Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids

J. Robb DeBergh, Nootaree Niljianskul and Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

Supporting Information

Table of Contents

I. General Information S2
A) General Reagent Information S2
B) General Analytical Information S2
II. Experimental Procedures and Characterization Data S3
A) Synthesis of PhCPhos (L5) S3
B) Synthesis of Pd-Precatalysts P3-P5 S3
C) Preparation of Aryl Chlorosulfates(2a-2c) S5
D) Preparation of Arylsulfonyl Chlorides ($4 \mathrm{c}-\mathrm{j}$) S6
E) Preparation of Aryl Sulfonamides (5a-50) S9
F) Control Experiments (Eq. S1 and Eq. S2) S15
G) Competition Experiments between 2b and 2c (Eq. 3 and Eq. 3S) S16
H) Competition Experiment with Piperidine (Eq. 4) S17
III. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathbf{P}$ NMR Spectra S18

I. General Information

A) General Reagent Information:

Unless otherwise stated, all reactions were set-up on the bench top and carried out under an argon atmosphere. Anhydrous acetone was purchased from Acros Organics, and this solvent was degassed by sparging with N_{2} for one h . All other solvents were purified and dried by passage through successive alumina and Q5 reactant-packed columns on a solvent purification system. Sulfuryl chloride, phenol, pyridine, and N, N-diisopropylethylamine were purchased from Aldrich Chemical Co. and used as received. Anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was received from VWR. The arylboronic acid substrates were purchased from Frontier Scientific, Combi-Blocks, and Aldrich and used as received without further purification. Ligand PhDavePhos (L3) was purchased from Strem, and tert-BuDavePhos (L2) was obtained from Aldrich. CPhos (L4) ${ }^{1}$ and precatalysts of $\mathbf{P 1}, \mathbf{P 2}, \mathbf{P 6}$, and $\mathbf{P} 7$ were synthesized according to literature procedures. ${ }^{2}$ Compounds were purified by flash chromatography using Silicycle SiliaFlashP60 (230-400 mesh) silica gel.

B) General Analytical Information:

All compounds (starting materials and products) were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR (when applicable), ${ }^{19} \mathrm{~F}$ NMR (when applicable), IR spectroscopy, melting point (when applicable), and elemental analysis or mass spectrometry. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}$ NMR spectra can be found in Section III of the supporting information. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$, and ${ }^{19} \mathrm{~F}$ NMR were recorded on Varian 300 MHz , Varian 500 MHz or Bruker 400 MHz spectrometers. The spectra were calibrated according to residual solvent peaks $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.0 ppm for ${ }^{13} \mathrm{C} \mathrm{NMR} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.32 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and 53.84 ppm for ${ }^{13} \mathrm{C}$ NMR $)$, an external reference $\left(\mathrm{H}_{3} \mathrm{PO}_{4}: 0 \mathrm{ppm}\right.$ for $\left.{ }^{31} \mathrm{P}\right)$, or an internal reference $\left(\mathrm{CF}_{3} \mathrm{Ph}\right.$: 63.7 ppm for ${ }^{19} \mathrm{~F}$). The ${ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were obtained with ${ }^{1} \mathrm{H}$ decoupling, and the ${ }^{19} \mathrm{~F}$ NMR spectra were obtained without ${ }^{1} \mathrm{H}$ decoupling. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}, \operatorname{app}=$ apparent. IR spectra were obtained on a Thermo Scientific iD5 ATR Nicolet iS5 FT-IR spectrometer. Elemental analyses were carried out by Atlantic Microlab, Inc., Norcross, GA. ESI-MS spectra were recorded on a Bruker Daltonics APEXIV 4.7 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Melting points (m.p.) were obtained on a Mel-Temp capillary melting point apparatus. Gas chromatographic (GC) analyses were performed on an Agilent 7890A instrument (FID detector) using a J\&W DB-1 column ($10 \mathrm{~m}, 0.1 \mathrm{~mm}$ I.D.). Reactions were monitored by GC and thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) or Fluka aluminum oxide/TLC-cards using UV light as a visualizing agent.

[^0]
II. Experimental Procedures and Characterization Data.

A) Synthesis of PhCPhos (L5):

2'-(Diphenylphosphino)-6-methoxy- N, N-dimethylbiphenyl-2-amine (L5): The starting material, $\mathbf{2}^{2}$ -bromo-6-methoxy- N, N-dimethylbiphenyl-2-amine (S1), was synthesized according to a procedure reported by Han and Buchwald. ${ }^{1}$ An oven-dried 250 mL round-bottom flask, which was equipped with a magnetic stir bar and fitted with a Teflon septum, was charged with $\mathbf{S 1}(4.58 \mathrm{~g}, 14.35 \mathrm{mmol}, 1.0$ equiv). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times). THF $\left(58.0 \mathrm{~mL}\right.$) was added via syringe and the solution was cooled to $-78^{\circ} \mathrm{C} . \mathrm{n}$-Butyllithium (2.5 M solution in hexanes, $6.06 \mathrm{~mL}, 15.1 \mathrm{mmol}, 1.05$ equiv) was added dropwise via syringe over 15 min and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min . Chlorodicyclohexylphosphine ($2.85 \mathrm{~mL}, 15.1 \mathrm{mmol}, 1.05$) was then added dropwise via syringe over 15 min . The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then allowed to slowly warm to room temperature overnight ($\sim 12 \mathrm{~h}$). The reaction was quenched by addition of methanol ($\sim 1.0 \mathrm{~mL}$), filtered through a pad of SiO_{2} topped with a layer of Celite, and eluted with ethyl acetate $(300 \mathrm{~mL})$. The filtrate was concentrated in vacuo to afford a yellow solid. Recrystallization from dichloromethane and methanol provided the title compound as a white solid ($5.13 \mathrm{~g}, 84 \%$ yield); $\mathrm{mp}=$ 134-136 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 11 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.0,145.8,145.3,140.3,140.1,136.5$, $136.4,136.3,136.2,133.1,132.9,132.4,132.3,129.9,129.8,128.9,128.6,127.9,127.8,127.4,126.3$, 113.3, 43.4 (Observed complexity due to C-P splitting). ${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-13.8$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2934,2824,2778,1573,1462,1432,1293,1163,1088,1043,1005,935,808,768,742,694,570$.
Anal. Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrN}_{2}$: C, 79.22; H, 6.89. Found C, 79.34; H, 6.94.

B) Synthesis of Pd-Precatalysts P3-P5:

PhDavePhos (L3) Palladacyclic Precatalyst, P3: An oven-dried flask equipped with a magnetic stir bar was charged with μ-mesylate dimer $\mathbf{S 2}$ ($370 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.50$ equiv) and PhDavePhos ($389 \mathrm{mg}, 1.0$ mmol, 1.0 equiv). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times), and anhydrous THF (4 mL) was then added via syringe. After the mixture was allowed to stir for 30 min at room temperature, the stir bar was removed and $\sim 90 \%$ of solvent was removed under vacuum at room temperature. The residue was then triturated with pentane, and the resulting yellow
crystals were isolated via filtration and further dried under vacuum. Precatalyst $\mathbf{P} 3$ was obtained as an inseparable mixture of two phosphorous-containing compounds (0.71 g total, 94% yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 8.00(\mathrm{ddt}, J=11.7,6.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.50-6.76(\mathrm{~m}$, $18 \mathrm{H}), 6.63(\mathrm{td}, J=7.4,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-5.93(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.57$ $(\mathrm{s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 154.2,148.3,147.9,147.6,139.6,137.5,137.3$, $137.3,136.6,136.5,135.1,134.9,134.3,133.5,133.4,133.1,132.4,132.2,131.6,130.9,130.8,130.6$, $130.0,129.9,129.09,128.4,128.3,128.1,128.0,127.9,127.5,127.3,127.2,126.4,125.6,121.3,120.7$, 117.3, 43.7, 39.5, 34.3. (Observed complexity due to C-P splitting). ${ }^{31} \mathbf{P} \mathbf{N M R}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 40.5, 35.5. IR (neat, cm^{-1}): 3050, 1575, 1493, 1434, 1421, 1191, 1157, 1096, 1035, 1020, 1001, 946, 737, 693, 616, 569, 557.

