Supporting Information for

Functional Group Transformations in Derivatives of 6-Oxoverdazyl

Marcin Jasiński,^b Jason S. Gerding,^a Aleksandra Jankowiak,^a Krzysztof Gębicki,^b Jarosław Romański,^b Katarzyna Jastrzębska,^{a,b} Ajan Sivaramamoorthy,^a Kristein Mason,^a Donavan H. Evans,^a Małgorzata Celeda,^b Piotr Kaszyński^{a,b}*

^aOrganic Materials Research Group

Department of Chemistry, Vanderbilt University, Nashville, TN 37235

^b Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland

Table of Content:

1.	¹ H NMR and ¹³ C NMR spectra for selected compounds	S2
2.	Partial data for TD-DFT calculation (B3LYP/6-31G(d,p)) for 1	S15
3.	Theoretical hfcc values for model radicals	S19
4.	EPR Spectra Simulation	S19
5.	Archive data for DFT calculations	S21

1. ¹H NMR and ¹³C NMR spectra for selected compounds

2c•HCl

3b

3c

4b

4c

5a

5c

5d

5g

5t

2. Partial data for TD-DFT calculation (B3LYP/6-31G(2d,p)) for 1v-1z.

Figure S1. B3LYP/6-31G(2d,p) derived contours and energies of frontier molecular orbitals for **1v**.

1v							
Excited State <\$**2>=0.776	1:	2.025-A	2.2388	eV	553.79	nm	f=0.1056
102A ->103A		-0.22192					
99B ->102B		-0.16555					
101B ->102B		0.93865					
Excited State	2:	2.075-A	2.5861	eV	479.42	nm	f=0.0257
<s**2>=0.826</s**2>							
92B ->102B		0.10398					
96B ->102B		0.37333					
97B ->102B		-0.41023					
98B ->102B		-0.13098					
100B ->102B		0.79416					
Excited State <s**2>=0.804</s**2>	3:	2.054-A	2.7208	eV	455.69	nm	f=0.0241
100A ->103A		-0.13279					

Excitation energies oscillator strength	
1v	

1007	1027		0 0 2 7 5 6					
102A -2	>103A		0.83/30					
102A ->	>104A	(0.12826					
99B ->	>102B	(0.38945					
101B ->	>102B	(0.25977					
Excited St	ate 4	: 2.3	122 - A	2.8923	eV	428.67	nm	f=0.0243
<s**2>=0.87</s**2>	76							
102A ->	>108A	_(0.10379					
93B ->	>102B	_ (0.13662					
96B ->	>102B	_ (0.48992					
97B ->	>102B	(0.58649					
98B ->	>102B	(0.19539					
100B ->	>102B	(0.54603					
1w								
Excited St	ate 1	: 2.0	039-A	2.1610	eV	573.73	nm	f=0.0864
<s**2>=0.79</s**2>	90							
105A ->	>107A	_ (0.15901					
103B ->	>105B	(0.23692					
104B ->	>105B	(0.92828					
Excited St	ate 2	: 2.3	177 - A	2.4918	eV	497.56	nm	f=0.0507
1047	1067		0 1107/					
104A	106A		0.11074					
100A ->	105P		0.01010					
100B ->	1050		0.30002					
1018	1056		J.20370					
103B -2	1056	- (0.10000					
104B ->	>102B	,	0.18092					
Excited St	ate 3	: 2.3	111 - A	2.5584	eV	484.62	nm	f=0.0576
<5**2>=0.86	1067							
105A ->	>106A	(0.68986					
105A ->	>107A	-0	0.29205					
98B ->	>105B	(0.11411					
99B ->	>105B	(0.26979					
100B ->	>105B	-0	0.18875					
101B ->	>105B	(0.15566					
103B ->	>105B	(0.46674					
103B ->	>106B	-(0.11254					
Excited St	tate 4	: 2.0	060-A	2.7373	eV	452.95	nm	f=0.0325
<s**2>=0.81</s**2>	1							
105A ->	>107A	_(0.33310					
93B ->	>105B	(0.11676					
98B ->	>105B	_(0.14759					
99B ->	>105B	_(0.31506					
100B ->	>105B	(0.52505					
101B ->	>105B	_(0.41659					
103B ->	>105B	(0.43597					
104B ->	>105B	- (0.22963					

