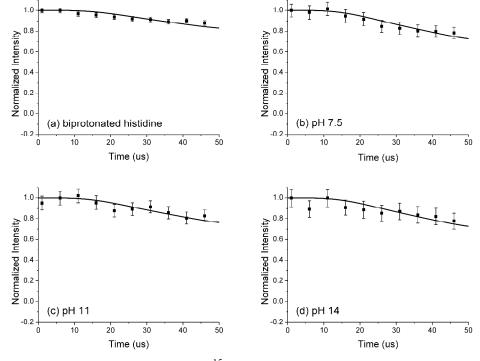
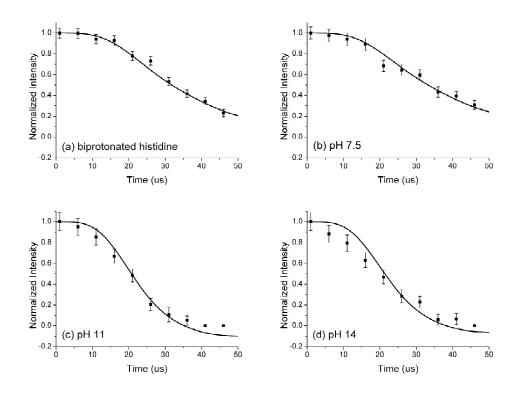

Supporting Information

Interaction between Histidine and Zn(II) Metal Ions over a Wide pH as Revealed by Solid-State NMR Spectroscopy and DFT Calculations


Lei Zhou, Shenhui Li, Yongchao Su, Xianfeng Yi, Anmin Zheng and Feng Deng


Figure S1. ¹⁵N-¹H dipolar couplings, which are obtained from DIPSHIFT experiment in double version, of 25% diluted U-¹³C, ¹⁵N-labeled histidine upon Zn(II) binding prepared at (a) pH 11, (b) pH 14. The simulated coupling strengths are indicated. The real ¹⁵N-¹H dipole couplings are deduced after taking into account the PMLG scaling factor.

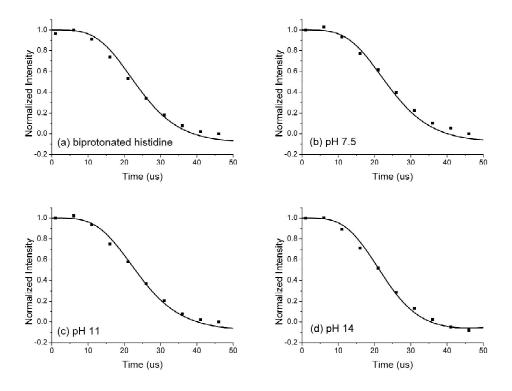

Figure S2. 2D ¹⁵N-¹⁵N homo-nuclear correlation NMR spectrum of U-¹³C, ¹⁵N-labeled histidine hydrochloride monohydrate. The PDSD mixing time was set to 4 s.

Figure S3. CSA dephasing curves for $^{15}N_{\alpha}$ site of (a) biprotonated histidine, and 25% diluted U- 13 C, 15 N-labeled histidine upon Zn(II) binding prepared at (b) pH 7.5, (c) pH 11, and (d) pH 14.

Figure S4. CSA dephasing curves for imidazole $^{15}N_{\epsilon 2}$ site of (a) biprotonated histidine, and 25% diluted U- 13 C, 15 N-labeled histidine upon Zn(II) binding prepared at (b) pH 7.5, (c) pH 11, and (d) pH 14.

Figure S5. CSA dephasing curves for imidazole $^{13}C_{\epsilon 1}$ site of (a) biprotonated histidine, and 25% diluted U- 13 C, 15 N-labeled histidine upon Zn(II) binding prepared at (b) pH 7.5, (c) pH 11, and (d) pH 14.