CPhos (L4) Palladacyclic Precatalyst, P4: ${ }^{3}$ An oven-dried flask equipped with a magnetic stir bar was charged with μ-mesylate dimer $\mathbf{S} 2(1.85 \mathrm{~g}, 5.0 \mathrm{mmol}, 0.50$ equiv) and CPhos ($2.19 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times), and anhydrous THF (20 mL) was then added via syringe. After the mixture was allowed to stir for 2 h min at room temperature, the stir bar was removed from the vessel and the reaction mixture was transferred to a scintillation vial. The majority of solvent was removed under vacuum at room temperature until $\sim 10 \%$ of the initial volume remained. The residue was then triturated with pentane. The resulting yellow solid was isolated via filtration and further dried under vacuum to afford 4.03 g of $\mathbf{P 4}$ (98% yield). This compound is light sensitive, and so it was stored in a scintillation vial wrapped with aluminum foil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.7,1 \mathrm{H}), 7.56-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $6.94(\mathrm{~m}, 9 \mathrm{H}), 5.44(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 6 \mathrm{H}), 2.10-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.16(\mathrm{~m}, 9 \mathrm{H}), 1.07-0.79(\mathrm{~m}, 4 \mathrm{H}), 0.45-0.11(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 159.4,154.9,146.2,146.1,142.7,140.4,139.3,137.4,137.3,135.0,134.6,134.2$, $133.8,132.1,128.3,127.7,127.0,126.9,125.6,120.9,113.2,113.0,111.7,68.1,44.9,43.8,39.6,37.38$, $37.2,37.0,36.9,31.1,30.3,30.2,29.9,29.6,28.4,27.6,27.2,26.3,26.3,26.0,26.0$ (Observed complexity due to $\mathrm{C} — \mathrm{P}$ splitting). ${ }^{31} \mathbf{P}$ NMR (121 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 40.8$. IR (neat, cm^{-1}): 2928, 2852, 1569, 1491, $1421,1211,1191,1164,1131,1034,1018,1002,780,758,737,555$.

[^1]

PhCPhos (L5) Palladacyclic Precatalyst, P5: An oven-dried flask equipped with a magnetic stir bar was charged with μ-mesylate dimer $\mathbf{S} 2(591 \mathrm{mg}, 0.80 \mathrm{mmol}, 0.50$ equiv) and PhCPhos ($678 \mathrm{mg}, 1.6 \mathrm{mmol}$, 1.0 equiv). The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times), and anhydrous THF (6.5 mL) was then added via syringe. After the mixture was allowed to stir for 1 h at room temperature, the stir bar was removed from the vessel and the reaction mixture was transferred to a scintillation vial. The majority of solvent was removed under vacuum at room temperature until $\sim 10 \%$ of the initial volume remained. The residue was then triturated with pentane. The resulting yellow solid was isolated via filtration and further dried under vacuum to afford 1.27 g of $\mathbf{P 5}$ (quantitative yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.86(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.03(\mathrm{~m}, 16 \mathrm{H}), 7.00$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ (dddd, $J=8.0,7.2,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (ddd, J $=7.6,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.88$ (s, 6H). ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 156.9,155.2,146.0,145.7,145.1,140.1,138.8,137.9$, 137.8, $136.7,136.0,135.8,135.2,134.7,134.3,134.2,134.0,132.8,132.4,132.2,131.5,131.3,130.2,129.5$, $128.9,128.8,128.7,128.5,128.4,128.2,128.1,127.9,127.6,127.0,126.7,125.7,121.2,113.8,113.2$, 112.1, 44.7, 43.2, 39.5 (Observed complexity due to C-P splitting). ${ }^{31} \mathbf{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 40.2. IR (neat, cm^{-1}): 3286, 2942, 1571, 1492, 1434, 1424, 1226, 1175, 1160, 1091, 1035, 1019, 1001, 793, 771, 748, 697, 614, 572.

C) Preparation of Aryl Chlorosulfates (2a-2c):

Representative Procedure:

Phenyl chlorosulfate (2a): An oven-dried 500 mL round-bottom flask equipped with a large stir bar was charged with phenol ($9.5 \mathrm{~g}, 100 \mathrm{mmol}, 1.0$ equiv). The vessel was evacuated and backfilled with nitrogen (this process was repeated a total of 3 times). Anhydrous $\mathrm{Et}_{2} \mathrm{O}(125 \mathrm{~mL})$ and pyridine ($8.09 \mathrm{~mL}, 100$ $\mathrm{mmol}, 1.0$ equiv) were then added via syringe and the solution was cooled to $-78^{\circ} \mathrm{C}$. A separate ovendried 200 mL round-bottom flask was evacuated and backfilled with nitrogen (this process was repeated a total of 3 times $)$. Anhydrous $\mathrm{Et}_{2} \mathrm{O}(125 \mathrm{~mL})$ was added to the 200 mL flask via syringe, and the flask was placed in a separate dry ice/acetone bath and allowed to cool to $-78^{\circ} \mathrm{C}$. Neat sulfuryl chloride (8.36 mL , $100 \mathrm{mmol}, 1.0$ equiv) was then added via syringe to the 200 mL flask at $-78{ }^{\circ} \mathrm{C}$ (the addition of neat $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to anhydrous $\mathrm{Et}_{2} \mathrm{O}$ is exothermic and will cause the $\mathrm{Et}_{2} \mathrm{O}$ to evaporate if not performed at lower temperatures). The cooled solution of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was transferred slowly (over 20 min) via canula to the vigorously stirred solution of phenol and pyridine at $-78^{\circ} \mathrm{C}$. (Note: Stirring becomes difficult as the pyridinium salt is formed, and so periodic swirling of the reaction flask by hand may be required. We
observed no problems with stirring when an IKA RCT Basic stir plate was used, however). After stirring for 2 h at $-78{ }^{\circ} \mathrm{C}$, no additional dry ice was added to the cooling bath and the reaction mixture was allowed to slowly warm to room temperature overnight. The crude reaction mixture was filtered through a pad of celite, and the reaction flask was washed with additional $\mathrm{Et}_{2} \mathrm{O}(100-200 \mathrm{~mL})$. The filtrate was then concentrated and the resulting residue was purified immediately via SiO_{2} flash chromatography ($0-3 \%$ EtOAc in hexanes) to afford $\mathbf{2 a}$ as a colorless oil ($16.19 \mathrm{~g}, 84 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.37(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,130.2,128.8$, 121.6. IR (neat, cm^{-1}): 1586, 1485, 1410, 1197, 1172, 1131, 1023, 913, 875, 774, 657, 685, 611, 584. EIMS (m / z): $192[\mathrm{M}]^{+}$.

