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SUPPORTING INFORMATION 

UV-VIS Spectra for Silver Nanoparticle Synthesis 

To characterize the silver nanoparticle samples, UV-VIS spectra were taken with the aim 

of detecting the characteristic surface plasmon resonance band (SPR) at a wavelength of λspr 

≈450 nm. All UV-VIS spectra are reproduced below, however, spectra from the R≥6-12 and S≥3-

12 range warrant special consideration as this represents the general range of nanoparticle 

stability as determined by TEM. We anticipate that the aggregated suspensions will “red-shift”; 

thus, the lack of “red-shifting” in spectra with R=3 or S=1 is in conflict with the skewed size 

distribution displayed in the TEM images in Fig. 6 in the manuscript, indicating that the larger 

aggregates settled out of suspension before data collection; with that in mind, the absorbance 

band at λspr≈450nm in the spectra appearing as Figs. 1A-O below confirms the synthesis of small 

Ag nanoparticles within the region of particle uniformity at R≥6-12 and S≥3-12.  
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Figure 1A. UV Spectra of the alkanethiol-functionalized silver nanoparticles: A) R=3:S=1; and 

B) R=3:S=3. 
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Figure 1B. UV Spectra of the alkanethiol-functionalized silver nanoparticles: C) R=3:S=6; and 

D) R=3:S=12. 
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Figure 1C. UV Spectra of the alkanethiol-functionalized silver nanoparticles: E) R=6:S=1; and 

F) R=6:S=3. 
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Figure 1D. UV Spectra of the alkanethiol-functionalized silver nanoparticles: G) R=6:S=6; and 

H) R=6:S=12. 
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Figure 1E. UV Spectra of the alkanethiol-functionalized silver nanoparticles: I) R=9:S=1; and J) 

R=9:S=3. 

 

 

K 

L 



8 

 

Figure 1F. UV Spectra of the alkanethiol-functionalized silver nanoparticles: K) R=9:S=6; and 

L) R=9:S=12. 
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Figure 1G. UV Spectra of the alkanethiol-functionalized silver nanoparticles: M) R=12:S=1; and 

N) R=12:S=3. 

 

Figure 1E. UV Spectra of the alkanethiol-functionalized silver nanoparticles: O) R=12:S=12. 
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Effect of High Ionic Strength – R=72:S=12 Sample 

 In addition to the R=108:S=12 sample data presented in the manuscipt, TEM images and 

UV-VIS spectra were collected for the R=72:S=12 silver nanoparticle sample. From the sample 

TEM image shown as Fig. 2A below, we observe the formation of small, uniform nanoparticles 

with an average diameter of 3.8±1.7 nm. Further, the UV-VIS spectrum provided as Fig. 2B 

supports this conclusion, with the characteristic surface plasmon band for silver appearing at λspr 

≈450 nm. 

 

Figure 2A. TEM image of R=72:S=12 Ag NPs shows the presence of uniform spherical NPs in 

toluene with D=3.8±1.7 nm. A UV-VIS spectrum is shown in Fig. 2B which supports this 

conclusion. 
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Figure 2B. UV-VIS spectrum of R=72:S=12 Ag NPs displays characteristic peak near 450 nm 

which is indicative of small silver nanoparticles. The small peak at 300 nm also points to the 

presence of small amounts of didodecyl disulfide in solution. 

 

Resistance of Didodecyl Disulfide to Reduction by Sodium Borohydride 
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Figure 3A. UV-VIS spectra for 3 mM didodecyl disulfide in ethanol and for an identical 3 mM 

didodecyl disulfide solution in the presence of a 10-fold molar excess of sodium borohydride 

after 10 minutes. As the peak height at the maximum near λ≈300 nm is near unchanged, it is 

reasonable to conclude that didodecyl disulfide is not undergoing significant reduction by 

sodium borohydride. 

 

Didodecyl Disulfide Capped Silver Nanoparticles 
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As mentioned in our manuscript, TEM images were taken of the nanoparticles 

synthesized with didodecyl disulfide present in place of dodecanethiol. The average nanoparticle 

diameter measured was 3.7±2.3nm which is comparable to the 4.0±2.0nm diameter measured for 

dodecanethiol functionalized nanoparticles. A representative image of didodecyl disulfide 

functionalized nanoparticles is reproduced below as Figure 4A. 