1x

Excited State 109A ->111A 107B ->109B 108B ->109B	1:	2.029-A -0.19997 0.22024 0.93076	2.2204 eV	558.39 nm	f=0.0940	<s**2>=0.779</s**2>
Excited State	2:	2.063-A	2.5701 eV	482.42 nm	f=0.0160	
<s**2>=0.814</s**2>						
109A ->111A		-0.17360				
98B ->109B		-0.10738				
102B ->109B		-0.47441				
105B ->109B		0.32045				
106B ->109B		0.28761				
107B ->109B		0.68759				
108B ->109B		-0.15880				
Excited State	3:	2.083-A	2.7632 eV	448.69 nm	f=0.0149	
<s**2>=0.834</s**2>						
109A ->110A		0.57643				
109A ->111A		0.35299				
102B ->109B		-0.28487				
105B ->109B		0.33324				
106B ->109B		0.36202				
107B ->109B		-0.30194				
108B ->109B		0.22953				
Excited State	4:	2.245-A	2.8988 eV	427.71 nm	f=0.0249	
<s**2>=1.010</s**2>						
108A ->110A		-0.15718				
109A ->110A		0.59537				
102B ->109B		0.49115				
104B ->109B		-0.16349				
105B ->109B		-0.13888				
107B ->109B		0.47982				
1y						
Excited State	1:	2.017-A	1.4245 eV	870.37 nm	f=0.2594	<s**2>=0.767</s**2>
97B -> 98B		0.98846				
97B <- 98B		-0.11672				
Excited State <\$**2>=0.805	2:	2.054-A	1.6191 eV	765.77 nm	f=0.0020	
96B -> 98B		0.98091				
96B ->106B		0.11575				
Excited State <\$**2>=1.201	3:	2.409-A	1.9545 eV	634.35 nm	f=0.0036	
97A -> 99A		0.24973				
98A -> 99A		0.86530				
97B -> 99B		-0.37210				
Excited State	4:	2.851-A	2.4342 eV	509.35 nm	f=0.0003	
<s**2>=1.782</s**2>						
97A -> 99A		-0.12295				

98A -> 99A 97B -> 99B		0.41390 0.87872					
1z							
Excited State <s**2>=0.784 98A -> 99A 95B -> 98B 96B -> 98B 97B -> 98B</s**2>	1: 2	.034-A -0.18019 0.15978 0.16831 0.93376	2.1924	eV	565.51	nm	f=0.1199
Excited State <s**2>=0.825 98A -> 99A 91B -> 98B 92B -> 98B 93B -> 98B 94B -> 98B 96B -> 98B 97B -> 98B</s**2>	2: 2	.074-A -0.25787 0.13765 -0.20486 -0.19757 -0.24472 0.82489 -0.20112	2.5342	eV	489.25	nm	f=0.0324
Excited State <s**2>=0.802 96A -> 99A 98A -> 99A 98A ->100A 92B -> 98B 93B -> 98B 94B -> 98B 95B -> 98B 96B -> 98B 97B -> 98B</s**2>	3: 2	.051-A -0.12518 0.77905 -0.10937 -0.15259 -0.14536 -0.18580 -0.39373 0.19332 0.18740	2.6835	eV	462.02	nm	f=0.0192
Excited State <s**2>=0.837 98A -> 99A 89B -> 98B 91B -> 98B 92B -> 98B 93B -> 98B 93B -> 98B 94B -> 98B 96B -> 98B</s**2>	4: 2	.085-A 0.23452 0.11778 -0.26363 0.40705 0.40917 0.52369 0.43574	2.8563	eV	434.07	nm	f=0.0161

