monoclinic
Space group	P2 1_{1} c
a / \AA	12.4072 (2)
b / \AA	13.2641 (2)
c / \AA	7.61960 (10)
$a /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	96. 3700 (10)
$\gamma /{ }^{\circ}$	90.00
Volume/A ${ }^{3}$	1246. 22 (3)
Z	4
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.313
$\mathrm{m} / \mathrm{mm}^{-1}$	0. 782

F (000)
Crystal size/mm ${ }^{3}$
2Θ range for data collection 7.16 to 125.3°
Index ranges

$$
-14 \leqslant \mathrm{~h} \leqslant 14,-6 \leqslant \mathrm{k} \leqslant 15,-8 \leqslant 1 \leqslant
$$

Reflections collected 8

Independent reflections $\quad 1963[\mathrm{R}($ int $)=0.0155]$
Data/restraints/parameters 1963/0/165
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.042$
Final R indexes $[I\rangle=2 \sigma$ (I) $] R_{1}=0.0397, w R_{2}=0.1056$
Final R indexes [all data] $R_{1}=0.0444, w_{2}=0.1102$
Largest diff. peak/hole / e $\AA^{-3} 0.18 /-0.15$

Table 2 Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for gtj130123. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{X}	\boldsymbol{y}	\boldsymbol{Z}	$\mathrm{U}(\mathrm{eq})$
03	$3606.8(8)$	$5481.2(9)$	$-120.0(16)$	$60.5(3)$
02	$-1950.9(9)$	$7389.2(9)$	$1716.9(18)$	$66.5(4)$
01	$-4241.5(10)$	$8235.8(12)$	$237.7(18)$	$80.2(4)$
N2	$2512.9(10)$	$5740.9(10)$	$-40.9(17)$	$51.4(4)$
N1	$2084.6(14)$	$9314.0(13)$	$252(2)$	$76.9(5)$
C10	$2429.6(12)$	$6538.3(12)$	$886.0(19)$	$46.9(4)$
C6	$907.9(12)$	$7810.4(11)$	$1028.7(19)$	$46.3(4)$
C5	$-171.7(13)$	$8038.1(12)$	$1242(2)$	$51.0(4)$
C11	$1586.2(13)$	$8642.4(13)$	$628(2)$	$53.8(4)$
C12	$3643.0(14)$	$4574.5(13)$	$-1118(2)$	$61.3(5)$
C15	$3381.3(13)$	$7104.7(14)$	$1788(2)$	$60.9(5)$
C8	$537.8(12)$	$6064.5(12)$	$1334(2)$	$49.7(4)$
C7	$1288.5(12)$	$6820.1(11)$	$1083.4(18)$	$45.0(4)$
C1	$-4287.3(16)$	$9089.6(17)$	$1354(3)$	$78.8(6)$
C9	$-523.7(12)$	$6275.8(12)$	$1534(2)$	$52.8(4)$
C4	$-887.3(12)$	$7269.8(12)$	$1498(2)$	$50.6(4)$
C3	$-2385.3(14)$	$8381.8(13)$	$1756(3)$	$61.3(5)$
C2	$-3567.8(14)$	$8272.1(14)$	$1875(2)$	$61.4(5)$

Table 3 Anisotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for gtj130123. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a *^{2} U_{11}+\ldots+2 h k a \times b \times U_{12}\right]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
03	38.9 (6)	62.6(7)	79.7(8)	-12.5 (6)	5.8 (5)	-0.7(5)
02	46.8 (7)	48.9 (7)	105.4(10)	0.6 (6)	15.9(6)	1.7 (5)
01	$61.8(8)$	99.8(11)	77.8 (9)	-22.6(8)	2.4(6)	$0.7(7)$
N2	37.6 (7)	56.0 (8)	60.6(8)	-1.4(6)	4.9 (6)	-1.0(6)
N1	85.4(12)	66.4(10)	$77.5(11)$	7.3(8)	2.7(8)	-28.9(9)
C10	43.7 (8)	49.6 (9)	46.9 (8)	0.4 (7)	3.1 (6)	-5.0(7)
C6	47.8(9)	45.7(8)	44.7 (8)	-1.2(6)	1.7(6)	-7.2(7)
C5	52.7 (9)	41.0 (8)	58.7 (9)	-1.1(7)	3.9 (7)	-1.0(7)
C11	56.7 (10)	50 (1)	53.7 (9)	-1.1(7)	2.1 (7)	-9.3(8)
C12	50.7 (10)	58.9(10)	74.6(11)	-8.4(8)	7.6(8)	3.5(8)
C15	49.0 (9)	$68.2(11)$	63.9 (10)	-9.9(8)	-1.5(7)	-7.1(8)
C8	47.7(9)	41.9(8)	59.0(9)	$1.6(7)$	3.6 (7)	-1.4(6)
C7	45.0(8)	46.6 (8)	42.5 (8)	-1.4(6)	1.1(6)	-3.8(6)
C1	64.6(12)	73.2(13)	99.8(15)	-6.4(11)	14.7(10)	13.6(10)
C9	46.8 (9)	44.1 (9)	67.3 (10)	$2.2(7)$	6.1 (7)	-6.1(7)
C4	43.2 (8)	49.2(9)	59.6(9)	-0.6(7)	6.0(7)	-1.4(7)
C3	$55.2(10)$	49.3(10)	78.7(12)	-5.0(8)	4.6(8)	4.3(8)
C2	60.6 (11)	59.9(11)	64.4(11)	-5.4(8)	10.0(8)	5.8 (8)