 

Figure 4A. TEM image of Ag nanoparticles synthesized with didodecyl disulfide as capping 

agent. The average nanoparticle diameter for this sample is D=3.7±2.3 nm. Thus, neither the 

average particle size nor the standard deviation change due to the substitution of didodecyl 

disulfide for 1-dodecanethiol.  

 

Derivation of Generalized Smoluchowski Equation (GSE) and Primary Particle Growth Rate 

In the manuscript we present a heuristic derivation of nucleation. In this section of the 

supplementary documents we give a detailed derivation of the GSE, which we use to derive the 

rate equation that characterizes early-stage Ag NP growth with respect to singlet-to-doublet 

formation. This is Eq. 5 in the manuscript, and as stated in the manuscript, our objective is to use 

this relation to elucidate the reaction conditions that facilitate the end-on adsorption of 

alkanethiol monolayers on primary particles, mitigating aggregation. Hence, subsequent to 

nucleation, we use Eq. 5 to capture the growth of primary particles, which on the basis of studies 

by Zukoski and Polte, growth occurs through controlled aggregation, or the aggregation of 

primary particles into doublets, triplets, etc., ultimately reaching a stable size based on particle 
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interactions.
1,2

 The starting point for the analysis of particle aggregation through Eq. 5 in the 

manuscript is the generalized Smoluchowski diffusion equation (GSE), characterizing the 

dynamics of a system of N colloidal objects (e.g, sphere, rods, cubes, etc.). We present the 

following derivation in real-space coordinates to correspond with our use of transmission 

electron microscopy, a direct visualization method to image the DDT-functionalized Ag NPs. 

The starting points for the derivation of GSE are Eqs. A.1, A.2, and A.3. Eq. A.1 is the 

probability conservation equation for P(x1,x2,t), or the pair, or two-particle probability 

distribution function (PDF), which characterizes the stochastic, time-dependent, spatial 

arrangement of nanoparticles at positions x1 and x2 relative to the average position of an 

assembly of the other N-2 spheres. For convenience, we represent x1 and x2 as the set of position 

coordinates, X, and bold text represents vector quantities. 

( ) ( ) ( )( )∑
=

=⋅∇+
∂

∂ N

i

i tP
t

tP

1

0,
,

XXv
X

 (A.1) 

Eq. A.1 is a familiar mass balance equation to quantify the accumulation and flux of particles in 

and across an arbitrary control volume, where vi is velocity of particle i. Eq. A.2 is Newton’s 

equation of motion for particle i, otherwise called the Langevin equation as it accounts for 

particle diffusion through Brownian motion: 
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where pi is the momentum of particle i which equals pi = mvi where m is the particle mass. On 

the left hand side of Eq. A.2 is the summation of the forces acting on the particle where 
p

iF  is 

due to direct interparticle forces, 
ex

iF to external forces (e.g., gravity), 
H

iF to the hydrodynamic 

force by the surrounding fluid, 
B

iF to Brownian motion, which drives particle diffusion, and 
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c

iF fluid convection. By definition, the position coordinate, xi, of the particle relates to the 

momentum coordinate in Eq. A.3 as: 

mdt

d i ipx
=  (A.3) 

Eqs. A.1-3 provide the basis for addressing a variety of dynamic colloidal processes such as 

suspension rheology or aerosol transport. Russel, Saville, and Schowalter and Dhont provide a 

full treatment and application of these relations to colloidal processes.
3,4

 

 Knowledge of the reaction conditions permits a number of simplifications to Eq. A.1-3 to 

model the early stage growth of a dilute suspension of hydrodynamically non-interacting Ag 

nanoparticles in an unbounded, quiescent solvent without the influence of external fields. Growth 

in a quiescent solution dictates a lack of fluid convection, or 
c

iF =0, and that particle movement 

through Brownian motion occurs at low Reynolds number, i.e., the ratio of inertial to viscous 

forces, where viscous forces dominate inertial ones. Particle growth from a dilute suspension 

permits the assumption that particle motions and collisions occur on time scales much greater 

than the diffusive, or Brownian time scale of τb≈10
-9

s.
3,4

 We anticipate that after nucleation, 

collisions between primary particles should occur on a time scale of t>10
-3

s thus, t>>τb.
2-4

 The 

time scale τb corresponds to the translational momentum relaxation time; thus at t>>τb, the 

particles experience quasi-inertia free motion, reaching a constant velocity, which sets dpi/dt=0 