3. Theoretical hfcc values for model radicals

Table S1. Calculated hyperfine coupling constants (G) for selected radicals.

					at N	J(1)	at C(3)		at N(5)			
compound	a _{N(1)}	a _{N(2)}	a _{N(4)}	a _{N(5)}	a _{H(o)}	$a_{H(m)}$	a _{H(o)}	$a_{H(m)}$	a _{H(p)}	a _{H(o)}	$a_{H(m)}$	
1v	3.53	5.08	5.08	3.53	-0.93	0.47	0.63	-0.34	0.55	-0.93	0.47	
X = MeO												
1w	3.54	5.27	5.19	2.77	-0.86	0.46	0.64	-0.34	0.55	-0.94	0.50	
$X = NO_2$												
1x	3.56	5.23	5.18	3.08	-0.89	0.46	0.64	-0.34	0.56	-0.92	0.53	
X= COOMe												
1y	1.74	2.18	2.18	3.38	-0.70	0.29	0.23	-0.14	0.19	0.17	-2.51	
$X = O^{-}$												
1z	3.49	5.03	5.03	3.62	-0.91	0.46	0.62	-0.34	0.54	-0.92	0.45	
$X = NH_2$												

^a B3LYP/EPR-II//B3LYP/6-31G(2d,p). The hfcc calculated by averaging values for equivalent nuclei.

4. EPR Spectra Simulation

Simulation of the EPR spectra was done with the PEST program (EPR-WinSim.2002 version 0.98 for Windows; available at: http://www.niehs.nih.gov/research/resources/software/tox-pharm/tools/index.cfm) using results of B3LYP/EPR-II//B3LYP/6-31G(2d,p) for initial input. The resulting *hfcc* values were perturbed until the global minimum for the fit was achieved. Spectra used for simulation were generated by reflection of the left half of each spectrum.

Figure S2. A comparison for experimental, simulate and difference spectra for four radicals.