Table 4 Bond Lengths for gtj130123.

AtomAtom		
03	Length/ \AA	
03	N 2	$1.4081(16)$
03	C 12	$1.426(2)$
02	C 4	$1.3576(19)$
02	C 3	$1.424(2)$
01	C 1	$1.421(2)$
01	C 2	$1.423(2)$
N 2	C10	$1.282(2)$
N 1	C11	$1.139(2)$
C10	C15	$1.500(2)$
C10	C7	$1.488(2)$

AtomAtom Length/ \AA
C6 C5 1.400(2)
C6 C11 1.441(2)
C6 C7 1.395(2)
C5 C4 $1.380(2)$
C8 C7 1.396(2)
C8 C9 1.371(2)
C1 C2 1.432(3)
C9 C4 1.393(2)
C3 C2 1.487(2)

Table 5 Bond Angles for gtj130123.

AtomAtomAtom			Angle/ ${ }^{\circ}$	AtomAtomAtom			Angle/ ${ }^{\circ}$
N2	03	C12	108.45(11)	C6	C7	C10	123.80(13)
C4	02	C3	119.06(13)	C6	C7	C8	116.84(14)
C1	01	C2	60.47 (12)	C8	C7	C10	119.36(14)
C10	N2	03	111.24(12)	01	C1	C2	59.84 (12)
N2	C10	C15	123.91(14)	C8	C9	C4	120.29(15)
N2	C10	C7	113.49(13)	02	C4	C5	125.50(14)
C7	C10	C15	122.50(14)	02	C4	C9	115.17(13)
C5	C6	C11	116.63(14)	C5	C4	C9	119.33(15)
C7	C6	C5	121.65(14)	02	C3	C2	106.80(14)
C7	C6	C11	121.58(14)	01	C2	C1	59.68 (12)
C4	C5	C6	119.74(14)	01	C2	C3	115.93 (15)
N1	C11	C6	176.78(18)	C1	C2	C3	119.85(18)
C9	C8	C7	122.14(15)				

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right.$) and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for gtj130123.

Atom	X	y	Z	U (eq)
H5	-406	8705	1211	61
H12A	4383	4367	-1130	92
H12B	3323	4691	-2306	92
H12C	3247	4055	-589	92
H15A	3127	7664	2426	91
H15B	3823	7348	920	91
H15C	3803	6664	2593	91
H8	765	5396	1367	60
H1A	-4925	9170	1970	95
H1B	-3971	9714	991	95
H9	-1003	5753	1693	63
H3A	-2262	8746	692	74
H3B	-2043	8749	2769	74
H2	-3776	7834	2817	74

References:

1. a) H. Bieraeugel, R. Plemp, H. C. Hiemstra, U. K. Pandit, Tetrahedron, 1983, 39, 3971; b) H.-J, Cristau, P. P. Cellier,; J.-F. Spindler, M. Taillefer, European Journal of Organic Chemistry, 2004, 695.
2. M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. 2011, 123, 1374;
3. D. S. Ribeiro, P. R. Olivato1, R. Rittner, Magn. Reson. Chem.2000, 38, 627.
4. a) F. Kurzer, J. Chem. Soc. 1949, 1034; b) F. Kurzer, J. Chem. Soc. 1949, 3029; c) P. Anbarasan, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 519.
5. C. W. Liskey, X. Liao, J.F. Hartwig, J. Am. Chem. Soc. 2010, 132, 11389.