4-Methylphenyl chlorosulfate (2b): Following the representative procedure for the preparation of $\mathbf{2 a}$, the title compound was prepared using p-cresol ($5.34 \mathrm{~g}, 50$ $\mathrm{mmol}, 1.0$ equiv), pyridine ($4.1 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv), and sulfuryl chloride ($4.18 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv). The crude product was purified by flash column chromatography ($0-1 \%$ EtOAc in hexanes) to afford $\mathbf{2 b}$ as a clear, colorless oil (9.5 g, 92% yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~s}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0,139.0$, 130.7, 121.4, 21.0. IR (neat, cm^{-1}): 1500, 1411, 1199, 1175, 1132, 1018, 880, 823, 802, 720, 692, 639, 591, 576. EI-MS (m / z): $206[\mathrm{M}]^{+}$.

2,6-Diisopropylphenyl chlorosulfate (2c): Following the representative procedure for the preparation of 2a, the title compound was prepared using 2,6-diisopropylphenol ($9.55 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv), pyridine ($4.1 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv), and sulfuryl chloride ($4.18 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv). The crude product was purified by flash column chromatography ($0-1 \%$ EtOAc in hexanes) to afford $\mathbf{2 c}$ as a clear, colorless oil ($10.1 \mathrm{~g}, 73 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{dd}, J=8.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 2 \mathrm{H}), 1.27$ (d, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.0,141.8,128.9,125.2,27.76,23.6$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1406,1387,1192,1129,1071,1045,889,864,799,767,744,618,571$. EI-MS $(m / z): 276[M]^{+}$.

D) Preparation of Arylsulfonyl Chlorides ($4 \mathrm{c}-\mathrm{j}$)

Generation Procedure A:

An oven-dried test tube equipped with a magnetic stir bar was charged with $\mathbf{P 5}$ ($0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(5.3 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and the arylboronic acid ($1.5 \mathrm{mmol}, 1.5$ equiv) and the tube was sealed with a Teflon screw-cap septum. The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times), and anhydrous acetone (2.0 mL) was then added via syringe. After the mixture was allowed to stir for $\sim 3 \mathrm{~min}$ at room temperature, neat phenyl chlorosulfate ($133 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$, 1.0 equiv) was added. The vessel was then placed in a preheated oil bath and the reaction mixture was allowed to stir at the desired temperature for 12 h . After the reaction mixture was allowed to cool to room temperature, it was diluted with EtOAc and filtered through a pad of silica gel topped with a layer of
celite, which was washed with additional EtOAc. The filtrate was concentrated and the resulting residue was purified by flash chromatography (using a Biotage Isolera Four system with a SNAP 25 g cartridge) to afford the desired sulfonyl chloride.

Naphthalene-1-sulfonyl chloride (4c): Following General Procedure A, the title compound was prepared using 1-napthaleneboronic acid ($258 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $60^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $0-5 \%$ EtOAc in hexanes) to afford 4 c as a white solid ($200 \mathrm{mg}, 88 \%$ yield); $\mathrm{mp}=60-62{ }^{\circ} \mathrm{C}$ (lit. ${ }^{4} 64-67{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3,1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.6,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.1,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{dd}, J=7.9 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3,137.0,134.3,129.4,129.3$, $129.2,127.6,127.2,123.9,123.8$. IR (neat, cm^{-1}): 1592, 1504, 1365, 1346, 1169, 1136, 966, 830, 800, $760,736,673,619,572,559$. HRMS-ESI $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClO}_{2} \mathrm{~S}, 244.0194$; found, 244.0196.

4-(Trifluoromethoxy)benzenesulfonyl chloride (4d): Following General Procedure A, the title compound was prepared using 4trifluoromethoxyphenylboronic acid ($309 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $60^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $0-3 \% \mathrm{EtOAc}$ in hexanes) to afford $\mathbf{4 d}$ as a colorless oil ($173 \mathrm{mg}, 66 \%$ yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 154.1(\mathrm{q}, \mathrm{J}=1.9), 142.2,129.7,120.4(\mathrm{q}, \mathrm{J}=260.8), 121.3 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-57.8$. IR (neat, cm^{-1}): $1589,1493,1381,1254,1207,1156,1082,1015,840,808,688,667,583,559$. HRMS-ESI $(m / z)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClF}_{3} \mathrm{O}_{3} \mathrm{~S}, 277.9860$; found, 277.9868.

4-Iodobenzenesulfonyl chloride (4e): Following General Procedure A, the title compound was prepared using 4-iodophenylboronic acid ($372 \mathrm{mg}, 1.5 \mathrm{mmol}$). (Note: Stirring was difficult during the first 1-2 h of this reaction, and so an IKA RCT Basic stir plate was used to facilitate stirring). The reaction was judged as complete by TLC and GC after 12 h at $55{ }^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, ($0-7 \%$ EtOAc in hexanes) to afford $\mathbf{4 e}$ as a white solid ($183 \mathrm{mg}, 64 \%$); $\mathrm{mp}=83-86{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{4} 80-82{ }^{\circ} \mathrm{C}\right.$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 144.0,139.3,128.3,104.0$. IR (neat, cm^{-1}): $1560,1369,1176,1157,1076,1051,1005,834$, 813, 729, 694, 581, 551. HRMS-ESI $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClIO}_{2} \mathrm{~S}, ~ 319.9004$; found, 319.9020 .

4-Fluorobenzenesulfonyl chloride (4f): Following General Procedure A, the title compound was prepared using 4 -fluorophenylboronic acid ($210 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $70^{\circ} \mathrm{C}$. The crude product

[^2]was purified by flash column chromatography (Biotage, 25 g SNAP column, 0-4\% EtOAc in hexanes) to afford $\mathbf{4 f}$ as a yellow solid ($165 \mathrm{mg}, 85 \%$ yield); $\mathrm{mp}=33-36^{\circ} \mathrm{C}\left(\right.$ lit. $.^{4} 29-31{ }^{\circ} \mathrm{C}$; lit. ${ }^{5} 34{ }^{\circ} \mathrm{C}$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.6(\mathrm{~d}, J=259.8), 140.5(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 117.4(\mathrm{~d}, J=23.2 \mathrm{~Hz}) .{ }^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-99.6. IR (neat, cm^{-1}): $1587,1491,1409,1377,1294,1242,1178,1156,1081,838,816$, 706, 658, 561. HRMS-ESI $(\mathrm{m} / \mathrm{z})\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClFO}_{2} \mathrm{~S}, 211.9943$; found, 211.9946.

2-Methylbenzenesulfonyl chloride (4g): Following General Procedure A, the title compound was prepared using 2-methylphenylboronic acid ($204 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $50^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, chromatography (Biotage, 25g SNAP column, $0-6 \%$ EtOAc in hexanes) to afford $\mathbf{4 g}$ as a colorless oil ($143 \mathrm{mg}, 75 \%$ yield). Note: The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 g}$ were consistent with those in the ${ }^{1} \mathrm{H}$ NMR spectrum of an authentic sample obtained from Sigma-Aldrich.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 2 \mathrm{H})$, $2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.2,138.3,135.5,133.6,129.0,127.0,20.5$. IR (neat, cm^{-} ${ }^{1}$): $1471,1365,1280,1173,1131,1057,1036,806,757,700,686,577,558$. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClO}_{2} \mathrm{~S}, 208.0194$; found, 208.0198 .

