Supporting Information

A Water-Promoted Mechanism of Alcohol Oxidation on Au(111) Surface: Understanding toward the Catalytic Behavior of Bulk Gold

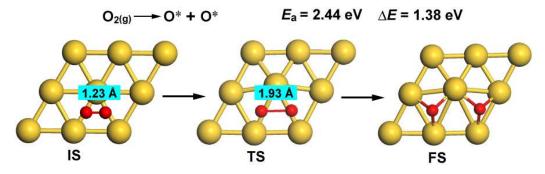
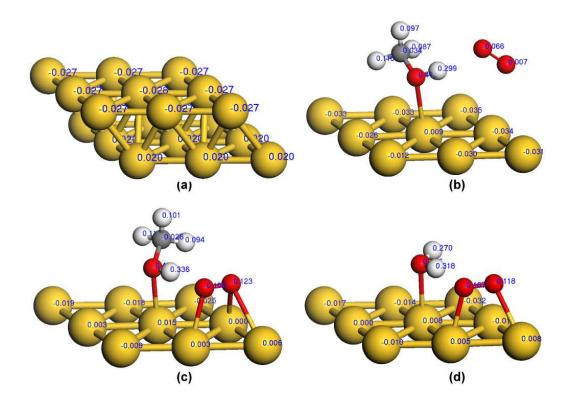
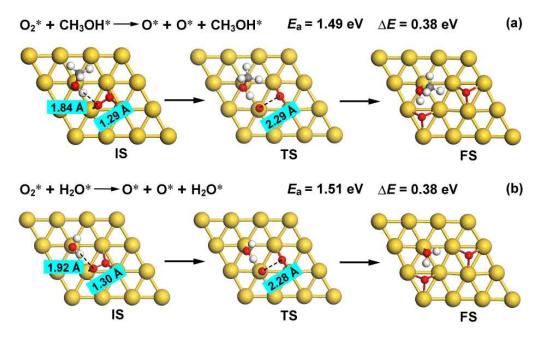
Chun-Ran Chang,¹ Xiao-Feng Yang,^{1,2} Bo Long,¹ and Jun Li¹*

- ¹ Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- ² State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- * To whom correspondence should be addressed. E-mail: junli@mail.tsinghua.edu.cn

Species	$E_{ad} (3 \times 3 \times 1) / eV^a$	$E_{ad} (7 \times 7 \times 1) / eV^{b}$	$ E_{\rm ad} $ / eV c
CH ₃ OH	-0.17	-0.16	0.01
CH ₃ O	-0.79	-0.87	0.08
CH ₂ O	-0.06	-0.06	0.00
0	-2.64	-2.73	0.09
ОН	-1.54	-1.61	0.07
OOH	-0.24	-0.30	0.06

Table S1. Calculated Adsorption Energy (E_{ad}) of the Key Species on Au(111) Surface Using Different *k*-points

^{*a*} Adsorption energy obtained using $3 \times 3 \times 1$ k-point. ^{*b*} Adsorption energy obtained using $7 \times 7 \times 1$ k-point. ^{*c*} The difference between E_{ad} ($3 \times 3 \times 1$) and E_{ad} ($7 \times 7 \times 1$), in absolute value.

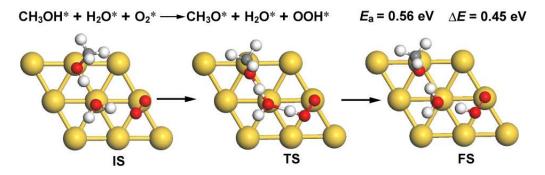

Figure S1. The dissociation of molecular oxygen on Au(111) surface.

Figure S2. Mulliken charge distribution on selected models. (a) top-two layers of Au(111) surface. (b) adsorbed CH_3OH and gas phasO₂. (c) co-adsorbed CH_3OH and O₂. (d) co-adsorbed H_2O and O_2 .

Figure S3. The dissociation of molecular oxygen in the presence of neighboring CH_3OH (a) and H_2O (b)on Au(111) surface.

Figure S4. The formation of OOH with a H₂O molecule locating in the middle of CH₃OH and O₂.

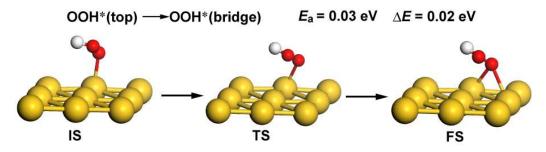


Figure S5. The diffusion of OOH* from top to bridge site on Au(111) surface.

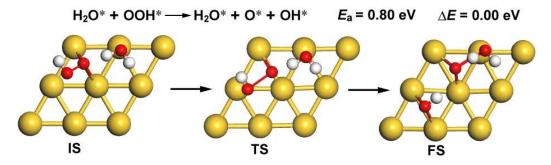
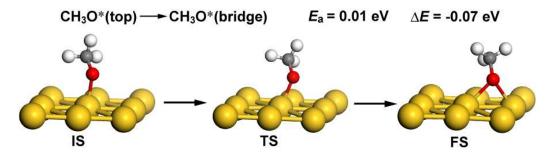



Figure S6. The dissociation of *OOH in the presence of neighboring H_2O on Au(111) surface.

Figure S7. The diffusion of CH_3O^* from top to bridge site on Au(111) surface.