in Eq. A.2.
3,4

 This simplifies further analysis that depends only on position coordinates since 

velocities can be calculated from Eq. A.3. Moreover, setting dpi/dt=0 yields a force balance 

between the hydrodynamic, Brownian, and direct particle interaction terms in Eq. A.4 as 
ex

iF =0,  
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since we assume that particle sedimentation is negligible at the early stages.  
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 Determination of the GSE requires calculation of the particle velocity from the 

hydrodynamic force, the latter of which depends on a phenomenological treatment of solvent 

motion where processes on the molecular level are not considered. Thus, only macroscopic 

properties such as the viscosity and mass density of the solvent enter into the analysis. The large 

difference in relevant length and time scales of momentum relaxation between the solvent and 

the ensemble of primary particles facilitates the phenomenological treatment of hydrodynamics 

in colloidal systems without losing the microstructure of the nanoparticle arrangements.
4,5

 To 

this end, the hydrodynamic force on particle i by the surrounding fluid in shown in Eq. A.5 and 

the generalized hydrodynamic Stokes-Einstein relation is given in Eq. A.6; both equations 

provide the starting point for incorporating hydrodynamics in early stage nanoparticle growth:  
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where ζij and Dij are the friction and diffusion coefficients for the particle pairs. One adds the 

minus sign in Eq. A.5 to account for the force exerted by the fluid on the particle. For the case of 

interacting particles in a concentrated suspension, the friction coefficients form a real, 

symmetric, positive definite 3N x 3N matrix that depend on particle position, resulting in a non-

symmetric matrix of microscopic diffusion coefficients due to the inversion of the friction 

coefficients in Eq. A.6. For a dilute suspension of hydrodynamically non-interacting primary 

particles, the friction coefficient and diffusion matrices become diagonal in Eq. A.7 and factor to 

a scalar value Do, in Eq. A.8, resulting in linear relationship between vi and  
H

iF : 

( ) 1ijoij D δ=XD  (7) 
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where β=(kbT)
-1

 and ζ is the well known Stokes-Einstein friction factor for spheres equal to 

6πηoR where ηo is the solvent viscosity and R the particle radius. 

 Substituting Eqs. A.4 and A.7 into Eq. A.1 yield the GSE for the primary particles in Eq. 

A.9: 
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which can be further clarified by considering the direct interparticle and Brownian forces, or 

p

iF and 
B

iF , respectively. Calculation of direct interparticle forces stems from the gradient of 

the total potential energy ΦT(X) of the ensemble of primary particles which is a function of the 

position coordinates in Eq. A.10.   
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 The basis for the Brownian force stems from the establishment of equilibrium at long times 

where the PDF is proportional to the exponential of the Boltzmann distribution:
6
 

( )( )XX Texp~),( lim Φ−
∞→

βtP
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 (A.11) 

and the terms in within the round brackets in Eq. A.9 becomes zero for the particular form of the 

PDF in Eq. A.11. From this requirement, one finds the form of the Brownian force in Eq. A.12. 

( )tPTk iB ,ln XF
B

i ∇−=  (A.12) 

Substitution of Eqs. A.10 and A.12 into A.Eq. 9 yield the GSE in Eq. A.13 for the primary 

particles, 
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The GSE forms the basis of our analysis of the reaction conditions that control the early 

stage growth of the DDT-functionalized Ag nanoparticles. To quantify singlet-to-doublet 

formation, one derives the conservation equation for the primary particle concentration, C1, by 

multiplying Eq. A.1 by 1/(N-1) integrating over the position of N-1 spheres. The derivation 

requires the tracking of doublet formation upon primary particle overlap, corresponding to 

P(X,t)=0 for the interparticle distance rij=|x1-x2|<2R for i≠j.  The analysis of the integrals over the 

remaining volume is found in Russel, Saville, and Schowalter who use the transport and 

divergence theorems to determine the rate of change of C1, 
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where C1 = C1,0 at t=0.
3
 Hence, the disappearance rate of primary particles depends on P(X,t), 

which can be determined assuming pseudo-steady state and spherically-symmetric direct pair 

interactions, Φ(r), reducing Eq. A.13 to, 
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subject to the following boundary conditions: 
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The former assumes a random, spatially homogenous particle arrangement, or microstructure, 

and the latter doublet formation. Integration and application of the boundary conditions yields:
30
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The primary particle disappearance rate follows from Eq. A.14 as,  
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where ks is the binary aggregation rate constant.  Eq. A.17 in this section is Eq. 5 in the main 

text. 
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