5. Archive files for DFT calculations

1v

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C22H19N4O3(2)\PIOTR\06-Ma r-2013\0\\#P UB3LYP/6-31G(2d,p) SCF=(tight, Direct) guess=check #P Geo m=(NoDistance,NoAngle,check) TD(NStates=15)\\Di(4-MeOphenyl)-3-Ph 6-ox overdazyl, C1 at the DFT geom\\0,2\0,0,0.0014650954,-0.0024308737,0.00 53842749\C,0,-0.0049009487,-0.0020943007,1.2187751959\N,0,1.1596538129 ,-0.0002210041,1.9931030921\N,0,1.1706665822,0.0767810055,3.3543159423 \C,0,-0.0195155417,0.1180884588,3.9464323387\N,0,-1.2031953471,0.07079 89426,3.3418607294\N,0,-1.1775106639,-0.0061106021,1.9808408696\C,0,-2 .4614793265,0.0419339857,1.3494655095\C,0,-2.7404103577,-0.6879643709, 0.1867645351\C,0,-4.0081550201,-0.6427419847,-0.3674227881\C,0,-5.0217 688717,0.1229369192,0.2224741322\C,0,-4.7444994257,0.847510495,1.38456 70166\C,0,-3.4681223665,0.8034513934,1.9393740129\C,0,-0.0275133019,0. 2046266746,5.4291185635\C,0,-1.238500217,0.2432170069,6.1322277913\C,0 ,-1.2435120135,0.3295107818,7.5206257415\C,0,-0.0426292981,0.377336013 9,8.2269015208\C,0,1.1658250137,0.3355805102,7.5332685442\C,0,1.175818 6802,0.2492993002,6.1448965903\C,0,2.4499197557,0.054309927,1.37523543 56\C,0,3.4464659601,0.8208759957,1.9756554686\C,0,4.728357461,0.871381 4716,1.4342736942\C,0,5.0214568614,0.1482438088,0.2751744145\C,0,4.017 9612883,-0.6225190562,-0.3253058331\C,0,2.7447137305,-0.6741437964,0.2 15546081\H,0,-3.2494640494,1.35880205,2.8420782817\H,0,-5.5048594927,1 .4504566,1.8635668981\0,0,-6.2275355185,0.0930879279,-0.4046749416\H,0 ,-4.2402450308,-1.2035924718,-1.265440291\H,0,-1.9681903564,-1.2803286 181,-0.2810830786\H,0,2.1126070468,0.2111650653,5.6031197499\H,0,2.105 8012086,0.3689955674,8.0748421238\H,0,-0.0484820462,0.4443326806,9.310 0981882\H,0,-2.1892762856,0.3581752089,8.0523041525\H,0,-2.1693471592, 0.200377837,5.5806508005\H,0,1.9804419035,-1.2703806546,-0.2603638948\ H,0,4.2622866817,-1.1821703285,-1.2208222864\C,0,-7.289213581,0.846844 4065,0.1533548575\H,0,-7.0564038259,1.9188207254,0.1734781271\H,0,-8.1 509524713,0.6790205745,-0.4940517774\H,0,-7.5305501344,0.5120608833,1. 1699299655\0,0,6.2338730259,0.1244869917,-0.3392893245\H,0,5.480598332 4,1.4781417658,1.9212102309\H,0,3.2155493082,1.375094686,2.87599999\C, 0,7.2858360228,0.8835514975,0.2298340859\H,0,7.0474468748,1.9543441344 ,0.2474879196\H,0,7.5181692306,0.5499548613,1.2488938039\H,0,8.1551547 746,0.7200789076,-0.4084884541\\Version=EM64L-G09RevC.01\State=2-A\HF= -1294.4411796\S2=0.772186\S2-1=0.\S2A=0.750236\RMSD=2.825e-09\PG=C01 [X(C22H19N4O3)]\

1w

 $1\1\GINC-OCTOPUS\SP\UB3LYP$ TD-FC\6-31G(2d,p)\C21H16N5O4(2)\PIOTR\06-Ma r-2013\0\\#P UB3LYP/6-31G(2d,p) SCF=(tight, Direct) guess=check #P Geo m=(NoDistance,NoAngle,check) TD(NStates=15)\\1-(4-MeOphenyl)-5-(4-NO2p henyl)-3-Ph 6-oxoverdazyl, C1 at the DFT geom\\0,2\0,0,-0.0203427515,-0.0279444504,0.0036831582\C,0,-0.0142441509,-0.0188136349,1.2155293291 \N,0,1.1592259273,-0.002234126,1.9836662896\N,0,1.1750696061,0.0958799 027,3.3459989037\C,0,-0.0091148924,0.1236185575,3.9458710572\N,0,-1.19 73842175,0.0595680856,3.3448524342\N,0,-1.1789836853,-0.0184923928,1.9 879826614\C,0,-2.4666751064,0.0218670308,1.3598568361\C,0,-2.757513414 5,-0.7514575601,0.2293686574\C,0,-4.0252978679,-0.7104626819,-0.323582 2086\C,0,-5.0251685169,0.0960168952,0.2363905098\C,0,-4.7346757134,0.8 632106004,1.3683297098\C,0,-3.4582286939,0.8220494825,1.9222606697\C,0 ,-0.0119795437,0.2140504653,5.4275431733\C,0,-1.2213568531,0.285650206 8,6.1309520064\C,0,-1.2220919255,0.3736479596,7.5191401648\C,0,-0.0192 22047,0.3902561354,8.223313759\C,0,1.1873947188,0.3154788811,7.5290426 44\C,0,1.1934785901,0.2272898306,6.141085741\C,0,2.4442333326,0.044313 21,1.3678068117\C,0,3.4670582431,0.7434477461,2.0236040095\C,0,4.74004 65007,0.7891089425,1.4773519688\C,0,4.9845912535,0.1292039235,0.277520 4108\C,0,3.983182962,-0.5741534106,-0.3830321418\C,0,2.7073767437,-0.6 182667353,0.1607776794\H,0,-3.2286675719,1.4113357398,2.8007191199\H,0 ,-5.4851047544,1.4969397173,1.822278314\0,0,-6.229504827,0.0611803379, -0.3880206712\H,0,-4.268700466,-1.3037901656,-1.1972260794\H,0,-1.9956 648677,-1.3754854188,-0.2144808291\H,0,2.1292207546,0.1617631652,5.600 1768807\H,0,2.1282609562,0.3236903392,8.0696405075\H,0,-0.021953009,0. 4583725018,9.3063371446\H,0,-2.1658329057,0.4284014213,8.0520271599\H, 0,-2.1540083513,0.2674410048,5.581147982\H,0,1.9232970095,-1.157648161 1,-0.3463933168\H,0,4.2146154174,-1.0826319376,-1.3091156359\C,0,-7.27 80591344,0.8616609543,0.1317410671\H,0,-7.019897204,1.9274668776,0.108 0630046\H,0,-8.1390353802,0.6857166705,-0.5141314786\H,0,-7.5321519028 ,0.5743353389,1.1594357422\N,0,6.3309940613,0.1747240149,-0.3024854708 \H,0,5.5426710642,1.3299832386,1.9600963383\H,0,3.2506097312,1.2443744 975,2.9565578369\0,0,7.1933685126,0.7949981153,0.3100725289\0,0,6.5133 443691,-0.4103301152,-1.364294379\\Version=EM64L-G09RevC.01\State=2-A\ HF=-1384.4229945\S2=0.77252\S2-1=0.\S2A=0.750239\RMSD=7.348e-09\PG=C01 [X(C21H16N5O4)]\\

