Agreement of Land Use Regression models with personal exposure

measurements of particulate matter and nitrogen oxides air pollution Denise Montagne¹⁾, Gerard Hoek^{1,*)}, Mark Nieuwenhuijsen²⁾, Timo Lanki³⁾, Arto Pennanen³⁾, Meritxell Portella²⁾, Kees Meliefste¹⁾, Marloes Eeftens¹⁾, Tarja Yli-Tuomi³⁾, Marta Cirach Pradas²⁾, Bert Brunekreef^{1,4)}

- Institute for Risk Assessment Sciences (IRAS), University of Utrecht, Utrecht, the Netherlands 1)
- 2) Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- 3) Department of Environmental Health, National Institute for Health and Welfare (THL), Kuopio, Finland
- 4) Julius Center for Health Sciences and Primary Care, University Medical Center, University of Utrecht, Utrecht, the Netherlands

Contents

Supporting Information 1: LUR models	3
Table S1 ESCAPE Land Use Regression models for PM2.5 and Soot (Eeftens et al. 2012)	
Table S2 ESCAPE Land Use Regression models for NO2 and NOx (Beelen et al. 2013).	
Supporting Information 2: Temporal adjustment	
Table S3 Formula's for the imputation of missing values on the reference site	7
Table S4 The median slopes (β) per country of the within person (or temporal) relation between the outdoor measurements and the	
personal/indoor measurements.	8
Table S5 The median correlation coefficients (R) of the association between the home outdoor measurements and the personal/indo	or
measurements per participant, per city	8
Table S6 Median correlation coefficients (R) of the outdoor measurements versus the measurements at the reference site (including	
imputed values) per ID	
Table S7 The correlation of the corrected mean versus the uncorrected mean concentrations.	10
Supporting Information 3: Modeled PM2.5, NO2, NO _x and measured personal soot	11
Table S8 The coefficient of determination (R^2), the regression coefficient (β), the intercept (α) and the p-value (p) of the regression	
analysis of the ESCAPE measured soot concentrations versus the mean modeled PM2.5, NO2 and NOx concentrations.	11
Supporting Information 4: Site description	12
Table S9 Distribution of home characteristics	

	12
Figure S1 Maps of the VE3SPA sites in Helsinki (top left), Barcelona (top right) and Utrecht (bottom left).	14
Supporting Information 5: Quality assurance, quality control	15
Table S10 Field blanks and detection limit for PM2.5 (µg/m3), soot reflectance , NO2 and NO (µg/m3)	
Table S11 Number of included samples below the detection limit	16
Table S12 Duplicate measurements	
Supporting Information 6: Scatterplots modeled versus measured concentrations	
Figure S2 Regression plots of the corrected measured average versus modeled concentration for NO2 and NOx in Utrecht, Helsinki ar	nd
Barcelona	17
Supporting Information 7: Associations of modeled and measured concentrations using an alternative adjustment method for temporal	
variation	
Table S13 The coefficient of determination (R^2), the regression coefficient of the reference site (β r) the regression coefficient of the modeled concentrations (β m) and the intercept (a) of the regression analysis of the ESCAPE modeled concentrations versus the measured VE3SPA concentrations, with the measurements at the reference site included in the model	
Supporting Information 8: Environmental Tobacco Smoke	22
Table S14 Regression analyses of the modeled outdoor versus the measured indoor/personal concentrations, the measurements with environmental tobacco smoke (ETS) are excluded from analysis. Only participants with more than one measurement are included	
Supporting Information 9: Leave one out cross-validation Table S15 The minimum (MIN), maximum(MAX) and standard deviation (STD) of the R squares derived from the leave one out cross validation. N=15, for the 15 models where N-1=14 participants	5
References	24

