
Supplementary Informations

Quantum Interferences and

Electron Transfer in Photosystem I

Nicolas Renaud,∗ Daniel Powell, Mahdi Zarea, Bijan Movaghar, Michael R.

Wasielewski, and Mark A. Ratner

Northwestern University, Department of Chemistry 2145 Sheridan Road, Evanston, IL,

60208-3113

E-mail: n-renaud@northwestern.edu

∗To whom correspondence should be addressed

1



The Stochastic Surrogate Hamiltonian

The SSH approach proposes to simulate the dynamics of a system of interest in interaction with a

bath. The bath is a priori constituted of an infinite number of modes but to reduce the numerical

cost only a few number of representing modes are considered. The Hamiltonian of this bath is

hence:

HB =
Q

∑
q=1

ωqσqσ†
q (1)

where ωq is the frequency of the q-th bath modes with σσσ†
q (σσσq) its creation (annihilation) operator.

The frequency of these modes is randomly chosen according to the bath spectral density. For

the super-Ohmic spectral density considered here, these frequencies are chosen from a Gaussian

distributed random generator whose parameters has been chosen to fit correctly the bath spectral

density as represented in Fig. 3b. The cutoff frequency of this Gaussian was set to 150 meV and

its width to 50 meV. This random sampling slightly overestimate(underestimate) the number of

bath modes at low(high) frequency but is a major improvement compared to a uniform random

distribution of the bath modes. The interaction between the system and the bath are defined to

simulate electronic quenching between state of different energy and reads:

HSB = RS⊗
Q

∑
q=1

λq(σσσ†
q +σσσq) (2)

where RS defines the relaxation pathways within the system of interest and λq the interaction

strength between the states of the system and the bath modes. The diagonal elements of RS rep-

resent uncorrelated modes that only acts on a given site. At the contrary the off diagonal elements

of the RS model correlated modes that enable the electronic density to go from site n to site m by

emitting a phonon in the bath.

Quantum jumps were performed during the temporal evolution of the electronic density. Each

quantum jump reset a specific bath modes to its thermal state removing energy from the total
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system. To perform these quantum jumps a jump rate is defined for each mode following:

Γq = Λ×λq (3)

The ration Λ controls the jump rate of every one. For large value of Λ the bath modes are

constantly reset to their thermal state and for small values of Λ the bath modes are more likely to

give energy back into the system. Hence Λ defines the degree of Markovianity of the propagation

scheme. To remain in the Markovian limit, Λ is set to Λ = 1.05 eV −1 fs −1 which gives a life time

of the bath of Γq ≃ 10 fs for the strongly interacting modes. For each mode the jump condition is

fixed by:

exp(−Γqt̃q)< εq (4)

where t̃q is the time elapsed since the last jump on mode q and εq a random number ranging

between 0 and 1 and reset after each jump on mode q. For each time step, if the condition (4) is

met then the bath mode q is reset. The jump procedure require the computation of the partial trace

of the total density matrix to access rigorously the state system and the state of each mode. Hence

to perform a jump the reduced density matrix (RDM) of the system (ρS(t)), the RDM of the bath

(ρB(t)) and the RDM of each bath modes (ρbn(t)) are computed via:

ρS(t) = TrB[ρ(t)] ρB(t) = TrS[ρ(t)] ρbn(t) = Tri̸=n[ρB(t)] (5)

A jump on the k-th mode is then performed by replacing the its RMD by its thermal RDM:

ρbk(t)←
1

2cosh(2Ωk)

e−Ωk e−iθ

eiθ eΩk

 (6)

with: Ωk =
h̄ωk
2kbT ; θ a random phase factor; T the temperature of the bath. The total density

matrix is then recomputed following:
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ρ(t) = ρS(t)⊗ρb1(t)⊗ . . .⊗ρbQ(t) (7)

and the propagation can continue on the next step. This expansive numerical procedure allows to

perform rigorously a jump on a given bath modes and destroys coherence within the system. Since

only a time-independent Hamiltonian was studied here, the coherent propagation between t and

t +∆t is operated by the evolution operator following:

ρ(t +∆t) = e−iH ∆tρ(t)eiH ∆t (8)

Due to the statistical approach employed by the SSH to sample the bath density and the

stochastic quantum jumps, the Liouville equation must be solved several times to converge to-

ward the final dynamics. The initial condition of the Liouville equation is supposed to be an

non-entangled superposition of an excited state of the principal system and the thermal state of the

bath: ρ(0) = ρS(0)
⊗Q

q=1 ρT
q supposing that the excitation of the system destroys any system/bath

entanglement.