1x

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C23H19N4O4(2)\PIOTR\06-Ma r-2013\0\\#P UB3LYP/6-31G(2d,p) SCF=(tight, Direct) guess=check #P Geo m=(NoDistance,NoAngle,check) TD(NStates=15)\\1-(4-MeOphenyl)-5-(4-MeOO Cphenyl)-3-Ph 6-oxoverdazyl, C1 at the DFT geom $\0,2\0,0,-0.0738575094$,-0.0381249342,0.0078104436\C,0,-0.0648932667,-0.0249653603,1.21978206 6\N,0,1.1089843762,-0.0077789159,1.9842245029\N,0,1.1297879479,0.09548 8787,3.3449358163\C,0,-0.0532779048,0.1304250561,3.9480426916\N,0,-1.2 432153592,0.0657692094,3.3527997707\N,0,-1.2290582254,-0.0217668958,1. 9950845787\C,0,-2.5184708631,0.0149551472,1.3719238896\C,0,-2.80875129 45,-0.7511602658,0.2361237906\C,0,-4.0788708945,-0.7144640292,-0.31233 04864\C,0,-5.0823871998,0.0801107926,0.2571793626\C,0,-4.7932839842,0. 8399560257,1.3939238494\C,0,-3.514414974,0.8035428567,1.943275971\C,0, -0.0500351596,0.2302964603,5.4295373878\C,0,-1.2561960313,0.2933013073 ,6.1390398824\C,0,-1.2513100547,0.3903222217,7.5266803593\C,0,-0.04529 47503,0.4247215801,8.2248435679\C,0,1.1583180645,0.3587132169,7.524544 224\C,0,1.1586526384,0.2616008355,6.1370025629\C,0,2.3938755471,0.0340 269074,1.3600357604\C,0,3.4066837643,0.7766075677,1.9774398445\C,0,4.6 764723193,0.8154295264,1.4201673972\C,0,4.9538254893,0.1117649709,0.24 3596119\C,0,3.936492644,-0.6314358297,-0.3625699537\C,0,2.6620967578,-0.6757677101,0.1834198583\H,0,-3.2861011251,1.3869717902,2.8258580301\ H,0,-5.546592054,1.4646289643,1.855669964\0,0,-6.289695739,0.041863629 6,-0.3639119534\H,0,-4.3206887344,-1.3023760439,-1.1901347142\H,0,-2.0 437886829,-1.3652439807,-0.2158314394\H,0,2.0918497748,0.2038340981,5. 5907501731\H,0,2.101850196,0.3810521333,8.0602884488\H,0,-0.0432278509 ,0.4998190668,9.3074649271\H,0,-2.1931206503,0.4379613351,8.0638004588 \H,0,-2.1909810395,0.2610232857,5.5935306021\H,0,1.8833372877,-1.24863 74476,-0.2960159391\H,0,4.1658313896,-1.1785425978,-1.2693286249\C,0,-7.3409436018,0.8304222451,0.1668137677\H,0,-7.0903049864,1.8983073991, 0.1520699338\H,0,-8.2035991594,0.654885074,-0.4771247704\H,0,-7.589596 5532,0.5327511588,1.1930498111\C,0,6.2943592478,0.1156013052,-0.398855 9258\H,0,5.4572794705,1.396786313,1.8939783917\H,0,3.1858549929,1.3144 597142,2.8893321238\0,0,7.1880496007,0.8651629755,0.2820574518\C,0,8.5 005716162,0.9106739969,-0.2898821623\H,0,9.0885241006,1.5478691474,0.3 704543548\H,0,8.9326236019,-0.0915864143,-0.3412495796\H,0,8.466159600 2,1.3303542626,-1.2980975142\0,0,6.5698732206,-0.4798539385,-1.4157820 718\\Version=EM64L-G09RevC.01\State=2-A\HF=-1407.8025622\S2=0.772641\S 2-1=0.\S2A=0.750241\RMSD=3.642e-09\PG=C01 [X(C23H19N4O4)]\\