4-Trifluoromethylbenzenesulfonyl chloride (4h): Following General Procedure A, the title compound was prepared using 4-trifluorophenylboronic acid ($285 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction was judged as complete by TLC and GC after 12 h at $70^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $0-4 \% \mathrm{EtOAc}$ in hexanes) to afford $\mathbf{4 h}$ as a off-white solid ($131 \mathrm{mg}, 54 \%$ yield); $\mathrm{mp}=30-32{ }^{\circ} \mathrm{C}$ (lit. ${ }^{6}$ oil). Note: Compound $\mathbf{4 h}$ undergoes significant decomposition upon purification with SiO_{2} gel. The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h}$ were consistent with those obtained from an authentic sample from Sigma-Aldrich.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 147.1(\operatorname{app~d}, J=1.4 \mathrm{~Hz}), 136.7(\mathrm{q}, J=33.6 \mathrm{~Hz}), 127.6,127.0(\mathrm{q}, J=3.7 \mathrm{~Hz}), 122.7(\mathrm{q}, J=273.4 \mathrm{~Hz})$. ${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.5. IR (neat, cm^{-1}): 1407, 1382, 1319, 1174, 1135, 1109, 1061, 1016, 842, $711,600,578,557$. EI-MS (m / z) : $244[\mathrm{M}]^{+}$.

2-Bromobenzenesulfonyl chloride (4i): Following General Procedure A, the title compound was prepared using 2-bromophenylboronic acid ($301 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $55^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, 3-10\% EtOAc in hexanes) to afford 4 i as a yellow solid ($202 \mathrm{mg}, 79 \%$ yield); $\mathrm{mp}=50-52{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{4} 49-52{ }^{\circ} \mathrm{C}$; lit. ${ }^{7}$ $45-48{ }^{\circ} \mathrm{C}$).

[^3][^4]
$73-76^{\circ} \mathrm{C}$.

4-(Methoxycarbonyl)benzenesulfonyl chloride (4j): Following General Procedure A, the title compound was prepared using 4methoxycarbonylphenylboronic acid ($270 \mathrm{mg}, 1.5 \mathrm{mmol}$). The reaction was judged as complete by TLC and GC after 12 h at $60^{\circ} \mathrm{C}$. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, 2-7\% EtOAc in hexanes) to afford $\mathbf{4 j}$ as a slightly pink solid ($152 \mathrm{mg}, 65 \%$ yield); $\mathrm{mp}=$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,147.6,136.3,131.1,127.3,53.2$. IR (neat, cm^{-1}): 1725, 1435, 1400, 1377, $1280,1188,1168,1106,1011,966,866,832,758,733,684,582,560$. HRMS-ESI $(m / z)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ Calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClO}_{4} \mathrm{~S}, 252.0092$; found, 252.0101.

E) Preparation of Aryl Sulfonamides (5a-5o)

Generation Procedure B: Preparation of Sulfonamides Derived from Secondary Amines.

Following General Procedure A, a mixture of P5 (15.9 mg, $0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(5.3 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), arylboronic acid ($1.5 \mathrm{mmol}, 1.5$ equiv), and phenyl chlorosulfate ($133 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetone (2.0 mL) was stirred at the desired temperature for 12 h . After the reaction mixture was allowed to cool to room temperature, it was placed under a positive atmosphere of argon and anhydrous THF (1.0 mL) was added via syringe (additional THF was not added to reactions in which a commercially available 2.0 M solution of $\mathrm{Me}_{2} \mathrm{NH}$ in THF was used). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and the desired secondary amine ($2.2 \mathrm{mmol}, 2.2$ equiv) was then added to the vigorously stirred solution of crude sulfonyl chloride. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the reaction vessel was removed from the ice bath, allowed to warm to room temperature, and stirred for 1.5 h . The reaction mixture was then diluted with EtOAc and filtered through a pad of silica gel topped with a layer of celite, which was washed with additional EtOAc. The filtrate was concentrated and the resulting residue was purified by flash chromatography (using a Biotage Isolera Four system with a SNAP 25 g cartridge) to afford the desired sulfonamide.

Generation Procedure C: Preparation of Sulfonamides Derived from Primary Amines.

Following General Procedure A, a mixture of $\mathbf{P 5}(15.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(5.3 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), arylboronic acid ($1.5 \mathrm{mmol}, 1.5$ equiv), and phenyl chlorosulfate ($133 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetone (2.0 mL) was stirred at the desired temperature for 12 h . After the mixture was allowed to cool to room temperature, the reaction mixture was placed under a positive atmosphere of argon and anhydrous THF (1.0 mL) was added via syringe. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and the desired primary amine ($3.0 \mathrm{mmol}, 3.0$ equiv or $2.2 \mathrm{mmol}, 2.0$ equiv) was then added to the vigorously stirred solution of crude sulfonyl chloride. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the reaction vessel was removed from the ice bath, allowed to warm to room temperature, and stirred for 1.5 h at this temperature.

The reaction mixture was then diluted with EtOAc and filtered through a pad of silica gel topped with a layer of celite, which was washed with additional EtOAc. The filtrate was concentrated and the resulting residue was purified by flash chromatography (using a Biotage Isolera Four system with a SNAP 25 g cartridge) to afford the desired sulfonamide.

Generation Procedure D: Preparation of Sulfonamides Derived from Anilines.

Following General Procedure A, a mixture of $\mathbf{P 5}(15.9 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(5.3 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), arylboronic acid ($1.5 \mathrm{mmol}, 1.5$ equiv), and phenyl chlorosulfate ($133 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv) in anhydrous acetone (2.0 mL) was stirred at the desired temperature for 12 h . The reaction mixture was allowed to cool to room temperature, placed under a positive atmosphere of argon, and then cooled to $0{ }^{\circ} \mathrm{C}$. The desired aniline ($1.2 \mathrm{mmol}, 1.2$ equiv.) and pyridine ($0.245 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.0$ equiv) were then added successively to the vigorously stirred solution of the crude sulfonyl chloride at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction vessel was removed from the ice bath, allowed to warm to room temperature, and stirred for 5 h at this temperature. The reaction mixture was then diluted with EtOAc and filtered through a pad of silica gel topped with a layer of celite, which was washed with additional EtOAc. The filtrate was concentrated and the resulting residue was purified by flash chromatography (using a Biotage Isolera Four system with a SNAP 25 g cartridge) to afford the desired sulfonamide.

4-Methoxybenzenesulfonylmorpholide (5a): Following General Procedure B, the title compound was prepared using 4-methoxyphenylboronic acid (228 mg , 1.5 mmol) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $50{ }^{\circ} \mathrm{C}$ for 12 h . Morpholine ($192 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-50 \% \mathrm{EtOAc}$ in hexanes) to afford $\mathbf{5 a}$ as a white solid ($0.246 \mathrm{~g}, 96 \%$ yield); $\mathrm{mp}=110-111^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 4 \mathrm{H})$, 2.99-2.96 (m, 4H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.0,129.8,126.3,114.1,65.8,55.5,45.8$. IR (neat, cm^{-1}): 3103, 2928, 2847, 1598, 1578, 1499, 1439. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 51.35 ; \mathrm{H}, 5.88 ; \mathrm{N}$, 5.44. Found C, 51.38; H, 5.96.