Supporting Information 1: LUR models

Study area	LUR model ¹		R ² validation	RMSE ² (validation) (µg/m ³)	Number of sites ³	Measured concentration (µg/m ³) ⁴		
	PM2.5							
Helsinki/Turku , Finland	9.25 – 6.75E-6*NATURAL_500 ⁴ + 6.34E- 7*TRAFMAJORLOAD_50	67%	53%	1.0	20	8.6 [5.3 - 12.3]		
Netherlands/B elgium	9.46 + 0.42*REGIONALESTIMATE + 0.01*MAJORROADLENGTH_50 + 2.28E- 9*TRAFMAJORLOAD_1000	67%	61%	1.2	40	17.7 [12.7 – 21.5]		
Barcelona, Spain	16.21 - 4.08E-6*GREEN_1000 + 2.04E-7*TRAFLOAD_100 + 6.82E-3*INTINVDIST2	83%	71%	2.1	20	16.3 [8.4 - 24.4]		
	Soot							
Helsinki/Turku , Finland	1.15 + 2.09E-7*TRAFLOAD_50 - 1.15E-6*NATURAL_500 ⁴	65%	47%	0.3	20	1.1 [0.6 – 2.3]		
Netherlands/B elgium	0.07 + 2.95E-9*TRAFLOAD_500 + 2.93E- 3*MAJORROADLENGTH_50 + 0.85*REGIONALESTIMATE + 7.90E-9*HLDRES_5000 + 1.72E-6*HEAVYTRAFLOAD_50	92%	89%	0.2	40	1.7 [0.9 – 3.0]		
Barcelona, Spain	1.01 + 7.46E-6*HDRES_300 + 2.66E-3*INTINVDIST2 + 1.11E-7**TRAFLOAD_50	86%	80%	0.4	20	2.7 [0.9 – 4.9]		

Table S1 ESCAPE Land Use Regression models for PM2.5 and Soot (Eeftens et al. 2012)

1 Most variables are buffers with _xxx indicating the size of the buffer in m (e.g. HHOLD_500 is the number of households in a 500m buffer). TRAFLOAD is traffic intensity * length of road in a buffer. HDRES and LDRES are high and low density residential land use. INTINVDIST is product of traffic intensity and inverse distance to the nearest road. SQRALT is square root of altitude. Major road as road classes 0, 1 and 2 (motorways, main roads of major importance and other main roads) from the central road network or roads with more than 5,000 vehicles/day based upon local networks with linked traffic intensity. INTINVDIST is traffic intensity multiplied by inverse distance (squared).

2 RMSE is the root mean square error, which can be interpreted as the "average" residual (difference between observed and modeled concentration) 3 Number of sites that have been used for model development.

4 Mean [min - max]. Units are 10^{-5} m⁻¹ for soot.

Study area	LUR model ¹		R ² validation	RMSE ² (validation) (µg/m3)	Number of sites ³	Measured concentration (µg/m ³) ⁴
	NO2					
Helsinki and Turku, Finland	7.61 + 1.18E-5*TRAFLOAD_25 + 3.43E- 8*TRAFLOAD_25_1000 + 0.04*ROADLENGTH_25 + 1.24E- 3*ROADLENGTH_25_300 - 9.18E-5*URBGREEN_5004	83%	75%	3.4	40	18.9 [6.1 – 40.8]
Netherlands and Belgium			81%	5.1	80	30.9 [12.8 – 61.5]
Barcelona, Spain	3.16 + 6.26E-3*INTINVDIST1 + 1.18E-4*HDRES_300 + 992.09*DISTINVMAJOR2 + 3.51E-4*ROADLENGTH_1000	75%	68%	11.6	40	57.7 [13.8 - 109.0]
	NOx					
Helsinki and Turku, Finland	12.56 + 3.46E-5*TRAFLOAD_25 + 4.92E- 8*TRAFLOAD_25_1000 + 1.70E-2*ROADLENGTH_100 - 5.58E-5*URBGREEN_10004 + 2.54E-3*HHOLD_300	85%	74%	7.8	40	30.6 [8.6 - 94.7]
Netherlands and Belgium	3.25 + 0.74*REGIONALESTIMATE + 4.22E-6*TRAFLOAD_50 + 6.36E-4*POP_1000 + 2.39E-6*HEAVYTRAFLOAD_500 + 71.65*DISTINVMAJOR1 + 0.21*MAJORROADLENGTH_25	87%	82%	11.2	80	51.8 [17.5 - 130.8]
Barcelona, Spain	32.85 + 2.55E-4*HDRES_300 + 2815.14*DISTINVMAJOR2 + 3.87E-5*TRAFLOAD_25	73%	65%	27.7	40	101.3 [21.0 - 236.4]

Table S2 ESCAPE Land Use Regression models for NO2 and NOx (Beelen et al. 2013)

¹ Most variables are buffers with _xxx indicating the size of the buffer in m (e.g. HHOLD_500 is the number of households in a 500m buffer). TRAFLOAD is traffic intensity*length of road in a buffer. HDRES and LDRES are high and low density residential land use. INTINVDIST is product of traffic intensity and inverse distance to the nearest road. SQRALT is square root of altitude. Major road as road classes 0, 1 and 2 (motorways, main roads of major importance and other main roads) from the central road network or roads with more than 5,000 vehicles/day based upon local networks with linked traffic intensity. INTINVDIST is traffic intensity multiplied by inverse distance (squared). DISTINVMAJOR is inverse distance to a major road. 2 RMSE is the root mean square error, which can be interpreted as the "average" residual (difference between observed and modeled concentration) 3 Number of sites that have been used for model development.