Figure 1: Graphical representation of the isolated PSI ETC in interaction with the bath modes
modeling its environment. Only Few bath modes are explicitly treated and quantum jumps are
performed on the bath manifold.
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Electronic Structure and on-site energies

Electronic structure calculations were performed on the different fragment composing the PSI us-

ing a standard DFT approach using B3LYP functional and a DZ basis set. These calculations were

performed on the relaxed geometry of each fragment after the removal of the carotene tail. These

calculations were performed both in gas phase and using a solvent of dielectric ε = 4. The results

of these calculations for the organic fragments is presented in Fig. 2. In this figure is represented

the LUMO of each fragment and its ionization potential (IP) and electron affinity (EA) both in gas

phase and in solvent. Our calculations were unable to provide accurate results for the electronic

structure of the iron-sulfur cluster. Hence the experimental value of its on-site energy was adopted

in our model.

Special Pair

EA (GP) 1.42 eV
EA(ε = 4) 2.10 eV
IP (GP) 5.43 eV
IP (ε = 4) 4.38 eV

Chl-A0

EA (GP) 1.42 eV
EA (ε = 4) 2.42 eV
IP (GP) 6.45 eV
IP (ε = 4) 5.75 eV

Chl-A

EA (GP) 1.33 eV
EA (ε = 4) 2.25 eV
IP (GP) 6.23 eV
IP (ε = 4) 5.61 eV

PhQ

EA (GP) 1.08 eV
EA (ε = 4) 2.97 eV
IP (GP) 8.70 eV
IP (ε = 4) 7.66 eV

Figure 2: Electronic structure of the special pair, Chl-A, Chl-A0 and PhQ. The Electron Affinity
(EA) and ionization potential (IP) are reported for a gas phase and a dielectric solvent

On top of these intrinsic parameters the Coulombic attraction between the propagating electron

and the hole remaining at the special pair was accounted for with a simple point charge approxi-

mation. More advanced calculations are possible but this simple approximation is supposed to be

good enough and is not thought as the principal source of error in our model. The value of the
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electrostatic force are reported in the table below.

Ec(P700+/Chl−A−) 0.34 eV @ 0.72 nm

Ec(P700+/Chl−A−0 ) 0.16 eV @ 1.51 nm

Ec(P700+/PhQ−) 0.10 eV @ 2.31 nm

Ec(P700+/Fx−) 0.08 eV @ 3.10 nm

Now that all the EA and IP and electrostatic interactions are calculated, we can compute the

on-site energy of each fragments following :

EX = IPP700−Ehν −EAX +Ec(P700+/X−) (9)

The results of these calculations are given below:

Chl-A0 EChl-A ≃ 4.38−1.77−2.25−0.35 = 0.005 eV

Chl-A EChl-A0 ≃ 4.38−1.77−2.46−0.16 =−0.011 eV

PhQ EPhQ ≃ 4.38−1.77−2.97−0.10 =−0.460 eV

Charge Transfer Integral

The charge transfer integrals were computed directly via the spatial overlap of LUMO of each

fragments giving a much better approximation than the split orbital method. These calculations

were performed using the optimized geometry of each dimer and are reported in Fig. 1. A large

coupling was obtained between the two state of the special pair due to their close proximity. The

two Chl of each branch also strongly interact and all the other coupling are much weaker. The signs

of the coupling are due to the relative orientation of the LUMO of each fragment. Each πz orbital

carry a positive and negative phase on each lobe and the overlap between two πz is sensitive to

this phase. Hence depending on the orientation/delocalisation of each molecular orbital the overall

coupling can either be positive or negative. This sign influence the phase of the wave function

during its propagation between two sites but not its magnitude. However, the interference strongly

depends on this phase.
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Relaxation matrix

In the interaction Hamiltonian the electron-phonon interaction are given by: λq =
1√
QJ (ωq).Depending

on the matrix element of RS different mechanism can be simulated. In a more classical way the

interaction Hamiltonian can be written as:

HSB =
N

∑
n=1

N

∑
m=1

Q

∑
q=1

rnm√
Q

J (ωq)|sn⟩⟨sm|(σσσ†
q +σσσq) (10)

The diagonal elements rnn introduce dephasing but not energy relaxation. On the contrary the

off-diagonal element simulate phonon-assisted transition where the electronic density can transfer

from |n⟩ to |m⟩ by emitting a phonon in the bath. To account for the spatial dependence of this

transition the rnm are computed via the overall of two identical Gaussian centered on state n and m

as represented in Fig. 3a. This overlap reads:

rnm =
∫ ∞

−∞
d3r

β√
π

e−β 2r2
e−β 2(r−dnm)

2
= e−3/4β 2d2

nm (11)

With the center to center distances obtained via the X-ray structure of PSI the values if the rnm

matrix elements reported in Fig. 3a were obtained and used in the simulations.

Bath Spectral density

To model the bath spectral density used a super-ohmic density of states is used:

J (ω) = λ (ω/ωc)
2e−(ω/ωc)2

(12)

To fit the vibrations modes of the fragments constituting PSI, we set: ωc = 0.15 eV and λ = 50

meV leading to the spectral distribution represented in Fig. 3b. This spectral density account

correctly for most of the vibration modes of the Chl’s and PhQ’s but completely neglect the C-H

stretch modes locates around 0.5 eV.
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Using a super-ohmic spectral density allows to sample accurately the bath spectral density.

Hence the value of the frequencies, ωq, are randomly set using a Gaussian distributed random

number generators implemented in the GNU Scientific Library. The Gaussian distribution used

during our calculations to set the values of the ωq is represented in Fig, 3b and is very similar to

the actual bath spectral density, J (ω).

a) b)

Figure 3: a) Representation of the method employed to compute the matrix elements of RS which
are defined by the spatial overlap between two Gaussian centers on the two fragments. b) Bath
spectral density defined in super-ohmic density, Gaussian random distribution and vibration fre-
quencies of the Chl’s and PhQ’s

Destructive Interference: block diagonalisation

To understand the origin of the quantum interference, a block diagonalisation of the Hamiltonian

HS, on the subspace {|P1⟩, |P2⟩} is useful. This block diagonalisation is obtained by: H̃S =

R(π/2)H R†(π/2) where R(π/2) is a rotation matrix on the {|P1⟩, |P2⟩} subspace. Doing so one

obtain:
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H̃S =

|Ψ−⟩ |Ψ+⟩ |C3⟩ |C4⟩ |A5⟩ |A6⟩ |Q7⟩ |Q8⟩ |Fx⟩



−6.9 0 −4.2 4.2 . . . . .

0 6.9 1.4 1.4 . . . . .

−4.2 4.2 5 . −4.0 . . . .

1.4 1.4 . 5 −4.0 . . .

. . −4.0 . −11 . −0.1 . .

. . . −4.0 . −11 . −0.1 .

. . . . −0.1 . −460 . 0.01

. . . . . −0.1 . −460 0.01

. . . . . . 0.01 0.01 −700

(13)

where |Ψ+⟩ and |Ψ−⟩ are the two initial state considered in the Fig. 2 and 3 respectively. The large

oscillation obtained in Fig 2 where starting from |Ψ+⟩ are due to the near resonance between |Ψ+⟩

and |C3⟩ and |C4⟩. The direct coupling between these two states leads to the Rabi-like oscillations

observed in Fig. 2. When starting from |Ψ−⟩ one obtain fast oscillations on |A5⟩ and |A6⟩ since

they are close in energy from the initial state. However as explain in the text |Ψ−⟩ interacts with a

positive and negative coupling with |C3⟩ and |C4⟩ respectively. This sign inversion in the coupling

of the initial state with the two branch is responsible of the quantum interference observed on the

electronic density dynamics. These interference can be explained as π phase difference between

the components of the wave function that propagates one each branch. Half of the wave function

evolves along the right branch and the other half evolves on the other branch but with an opposite

phase. Hence when they recombine on the cluster they cancel each other, and the wave function

never reaches Fx. Another way of looking at this interference is based on the diagonalization of

the Hamiltonian and is presented in the next section for a 4-level system.
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Destructive Interference in a 4-level systems

A classic example of destructive interference is observed in a four level system whose Hamiltonian

reads:

H0 =

|ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩


E −α α .