2-Methoxybenzenesulfonylmorpholide (5b): Following General Procedure B, the title compound was prepared using 2-methoxyphenylboronic acid ($228 \mathrm{mg}, 1.5$ mmol) and P5. The chlorosulfonylation reaction reaction was carried out at $50{ }^{\circ} \mathrm{C}$ for 12 h . Morpholine ($192 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-45 \%$ EtOAc in hexanes) to afford $\mathbf{5 b}$ as a white solid ($0.245 \mathrm{~g}, 79 \%$ yield); $\mathrm{mp}=86.0-86.5^{\circ} \mathrm{C}$.

[^5]

3-Fluorobenzenesulfonylmorpholide (5c): Following General Procedure B, the title compound was prepared using 3-fluorophenylboronic acid ($210 \mathrm{mg}, 1.5$ mmol) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $70^{\circ} \mathrm{C}$ for 12 h . Morpholine ($192 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-30 \%$ EtOAc in hexanes) to afford the product as a white solid ($0.161 \mathrm{~g}, 66 \%$ yield); $\mathrm{mp}=112.2-113.2^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.73(\mathrm{~m}$, $4 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.4(\mathrm{~d}, J=252.0 \mathrm{~Hz}$), $137.2(\mathrm{~d}, J=6.5 \mathrm{~Hz}$), $130.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 123.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 115.0(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 65.9,45.9 .{ }^{19}$ F NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.4(\mathrm{~s}, 1 \mathrm{~F})$. IR (neat, cm^{-1}): 2917, 2863, 1589, 1475, 1392, 1346, 1329, 1294, 1272, 1261, 1220, 1155, 1112, 1088. Anal. Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{FNO}_{3} \mathrm{~S}: \mathrm{C}, 48.97$; H, 4.93. Found C, 48.98; H, 4.82.

1-Methylpiperazine-4-(4-(tert-butyldimethylsilyloxy)benzenesulfonamide (5d): Following a modification of General Procedure B, the title compound was prepared using 4-(tert-butyldimethylsilyloxy)phenyl boronic acid ($378 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathbf{P 5}$. The cross-coupling reaction was carried out at $50^{\circ} \mathrm{C}$ for 12 h . Following complete chlorosulfonylation, the reaction was cooled to $0^{\circ} \mathrm{C}$, and DIPEA ($0.348 \mathrm{~mL}, 2 \mathrm{mmol}$, 2.0 equiv) and 1 -Methylpiperazine (0.135 $\mathrm{mL}, 1.2 \mathrm{mmol}, 1.0$ equiv) were added successively. After 5 min , the reaction vessel was removed from the ice bath and stirred for 1.5 h at rt . The mixture was then diluted with EtOAc and filtered through a plug of SiO_{2}, using $30 \% \mathrm{MeOH}$ in EtOAc as the eluent. The product was purified by flash column chromatography (Biotage, 25g SNAP column, $50-100 \%$ EtOAc in hexanes, followed by $15 \% \mathrm{MeOH}$ in EtOAc) to afford $\mathbf{5 d}$ as a yellow solid ($0.301 \mathrm{~g}, 81 \%$ yield); $\mathrm{mp}=70-73^{\circ} \mathrm{C}$. Note: Compound $\mathbf{5 d}$ was characterized immediately following purification because it undergoes rapid desilylation to form the corresponding free phenol.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.55-$ $2.40(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,129.8,127.4$, 120.1, $53.9,45.8,45.6,25.4,18.1,-4.50$. IR (neat, cm^{-1}): 2934, 2856, 2794, 2765, 1590, 1490, 1472, $1405,1384,1371,1342,1329,1285,1252,1167,1152,1144,1098,1065,890,854,825,783,758,666$, 631, 610, 581, 575, 563, 557. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$ SSi: C, 55.10; H, 8.16. Found C, 55.07; H, 8.09 .

Pyrrolidine-4-Acetylbenzenesulfonamide (5e): Following General Procedure B, the title compound was prepared using 4-acetylphenylboronic acid (246 mg , 1.5 mmol) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $60^{\circ} \mathrm{C}$ for 12 h . Pyrrolidine ($181 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, 10-50\% EtOAc in hexanes) to afford $\mathbf{5 e}$ as a white solid ($0.187 \mathrm{~g}, 74 \%$ yield); $\mathrm{mp}=143.5-144.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.03(\mathrm{~m}, 4 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,140.7,139.8,128.7,127.5,47.8$, 26.7, 25.1. IR (neat, cm^{-1}): 3096, 2968, 2873, 1692, 1595, 1396, 1292, 1006, 774, 1066, 958, 852, 774, 748, 725, 634. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 56.90$; H, 5.97. Found C, 56.86; H, 5.81.

\mathbf{N}, \mathbf{N}-dimethyl-4-(trifluoromethyl)benzenesulfonamide (5f): Following General Procedure B, the title compound was prepared using 4-trifluorophenylboronic acid ($285 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $70^{\circ} \mathrm{C}$ for 12 h . Dimethylamine (0.5 M in THF, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, 3-15\% EtOAc in hexanes) to afford $\mathbf{5 f}$ as a yellow solid ($0.153 \mathrm{~g}, 60 \%$ yield); $\mathrm{mp}=80.5-81.5^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,134.3(\mathrm{q}, J=33.0 \mathrm{~Hz}$), $128.1,126.2(\mathrm{q}, \mathrm{J}=3.7 \mathrm{~Hz}), 123.3(\mathrm{q}, J=272.9 \mathrm{~Hz})$, 37.8. ${ }^{19}$ F NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-63.2. IR (neat, $\mathrm{cm}-1$): $1458,1407,1337,1325,1314,1296,1148$, 1110, 1092, 1015, 947, 840, 788, 742, 692, 596, 582, 574, 566. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 42.69$; H, 3.98. Found C, 42.87; H, 3.94.

N,N-dimethyl-3-(trifluoromethoxy)benzenesulfonamide (5g): Following General Procedure B, the title compound was prepared using 3trifluoromethoxyphenylboronic acid (309 mg, 1.5 mmol$)$ and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $65{ }^{\circ} \mathrm{C}$ for 12 h . Dimethylamine (0.5 M in THF, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, $2-15 \% \mathrm{EtOAc}$ in hexanes) to afford 5 g as a white solid $(0.219,81 \%$ yield $)$; $\mathrm{mp}=46.0-48.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 1 \mathrm{H})$, $2.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2(\mathrm{q}, J=2.0 \mathrm{~Hz}), 137.5,130.7,125.3,125.0(\mathrm{q}, J=1.0$ $\mathrm{Hz}), 120.21(\mathrm{q}, ~ J=258.8 \mathrm{~Hz}), 120.16(\mathrm{q}, J=1.1 \mathrm{~Hz}), 37.8 .{ }^{19}$ F NMR ($376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.1(\mathrm{~s}$, $3 F)$. IR (neat, cm^{-1}): $1473,1458,1437,1337,1307,1280,1256,1221,1204,1179,1143,1094,1082$, 1050, 1000, 950, 919, 682. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 40.15$; H, 3.74. Found C, 40.26; H, 3.66.

