Supporting Information

Water-wettable polypropylene fibers by facile surface treatment based on soy proteins

Carlos Salas, ${ }^{\dagger, \&}$ Jan Genzer, ${ }^{\neq}$Lucian A. Lucia, ${ }^{\dagger}$ Martin A. Hubbe, ${ }^{\dagger}$ Orlando J. Rojas, ${ }^{\dagger+, \not, s,{ }^{*}}$
${ }^{\dagger}$ Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
${ }^{\text {}}$ Department of Chemical Engineering, Universidad de Los Andes, Mérida 5101, Venezuela
$\$$ Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
${ }^{\$}$ School of Chemical Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
${ }^{(*)}$ Corresponding author: Orlando J. Rojas (Email: ojrojas@ncsu.edu), Tel. +1-919-5137494

Johannsmann model to calculate the adsorbed mass

In the Johannsmann model, the shift in QCM frequency (Δf) is related to the complex shear compliance of the thin film $(\hat{J}(\omega))$ by Eq. 1: ${ }^{1}$
$\Delta \hat{f} \approx f_{o} \frac{1}{\pi z_{q}}\left(\omega \rho d+\hat{\jmath}(\omega) \frac{\omega^{3} \rho^{2} d^{3}}{3}\right.$
where $Z_{q}=\sqrt{\rho_{q} \mu_{q}}=8.8 * 10^{-6} \mathrm{~kg} * \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ is the bulk acoustic impedance of crystalline ATcut quartz, $\omega=2 \pi f$ and f is the resonance frequency of the crystal; ρ is the density of the fluid; ρ_{q} is the specific density of the quartz, μ_{q} is the elastic shear modulus of quartz and d is the thickness of the film.

Equation \mathbf{A} can be rearranged by using the equivalent mass m^{*} (Eq. 2), which can be used to calculate the true adsorbed mass under the assumption that $\hat{J}(\omega)$ is independent of ω^{2} resulting in equation 3 :

$$
\begin{align*}
& m^{*}=-\frac{Z_{q}}{2 f_{o}} \frac{\Delta_{f}}{f} \tag{2}\\
& m^{*}=m^{o}\left(1+\hat{\jmath}(\omega) \frac{\omega^{2} \rho d^{2}}{3}\right) \Rightarrow m^{*}=m^{o}\left(1+\hat{\jmath}(\omega) \frac{f^{2} \rho d^{2}}{3}\right) \tag{3}
\end{align*}
$$

From equation 3 the true mass can be calculated from a plot of m^{*} againts f^{2} to give m^{o} as the intercept.

Contact angle images of nonwoven surfaces

Neat PP

PP after DODA adsorption

| 1 s | 10 s | | 30 s | 80 s |
| ---: | ---: | ---: | ---: | ---: | ---: |

DODA-preadsorbed PP after adsorption of 11S Native

DODA-preadsorbed PP after adsorption of 11S denatured

DODA-preadsorbed PP after adsorption of 7S Native

DODA-preadsorbed PP after adsorption of 7S Denatured

6	6 s	\ddots	7 s

DODA-preadsorbed PP after adsorption of Isolate Native

DODA-preadsorbed PP after adsorption of Isolate Denatured

DODA-preadsorbed PP after adsorption of Flour Native

DODA-preadsorbed PP after adsorption of Flour Denatured

Figure SI-1. Contact angle images for the PP substrates after different treatments studied.

References

1. Johannsmann, D.; Mathauer, K.; Wegner, G.; Knoll, W., Phys. Rev. B: Condens. Matter 1992, 46, 7808-7815.
2. Naderi, A.; Claesson, P. M., Langmuir 2006, 22, 7639-7645.
