Tuning from half-metallic to semiconducting behavior in SiC nanoribbons

Alejandro Lopez-Bezanilla^{\dagger ^{\ddagger}</sub>, Jingsong Huang^{\dagger}, Paul R. C. Kent^{\dagger}, and Bobby G. Sumpter^{\dagger}}

[†]Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831-6493, USA

Current Address: Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA

* Address correspondence to alejandrolb@gmail.com

The fully relaxed bare-edged -[SiC]₇-(2) ribbon for the second of the two energetically degenerate magnetic ground states, noted as ($\uparrow\uparrow - \downarrow\downarrow$), does not exhibit noticeable geometrical differences with respect to its counterpart noted as ($\uparrow\uparrow - \uparrow\uparrow$). Si atoms, denoted by Si-1 and Si-2 in Figure S1, are non-equivalent atoms as to what they show a relative lateral displacement of 0.2 Å at the zigzag edge. The spin density distribution of the ground state of -[SiC]₇-(2) noted with ($\uparrow\uparrow - \downarrow\downarrow$) exhibits the same ferromagnetic alignment of spins along the edges, but pointing out in opposite directions across the ribbon width. As a result, the system becomes fully-metallic as shown in the spin-resolved band diagram in Figure S1-c), with a total magnetic moment of -1.25 µ_B. For this ribbon, the projected density of states (PDoS) of Si-1 and Si-2 edge atoms are plotted in Figure S1 d) and e), respectively, and reveal that the metallic character of the ribbon comes from the p_x-orbitals of C and the p_y-orbitals of Si-2 atoms at the ribbon edge.

Figure S1. Fully relaxed unit cell geometry of the bare-edged -[SiC] 7-(2) ribbon, of the ground state noted as $(\uparrow\uparrow - \downarrow\downarrow)$. Green and gray spheres represent Si and C atoms, respectively. Si atoms are denoted by Si-1 and Si-2 to represent their inequivalency n the Si edge. The relative lateral displacement of the Si atoms by 0.2 Å at the zigzag edge is shown. b) Spin density distribution of the configuration noted as $(\uparrow\uparrow - \downarrow\downarrow)$ at an isosurface of 10^{-3} e/Å³. The blue and red isosurfaces correspond to net spin-up and spindown electron densities, respectively. c) Spin-resolved band diagram for the spin-up and spindown states of the -[SiC] 7-(2) ribbon. For this ribbon, the projected density of states (PDoS) of Si-1 and Si-2 edge atoms are plotted in d) and e), respectively. f) PDoS is shown for one of the two equivalent C atoms at the opposite. The total density of states (TDoS) of the -[SiC] 7-(2) ribbon is plotted in g). Horizontal dashes indicate the Fermi energy level.

*Figure S2. Electronic band structure and total density of states (TDoS) of a S-[BN]*₇*-S(4) nanoribbon exhibiting a group of four S atoms on the Si edge and two groups of S dimers on the opposite C edge.*