$\boldsymbol{N}, \boldsymbol{N}$-dimethyl-4-dibenzofuransulfonamide (5h): Following General Procedure B, the title compound was prepared using dibenzofuran-4-boronic acid ($318 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $60^{\circ} \mathrm{C}$ for 12 h and $\mathbf{P 1}$ as the catalyst. (Note: Stirring was difficult during the first 1-2 h of the chlorosulfonylation reaction, and so an IKA RCT Basic stir plate was used to facilitate stirring). Dimethylamine (0.5 M in THF, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $3-18 \%$ EtOAc in hexanes) to afford $\mathbf{5 h}$ as a white solid ($0.178 \mathrm{~g}, 65 \%$ yield); $\mathrm{mp}=146.5-147.5^{\circ} \mathrm{C}$.

[^6]
$\boldsymbol{N}, \boldsymbol{N}$-dimethyl-4-iodobenzenesulfonamide (5i): Following General Procedure B, the title compound was prepared using 4-iodophenylboronic acid ($372 \mathrm{mg}, 1.5$ mmol) and P5. The chlorosulfonylation reaction reaction was carried out at $55^{\circ} \mathrm{C}$ for 12 h . (Note: Stirring was difficult during the first 1-2 h of the chlorosulfonylation reaction, and so an IKA RCT Basic stir plate was used to facilitate stirring).

Dimethylamine (0.5 M in THF, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25g SNAP column, $3-10 \%$ EtOAc in hexanes) to afford $\mathbf{5 i}$ as a white solid ($0.231 \mathrm{~g}, 74 \%$ yield); $\mathrm{mp}=134-135^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,135.3,129.1,100.2,37.9$. IR (neat, cm^{-1}): $3079,1567,1466,1450,1387$, 1341, 1328, 1271, 1257, 1180, 1163, 1088. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{INO}_{2} \mathrm{~S}: \mathrm{C}, 30.88$; H, 3.24. Found C, 31.15; H, 3.08. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{IO}_{2} \mathrm{~S}, 311.9550$; found, 311.9548 .

N, N-dimethyl-2-chlorobenzenesulfonamide (5j): Following General Procedure B, the title compound was prepared using 2-chlorophenylboronic acid ($235 \mathrm{mg}, 1.5 \mathrm{mmol}$) and P5. The chlorosulfonylation reaction reaction was carried out at $60^{\circ} \mathrm{C}$ for 12 h . Dimethylamine (0.5 M in THF, $1.1 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was used as the secondary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography ($3-15 \%$ EtOAc in hexanes) to afford $\mathbf{5 j}$ as a white solid ($0.141 \mathrm{~g}, 64 \%$ yield); $\mathrm{mp}=40.0-41.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (ddd, $J=7.9,7.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.88(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.9,133.5,132.1,132.0,126.9$, 37.3. (Note: only 6 carbon signals for $\mathbf{5 j}$ resolve in the ${ }^{13} \mathrm{C}$ spectrum). IR (neat, cm^{-1}): 3090 , 2872, 1569, 1450, 1346, 1256, 1160, 1106, 1041, 954, 754, 713, 690, 654, 578. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClNO}_{2} \mathrm{~S}: \mathrm{C}, 43.74 ; \mathrm{H}, 4.54$. Found C, 43.99; H, 4.68.

N-[2-(3,4-dimethoxyphenyl)ethyl]-1,3-benzodioxole-5-sulfonamide (5k): Following General Procedure C, the title compound was prepared using 3,4-methylenedioxyphenylboronic acid ($249 \mathrm{mg}, 1.5$ mmol) and P5. The chlorosulfonylation reaction reaction was carried out at $50^{\circ} \mathrm{C}$ for $12 \mathrm{~h} .3,4$-Dimethoxyphenethylamine ($373 \mu \mathrm{~L}, 2.2 \mathrm{mmol}$) was used as the primary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, 20% EtOAc in hexanes) to afford $\mathbf{5 k}$ as a white solid ($282.4 \mathrm{mg}, 77 \%$ yield; $266.8 \mathrm{mg}, 73 \%$ yield); $\mathrm{mp}=118-120^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (s, 2H), $4.55-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{app} \mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 151.1,148.9,148.1,147.7$, $132.9,130.1,122.6,120.6,111.6,111.1,107.9$, $107.1,102.2,55.8,55.7,44.3,35.2$. IR (neat, cm^{-1}): 3231, 2931, 1594, 1512, 1501, 1483, 1471, 1356, $1328,1255,1231,1174,1147,1137,1111,1069,1022,936,909,858,846,830,764,727,709,667,634$, $618,602,573,561,558,551$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 55.88 ; \mathrm{H}, 5.24$. Found C, 55.59; H, 5.31.

N-cyclopropylnaphthalene-2-sulfonamide (51): Following General Procedure C, the title compound was prepared using 2-naphthaleneboronic acid (258 mg , 1.5 mmol) and $\mathbf{P 5}$. The chlorosulfonylation reaction reaction was carried out at $50^{\circ} \mathrm{C}$ for 12 h . Cyclopropylamine ($208 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) was used as the primary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-30 \%$ EtOAc in hexanes) to afford $\mathbf{5 I}$ as a white solid ($0.21 \mathrm{~g}, 85 \%$ yield); $\mathrm{mp}=99.5-101.0^{\circ} \mathrm{C}$.

[^7]128.7, 128.7, $127.8,127.4,122.4,24.2,5.99$. IR (neat, cm^{-1}): $3279,1591,1502,1455,1406,1366,1306$, 1226, 1160, 967, 884, 751, 694, 640, 567. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 63.13 ; \mathrm{H}, 5.30$. Found C, 63.05; H, 5.33.

N-cyclohexylthiophene-3-sulfonamide (5m): Following of the General Procedure C, the title compound was prepared using 3-thiopheneboronic acid ($192 \mathrm{mg}, 1.5$ mmol) and $\mathbf{P 4}(16.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%)$. The chlorosulfonylation reaction reaction was carried out at $55^{\circ} \mathrm{C}$ for 12 h . Cyclohexylamine ($343 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) was used as the primary amine to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-25 \%$ EtOAc in hexanes) to afford 5 m as a white solid ($0.171 \mathrm{~g}, 70 \%$ yield); $\mathrm{mp}=94.0-95.0^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, J=3.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=5.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=$ $5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.03(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,129.9,127.9,125.5,52.8,33.8,25.1,24.6$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3264$, 3106, 2932, 2854, 1448, 1312, 1297, 1209, 927, 998, 927, 891, 881, 815, 800, 729, 698, 641, 629, 597. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 48.95; H, 6.16. Found C, 49.08; H, 6.20.

Methyl 3-(N-(4-fluorophenyl)sulfamoyl)benzoate (5n): Following General Procedure D, the title compound was prepared using 3methoxycarbonylphenylboronic acid ($270 \mathrm{mg}, 1.5 \mathrm{mmol}$) and P5. The chlorosulfonylation reaction was carried out at $60^{\circ} \mathrm{C}$ for 12 h .4 Fluoroaniline ($114 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was used as the aniline to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-25 \%$ EtOAc in hexanes) to afford $\mathbf{5 n}$ as an off-white solid ($0.239 \mathrm{~g}, 77 \%$ yield); $\mathrm{mp}=$ $104.8-105.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53-8.38(\mathrm{~m}, 1 \mathrm{H}), 8.20(\mathrm{ddd}, J=7.8,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{ddd}, J=$ $7.9,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,160.7(\mathrm{~d}, J=246 \mathrm{~Hz}), 139.3,133.8,131.9(\mathrm{~d}, J=2.96)$, 131.3, 131.2, 129.3, 128.3, 124.7 (d, $J=9.0 \mathrm{~Hz}$), $116.2(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 52.7$. ${ }^{19}$ F NMR (282 MHz , CDCl_{3}) $\delta-115.8$. IR (neat, cm^{-1}): $3239,1728,1505,1437,1336,1309,1292,1259,1232,1204,1191$, 1170, 1156, 1124, 1098, 1085, 1076, 1014, 965, 856, 831, 814, 751, 678, 639, 589, 575. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FNO}_{4} \mathrm{~S}: \mathrm{C}, 54.36$; H, 3.91. Found C, 54.49; H, 3.91.