Supporting Information 2: Temporal adjustment

In the Netherlands, measurements were done in 32 weeks (2 extra weeks were scheduled to replace some missing data). During two of these measuring weeks, data from the reference site were missing because of technical failure. In Spain, the number of measuring weeks was 30. Out of these 30 weeks, 7 had missing data at the reference site. Four missing measurements occurred because no units were available and three because of technical failure.

For the missing measurements on the reference site in Spain and the Netherlands, imputation was applied. The measurements on the reference site were compared to measurements at fixed monitoring sites from the RIVM ('Rijksinstituut voor Volksgezondheid en Milieu', the National institute for Public Health and the Environment) in the Netherlands and the National Network in Barcelona (Gencat, Generalitat de Catalunya). The regression formula comparing the VE³SPA reference site with the fixed site was used to calculate the concentrations for the missing data (Table S3).

In the Netherlands, the R^2 of soot on the VE³SPA reference site compared to black smoke on site 738 of the RIVM was 0.70. NO₂ and NO_x also correlated best with site 738 and had a R^2 of 0.61 and 0.73 respectively. For PM_{2.5} the best correlation (R^2 =0.69) was with the PM₁₀ concentration on site 633 of the RIVM. In Spain, the VE³SPA PM_{2.5} concentrations at the reference site correlated with a R^2 of 0.66 with the PM₁₀ (better than with PM_{2.5}) measured at the IES Verdaguer site (Gencat). The NO₂ concentration at Hospitalet was used for the imputation of NO₂, the R^2 was 0.64. For NO_x the concentrations of NO₂ and NO at the Hospitalet site were combined. This correlated with an R^2 of 0.75 with the VE³SPA NO_x measurements. The NO_x concentrations were also used for the imputation of soot because soot was not available in the network, the R^2 was 0.61.

Country	Comp	Independent comp, site	n	a	β	Formula ¹	R ²
NL	Soot	BS, 738	28	0,27	0,12	Vref=0.27+0.12*F	0,70
NL	PM _{2.5}	PM _{2.5} , 633	29	-3,78	0,78	Vref=-3,78+0,78*F	0,69
NL	NO ₂	NO ₂ , 738	30	5,82	0,95	Vref=5,82+0,95*F	0,61
NL	NO _x	NO _x , 738	30	1,73	1,51	Vref=1,73+1,51*F	0,73
Spain	PM _{2.5}	PM_{10} , Verdaguer	20	-10,08	0,85	Vref=-10,08+0,85*F	0,66
Spain	Soot	NO _x , Hospitalet	22	-0,06	0,03	Vref=-0,06+0,03*F	0,61
Spain	NO ₂	NO ₂ , Hospitalet	24	-0,16	1,21	Vref=-0,16+1,21*F	0,64
Spain	NO _x	NO _x , Hospitalet	24	6,96	1,26	Vref=6,96+1,26*F	0,71

Table S3 Formula's for the imputation of missing values on the reference site.

The imputed component (comp) and the independent component with the name or number of the fixed monitor site, the number of measurements in the linear regression (n), the intercept (a), the Beta (β) and the R² are given and entered in the imputation formula. Note: Black Smoke and soot are different methods for Black Carbon determination.

1 Vref is the VE3SPA reference site and F is the fixed reference site

The median slopes that were used for the temporal adjustment of the indoor and personal measurements per country are shown (Table S4). The slopes were consistent across the three countries and were all smaller than 1. This makes the influence of the adjustment with the reference site less, which is plausible for the indoor and personal measurements. The median correlation coefficients (R) of these regressions are shown in Table S5.

Table S4 The median slopes (β) per country of the within person (or temporal) relation between the outdoor measurements and the personal/indoor measurements.