1y

1\1\GINC-OCTOPUS\SP\UB3LYP TD-FC\6-31G(2d,p)\C21H16N4O3(1-,2)\PIOTR\06 -Mar-2013\0\\#P UB3LYP/6-31G(2d,p) SCF=(tight, Direct) guess=check #P Geom=(NoDistance,NoAngle,check) TD(NStates=15)\\1-(4-MeOphenyl)-5-(4-o xyphenyl)-3-Ph 6-oxoverdazyl, C1 at the DFT geom\\-1,2\0,0,0.001718083 5,0.0184742481,-0.0184233004\C,0,-0.0039945441,0.0016693032,1.20185081 71\N,0,1.1600936557,-0.0000979738,1.9584187728\N,0,1.1894357673,0.1257 740758,3.3527741417\C,0,-0.0056686401,0.1550217476,3.912221924\N,0,-1. 1989047252,0.0680298921,3.3396405278\N,0,-1.1914933101,-0.0126623863,1 .953965835\C,0,-2.4569478662,0.0148271328,1.3434522583\C,0,-2.72281462 11,-0.5710123613,0.0779833706\C,0,-3.9935098993,-0.5737872127,-0.43969 05779\C,0,-5.1302722501,0.0128033683,0.2449633275\C,0,-4.808690402,0.6 021074936,1.5314922193\C,0,-3.5400418892,0.5928026927,2.0524533346\C,0 ,-0.0185843858,0.2697111934,5.3997038413\C,0,-1.2298487035,0.339686592 8,6.0993508963\C,0,-1.2414794332,0.4526655071,7.4869485644\C,0,-0.0447 726115,0.4971181392,8.2010564893\C,0,1.1654012849,0.4231212725,7.51200 14021\C,0,1.1793028686,0.3092780376,6.1247633118\C,0,2.4400655724,0.05 94514447,1.347762857\C,0,3.4878937131,0.6783157699,2.0367244\C,0,4.774 7762865,0.7304343525,1.5020029702\C,0,5.0375476065,0.1565844705,0.2591 959254\C,0,3.9970081203,-0.4709518318,-0.4314789175\C,0,2.7177759915,-0.5251036145,0.0992370125\H,0,-3.3332018288,1.0406079103,3.0161303871\ H,0,-5.625675391,1.0688261864,2.0750868051\0,0,-6.2882151717,0.0135264 259,-0.2327545339\H,0,-4.1902018047,-1.0371229213,-1.4026190242\H,0,-1 .9130487769,-1.0272731661,-0.4713377298\H,0,2.1139604887,0.2425509732, 5.581705418\H,0,2.104576739,0.45235998,8.0575692643\H,0,-0.0548655981, 0.5855685096,9.283652783\H,0,-2.1909617898,0.5057383181,8.0120561464\H ,0,-2.1535291719,0.2980908626,5.5358407448\H,0,1.927081923,-1.00887894 27,-0.4520111295\H,0,4.211755423,-0.9216800031,-1.3946116484\O,0,6.263 6259231,0.1495746444,-0.3603187373\H,0,5.5552601449,1.2238820052,2.068 400657\H,0,3.2811129547,1.1169215066,3.0025588261\C,0,7.3297482109,0.7 893699304,0.3028284016\H,0,7.1294577051,1.8575151446,0.4646514539\H,0, 7.5475491997,0.3236076462,1.2739931073\H,0,8.2025341518,0.6847846353,-0.345713595\\Version=EM64L-G09RevC.01\State=2-A\HF=-1254.5818391\S2=0. 76353\S2-1=0.\S2A=0.750143\RMSD=1.480e-09\PG=C01 [X(C21H16N4O3)]\\