3-Bromo- N -phenylbenzenesulfonamide (50): Following General Procedure D, the title compound was prepared using 3-bromophenylboronic acid (301 mg , 1.5 mmol) and $\mathbf{P 5}$. The cross-coupling reaction was carried out at $55^{\circ} \mathrm{C}$ for 12 h. Aniline ($109 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) was used as the aniline to form the desired sulfonamide. The crude product was purified by flash column chromatography (Biotage, 25 g SNAP column, $5-25 \%$ EtOAc in hexanes) to afford $\mathbf{5 0}$ as a yellow solid ($0.253 \mathrm{~g} ; 81 \%$ yield); $\mathrm{mp}=104.5-105.5^{\circ} \mathrm{C}$.

[^8]
F) Control Experiments: To confirm that sulfonate esters are not converted to sulfonyl chlorides:

Two separate oven-dried test tubes, each equipped with a magnetic stir bar, were charged with P5 (7.94 $\mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(2.65 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, either phenylboronic acid (for Eq. S1, $93 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) or 4 -methylphenylboronic acid (for Eq. S2, $104 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv), and either phenyl tosylate (for Eq. S1, $124 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) or phenyl benzenesulfonate (for Eq. S2, $117 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv). The tubes were sealed with a Teflon screw-cap septum. The vessels were evacuated and backfilled with argon (this process was repeated a total of 3 times), and anhydrous acetone (1.0 mL) was then added via syringe. After the mixtures were allowed to stir for ~ 3 min at room temperature, neat phenyl chlorosulfate ($66 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added. The vessels were then placed in a preheated oil bath at $50^{\circ} \mathrm{C}$ and the reaction mixtures were allowed to stir for 12 h . After the reaction mixtures were allowed to cool to room temperature, an internal standard was added (tetradecane) and the mixtures were diluted with EtOAc and filtered through a short plug of silica gel. The crude reaction mixtures were analyzed by GC and the results are shown in Equations S1 and S2. In each case, 100% of the phenyl sulfonate ester was recovered while the sulfonyl chloride derived from the arylboronic acid was formed in near quantitative yield, thus demonstrating that the sulfonate esters are not converted to the corresponding sulfonyl chlorides under these conditions.
G) Competition Experiments Between 2b and 2c:

An oven-dried test tube equipped with a magnetic stir bar was charged with $\mathbf{P 5}$ ($0.01 \mathrm{mmol}, 2 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.65 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and the 4-methoxyphenylboronic acid ($76 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), and the tube was sealed with a Teflon screw-cap septum. The vessel was evacuated and backfilled with argon (this process was repeated a total of 3 times), and deuterated acetone- $\mathrm{D}_{6}(1.0 \mathrm{~mL})$ was then added via syringe. After the mixture was allowed to stir for $\sim 3 \mathrm{~min}$ at room temperature, neat $\mathbf{2 b}$ (75.4 $\mu \mathrm{L}, 0.5 \mathrm{mmol}, 1.0$ equiv) and $2 \mathrm{c}(116 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv) were added sequentially. The vessel was then placed in a preheated oil bath at $40^{\circ} \mathrm{C}$ and the reaction mixture was allowed to stir for 8 h . After the reaction mixture was allowed to cool to room temperature, an internal standard (1,3,5-trimethoxybenzene, 28.03 mg) was added. A small aliquot ($\sim 0.2 \mathrm{~mL}$) of the crude reaction mixture was filtered through a short plug of $\mathrm{SiO}_{2}\left(\sim 1.5 \mathrm{~cm}\right.$ in a pipette with a cotton filter), which was further washed with $\mathrm{CD}_{3} \mathrm{Cl}(\sim 0.6$ mL). The resulting yellow solution was then analyzed by ${ }^{1} \mathrm{H}$ NMR (see spectrum on page 91). Because both $\mathbf{2 b}$ and $\mathbf{2 c}$ are converted to the same sulfonyl chloride product ($\mathbf{4 a}, 87 \%$ NMR yield), the amounts of recovered $\mathbf{2 b}(40 \%)$ and $\mathbf{2 c}(62 \%)$ were quantified along with the corresponding phenol byproducts. The NMR data show that $\mathbf{2 c}$ undergoes higher conversion to $\mathbf{4 a}$, which suggests that the more sterically hindered substrate ($\mathbf{2 c}$) is slightly more reactive than $\mathbf{2 b}$.

Note: The integrals of the benzylic protons of $\mathbf{2 c}$ and 2,6-diisopropylphenol were used to calculate the NMR yields of these compounds, but these signals overlap to a small degree in the ${ }^{1} \mathrm{H}$ NMR spectrum on page 91 . The benzylic protons signals completely resolve from one another if the crude reaction mixture is first filtered through a short plug of SiO_{2}, concentrated and then dissolved in $\mathrm{CD}_{3} \mathrm{Cl}$. However, 2b is volatile, and a significant amount of this compound is removed upon concentrating the sample; therefore, this workup procedure was not used to prepare the NMR sample used to analyze the substrate and product distributions of Eq. 3. To show an example of a spectrum in which the signals of 2c and 2,6diisopropylphenol are completely differentiated from one another, we included the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture of Eq. S3 below (see spectrum on page 92). In order to promote full conversion of the arylboronic acid to $\mathbf{4 a}$, the reaction depicted in Eq. S3 was conducted at $50^{\circ} \mathrm{C}$ for 10 h , but under otherwise identical conditions to those depicted in Eq. 3.

The control experiment below (Eq. S4) was performed to show that $\mathbf{2 c}$ is not converted to $\mathbf{2 b}$ during the competition experiments (Eq. 3 and Eq. S3). First, substrate $\mathbf{2 b}$ was subjected to the chlorosulfonylation conditions in the absence of $\mathbf{2 c}$. Following complete conversion of $\mathbf{2 b}$ to the sulfonyl chloride (4a), substrate $2 \mathbf{c}$ was then added and the reaction mixture was allowed to stir at $50{ }^{\circ} \mathrm{C}$ for 10 h . Analysis by ${ }^{1} \mathrm{H}$ NMR showed 91% recovery of $\mathbf{2 c}, 0 \%$ recovery of $\mathbf{2 b}$, and $>90 \%$ NMR yield of $\mathbf{4 a}$.