−α E . α

α . E α

. α α E

(14)

Starting from |ϕ1⟩, the evolution of this system given by: |Ψ(t)⟩ = e−iH0t |ϕ1⟩ never reaches

|ϕ4⟩ due to similar quantum interference which is characterized by: Pf = |⟨ϕ4|Ψ(t)⟩|2 = 0. To

understand the origin of these destructive interference one can write the diagonalisation matrix of

H0 :

U =

|Ψ1⟩ |Ψ2⟩ |Ψ3⟩ |Ψ4⟩


0 −1/

√
2 −1/

√
2 0

−1/2 1/2 −1/2 1/2

−1/2 −1/2 1/2 1/2

1/
√

2 0 0 1/
√

2

⟨ϕ1|

⟨ϕ2|

⟨ϕ3|

⟨ϕ4|

(15)

where |Ψ⟩ are the eigenstates of Hamiltonian (14). The initial state |ϕ1⟩ and the target state |ϕ4⟩

belong to orthogonal subspace. The evolution of the system on the eigenbasis reads:

|Ψ(t)⟩= −1√
2
(e−iλ t |Ψ2⟩+ eiλ t |Ψ3⟩) (16)

where λ = E +
√

2α . Projecting on ⟨ϕ4| leads to:
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⟨ϕ4|Ψ(t)⟩= 1
2
(⟨Ψ1|+ ⟨Ψ4|)(e−iλ2t |Ψ2⟩− e−iλ3t |Ψ3⟩) = 0 (17)

As we just simply demonstrated the evolution starting from |ϕ1⟩ never reaches |ϕ4⟩ because

these two states belong to orthogonal subspaces. Another way to demonstrate these destructive

interference is to compute the projection of |Ψ(t)⟩ on the middle states |ϕ2⟩ and |ϕ3⟩:

⟨ϕ2|Ψ(t)⟩ =
−1

2
√

2
(e−iλ t− eiλ t) = 1/

√
2 sin(λ t +π) (18)

⟨ϕ3|Ψ(t)⟩ =
1

2
√

2
(e−iλ t− eiλ t) = 1/

√
2 sin(λ t) (19)

The two component evolves with opposite phase which ultimately leads to the destructive in-

terference much like in an optical interferometer.

Effect of the detuning

The biphasic rate observed for a large value of the detuning can be simply explained in terms of

incoming and out-coming rate to and from the PhQ. For the sake of the demonstration we consider

a positive detuning where the energy of |Q8⟩ is lowered down by 0.15 eV. Reducing the on-site

energy of |Q8⟩, leads to a large energy difference between |A6⟩ and |Q8⟩. Few bath modes are

then available to assist the electronic density in hopping from this Chl-A0 to the PhQ which gives

a slow incoming rate on |Q8⟩. Similarly, the energy difference between |Q8⟩ and |Fx⟩ is reduced

when decreasing the on-site energy of |Q8⟩. More bath modes are then available to assist the trans-

fer of the electronic density from the PhQ to the cluster. Consequently the rate of this transfer is

increased by the detuning. As a consequence the accumulation of the electronic density on |Q8⟩ is

decreased since the injection of the electronic density on this state becomes much slower than the

transfer rate from |Q8⟩ to the iron-sulfur cluster.
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We have observed an enhancement of the quantum yield for a detuning of 0.15 eV with the

initial condition |Ψ−(0)⟩. This enhancement is also observed for different initial state. Fig. 4

represent the variations of the quantum yield with the amplitude of the random fluctuations and

the value of the detuning for the initial state |Ψ−(0)⟩ (left) and |Ψ+(0)⟩ (right). The random

fluctuations suppress the effect of the constructive or destructive interference. However for both

initial condition a maximum quantum yield is observed for a detuning of ∆E = 0.15.

Figure 4: Variations of the quantum yield with the amplitude of the random fluctuations and the
value of the detuning for the initial state |Ψ−(0)⟩ (left) and |Ψ+(0)⟩ (right)
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