1z

 $1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(2d,p)\C21H18N5O2(2)\PIOTR\01-Apr-20$ 13\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geo m=(NoDistance,NoAngle) fcheck\\1-(4-MeOphenyl)-5-(4-NH2phenyl)-3-Ph 6oxoverdazyl, C1\\0,2\0,0.0107731361,-0.0521549788,0.014512933\C,0.0047 450301,-0.0384167606,1.2282377947\N,1.1696169329,-0.0370747678,2.00236 47894\N,1.1801829064,0.047986536,3.3628650061\C,-0.0102622142,0.105234 75,3.9540737847\N,-1.1941278815,0.0656010127,3.3504578902\N,-1.1676989 331,-0.0249345909,1.9894383693\C,-2.4500767707,0.0299574977,1.35610639 8\C,-2.7363391492,-0.7150425784,0.2049505559\C,-4.0018810606,-0.661486 2773,-0.3534573182\C,-5.0057977442,0.1284822199,0.2206992621\C,-4.7216 907644,0.8679677745,1.3714858605\C,-3.4474789978,0.8146662093,1.931019 1815\C,-0.0170981132,0.2003803066,5.4364364487\C,-1.2275694578,0.24569 9464,6.1400078688\C,-1.23141583,0.3384940977,7.527952485\C,-0.02987192 59,0.386316681,8.2332632506\C,1.1780545288,0.3380986803,7.5391072223\C ,1.1868456965,0.2453099561,6.1511281332\C,2.4595872304,0.0049375221,1. 3844903919\C,3.4635424718,0.7742319078,1.9782852485\C,4.7360259578,0.8 145713006,1.4291792726\C,5.0414458203,0.0871398581,0.2692805807\C,4.02 62816968,-0.6840588651,-0.315666387\C,2.7523520896,-0.7292353416,0.231 4548827\H,-3.2231540759,1.380720827,2.825731281\H,-5.4750448187,1.4894 02443,1.8376928351\0,-6.2101304829,0.1057706914,-0.4104695338\H,-4.239 701145,-1.2335451612,-1.2428890265\H,-1.9705692537,-1.324835688,-0.251 0682176\H,2.1228293454,0.2020162918,5.6083419841\H,2.1185399663,0.3714