H) Competition Experiment with Piperidine:

An oven-dried test tube equipped with a magnetic stir bar was sealed with a Teflon screw-cap septum. The vessel was evacuated and backfilled with N_{2} (this process was repeated a total of 3 times), and neat $\mathbf{2 b}\left(75.4 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0\right.$ equiv), neat $\mathbf{2 c}\left(116 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0\right.$ equiv), and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were added under a N_{2} atmosphere. The vessel was allowed to cool to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath, and a solution of piperidine ($50 \mu \mathrm{~L}, 0.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added slowly via syringe (over 2 min) along the inner wall of the vessel. The reaction mixture was stirred for 18 h at $-78{ }^{\circ} \mathrm{C}$. Immediately after the reaction mixture was allowed to warm to room temperature, an internal standard (1,3,5-trimethoxybenzene, 28.03 mg) was added, and a small aliquot ($\sim 0.2 \mathrm{~mL}$) of the crude reaction mixture was diluted with $\mathrm{CD}_{3} \mathrm{Cl}(\sim 0.6 \mathrm{~mL})$ and analyzed by ${ }^{1} \mathrm{H}$ NMR (see spectrum on page 93). Note: The signals of the sulfamoyl chloride (8) and the piperidinium salt overlap in the ${ }^{1} \mathrm{H}$ NMR spectrum. Therefore, a separate aliquot $(\sim 0.2 \mathrm{~mL})$ of the crude reaction mixture was filtered through a short plug of $\mathrm{SiO}_{2}(\sim 1.5 \mathrm{~cm}$ in a pipette with a cotton filter) to remove the piperidinium salt. The filter was further washed with $\mathrm{CD}_{3} \mathrm{Cl}(\sim 0.6 \mathrm{~mL})$ and the combined filtrate was analyzed by ${ }^{1} \mathrm{H}$ NMR (see expanded region on page 93). Because both $\mathbf{2 b}$ and $\mathbf{2 c}$ are converted to the same sulfamoyl chloride product (8), the amounts of recovered $\mathbf{2 b}$ and $\mathbf{2 c}$ were quantified. The NMR data show that a larger amount of the sterically hindered substrate ($\mathbf{2 c}$) is consumed than $\mathbf{2 b}$. In addition, $\mathbf{2 b}$ and $\mathbf{2 c}$ react with piperidine to form the corresponding sulfamoyl chloride (8), demonstrating that S-O bond cleavage is also favored in the absence of a palladium catalyst.
III. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ NMR Spectra.

L5: PhCPhos

L5: PhCPhos

P3

P3
\qquad

「	1		1	1	1		1	1					1	1			1		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f1 (ppm)									

Ul/।

INWMW:

2a

(2)

$\underbrace{()^{\infty}}$
(10)

788

4d

琵留

$\begin{array}{cc}\stackrel{\circ}{\infty} & \tilde{\alpha} \\ \stackrel{\infty}{\infty} \\ \stackrel{+}{+} \\ \mid & \mid\end{array}$

$4 f$

琹琵

4h

$<_{-63.70 \text { crBeh }}^{-6.48}$

	1		1	1		1	1	1	1	1					1		T	1	
)0	190	180	170	160	150	140	130	120	110	f1 $\begin{gathered}100 \\ \text { fpm }\end{gathered}$	90	80	70	60	50	40	30	20	10

5a

よよ
$\underbrace{}_{-}$

+

5c

<

5d

11

	1	1	1	1	1	1	1	1	'1'	$1{ }^{1}$	11	1	$1{ }^{1}$	1	1	1	1	1	1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

(
 $5 f$

\qquad

											T						
)	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-1

-58.13
$--63.70 \mathrm{CF3Ph}$

$$
\begin{aligned}
& \begin{array}{l}
\text { +9'Tst - } \\
\text { Lz.9st }
\end{array}
\end{aligned}
$$

5h

Nmwnw whw whw

$\stackrel{\underset{i}{i}}{\stackrel{i}{i}}$

$\left.\right|_{\mid c} ^{\stackrel{\sim}{\infty}} \stackrel{\sim}{\sim}$

$\stackrel{3}{0}$
$\stackrel{1}{1}$
$\stackrel{1}{1}$

$5 i$

	1	1	1	1	$1{ }^{1}$	1	1	1	11	1	1	1	1	1	1	1	1	1	1
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$\underbrace{\text { nNonnonn }}$

 تicoco

$\stackrel{\circ}{\stackrel{\circ}{i}}$
$\underset{Y^{n i n}}{\substack{n i n}} \stackrel{\infty}{\text { in }}$
$\stackrel{\bullet}{\stackrel{n}{n}}$

5k

1	1	1	1	1	1	1	1	1	-1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	I	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\sqrt[\sim]{\text { ig }}$
$\stackrel{\rightharpoonup}{i} \stackrel{\circ}{\mid} \stackrel{m}{1} \stackrel{n}{i} \stackrel{o}{\mid}$

5m

${ }^{1}$ H NMR analysis of crude reaction mixture of Equation 3.

${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture of Equation S 3 (crude reaction mixture filtered through SiO_{2}, concentrated, and dissolved in CDCl_{3})

${ }^{1} H$ NMR analysis of crude reaction mixture of Eq. 4 (Expanded signal C taken from spectrum recorded after piperidinium salt removed via SiO \mathbf{D}_{2} filtration)

[^0]: ${ }^{1}$ Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 7532.
 ${ }^{2}$ Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916.

[^1]: ${ }^{3}$ The CPhos precatalyst $(\mathbf{P} 4)$ is currently available from Aldrich.

[^2]: ${ }^{4}$ Melting point listed on Sigma-Aldrich website.

[^3]: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,136.7,136.2,131.0,128.3,120.9$. IR (neat, cm^{-1}): $1567,1445,1429,1369$, 1252, 1179, 1098, 1021, 759, 735, 694, 646, 573, 551. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrClO}_{2} \mathrm{~S}, 254.8877$; found, 254.8890.

[^4]: ${ }^{5}$ Bahrami, K.; Khodaei, M.M.; Khaledian, D. Tetrahedron Lett. 2012, 53, 354.
 ${ }^{6}$ Pu, Y.; Christesen, A.; Ku, Y. Tetrahedron Lett. 2010, 51, 418.
 ${ }^{7}$ Hogan, P.J.; Cox, B.G. Org. Proc. Res. Dev. 2009, 13, 875.

[^5]: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=8.3,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-$ $6.88(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.22-3.08(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.0, 134.8, 131.8, 125.7, 120.4, 112.4, 66.7, 56.0, 46.0. IR (neat, cm^{-1}): 2968, 2921, 2863, 1592, 1579, $1480,1465,1447,1433,1342,1331,1325,1279,1262,1155,1141,1114,1078,1062,1044,1016,944$, $924,858,768,758,735,614,588,573,567,565$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 51.35 ; \mathrm{H}, 5.88$ Found C, 51.54; H, 5.80.

[^6]: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{ddd}, J=7.7,1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ $(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.38(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.3,151.6,128.3,128.0,126.5,125.5,123.7,122.8,122.7,121.1,120.9,112.2,37.8$. IR (neat, cm^{-1}): $1469,1441,1418,1354,1339,1188,1161,1154,1111,1059,960,637,582$, 577. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 61.07 ; \mathrm{H}, 4.76$. Found C, $60.81 ; \mathrm{H}, 4.79$.

[^7]: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.52(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4,134.7,132.0,129.3,129.1$,

[^8]: ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H})$, 7.09-7.05 (m, 2H), $6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,136.0,135.8,130.5,130.0$, 129.4, 125.7, 125.7, 122.9, 121.8. IR (neat, cm^{-1}): 3259, 1600, 1571, 1481, 1463, 1339, 1298, 1154, 1096, 1086, 920, 902, 785, 767, 752, 619, 580, 573, 558. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO}_{2} \mathrm{~S}: \mathrm{C}, 46.17$; H, 3.23. Found C, 46.32; H, 3.22.