Correlation β	Finland		Netherla	nds	Spain	
Component	indoor	pers	indoor	pers	indoor	pers
Soot (10-5/m)	0,49	0,42	0,68	0,66	0,62	0,40
PM2.5 (µg/m3)	0,38	0,60	0,41	0,44	0,59	0,64
NO2 (µg/m3)	0,11	0,35	0,29	0,37	0,20	0,25
NOx (µg/m3)	0,65	0,80	0,44	0,75	0,88	0,60

Table S5 The median correlation coefficients (R) of the association between the home outdoor measurements and the personal/indoor measurements per participant, per city

	Hels	Helsinki		Utrecht		lona	
Component	indoor	pers	indoor	pers	indoor	pers	
PM _{2.5}	0.51	0.67	0.82	0.71	0.79	0.41	
Soot	0.79	0.72	0.95	0.89	0.81	0.67	
NO ₂	0.25	0.77	0.57	0.77	0.48	0.43	
NOx	0.85	0.91	0.84	0.85	0.95	0.86	
*All correlation coefficients were statistically significant (p<0.05)							

Table S6 Median correlation coefficients (R) of the outdoor measurements versus the measurements at the reference site (including the imputed values) per ID

Median Correlation	Finland	Neth	erlands	Spain	
Component	ref	ref		ref	
Soot (10-5/m)	0),90	0,88		0,72
PM2.5 (µg/m3)	(),88	0,92		0,79
NO2 (µg/m3)	0),97	0,92		0,89
NOx (µg/m3)	0),95	0,93		0,86

After imputing the missing measurements at the reference site, the measurements at the reference site were plotted against the outdoor measurements per participant to show the temporal association of the measurements at the reference site and the outdoor concentrations at the participant address. The median correlation coefficients are shown in Table S6. For most of the volunteers in the three countries, the reference site was well able to predict the temporal fluctuation of the outdoor measurements at the home addresses, the median correlation coefficients in Finland and the Netherlands were very good. This supports the use of the reference site to correct for temporal variability. In Spain, the median correlation coefficients were lower for especially soot and PM_{2.5}, but still good. If only the non-imputed measurements at the reference site are plotted, the median correlation coefficients for Spain are a bit higher for soot (0.78) and lower (0.73) for PM_{2.5}. This indicates that the reference site in Spain was less predictive for the temporal fluctuations at the sites, which was not explained by the larger number of imputed values.

The corrected mean concentrations correlated well with the uncorrected mean of the measurements (Table S7). The correlation of the corrected and uncorrected mean was less for $PM_{2.5}$ than for the other components, as observed in the ESCAPE project.^{1, 2} This was explained by the authors by the observation that the measured $PM_{2.5}$ concentration had lower seasonal variability and were more dependent on the weather, resulting in larger within season variability. Therefore the uncorrected mean could deviate more from the corrected mean.¹

The outdoor corrected measurements had lower correlations with the uncorrected measurements than the indoor and personal measurements. This was a result of the procedure in which for the outdoor measurements we directly subtracted the differences at the reference site, while we used the difference multiplied by an indoor/outdoor slope (<1) for the indoor and personal measurements.

PM2.5	Outdoor R ²	Indo R ²	or	Personal R ²
Netherlands	0,4	łO	0,96	0,85
Finland	0,2	26	0,99	0,86
Spain	0,4	1	0,77	0,85
Soot	Outdoor	Indo	or	Personal
	R ²	R ²		R ²
Netherlands	0,9)3	0,89	0,81
Finland	0,8	31	0,99	0,98
Spain	0,6	59	0,81	0,87
	_	_		
NO2	Outdoor	Indo	or	Personal
NO2	Outdoor R ²	Indo R ²	or	Personal R ²
NO2 Netherlands		R ²	0,99	
	R ²	R²		R ²
Netherlands	R² 0,9	R² 95 81	0,99	R² 0,97
Netherlands Finland	R² 0,9 0,8	R² 95 31 38	0,99 1,00 0,99	R² 0,97 0,98
Netherlands Finland Spain	R² 0,9 0,8 0,8	R² 95 31 38	0,99 1,00 0,99	R² 0,97 0,98 0,97
Netherlands Finland Spain	R² 0,9 0,8 0,8 Outdoor	R² 95 31 38 Indo R²	0,99 1,00 0,99	R² 0,97 0,98 0,97 Personal
Netherlands Finland Spain NOx	R² 0,5 0,8 0,8 Outdoor R²	R² R ² Indo R ² R ²	0,99 1,00 0,99	R² 0,97 0,98 0,97 Personal R²

Table S7 The correlation of the corrected mean versus the uncorrected mean concentrations.

Supporting Information 3: Modeled PM2.5, NO2, NO_x and measured personal soot

In Table S8 the associations of the measured soot concentrations with the modeled personal $PM_{2.5}$, NO_2 and NO_x concentrations are shown. Associations are usually stronger than with the personal exposure of the component itself.

Helsinki							
Model	R2	β	α	р			
PM2.5	0.29	0.29	-1.68	0.04			
NO2	0.47	0.04	0.01	0.00			
NOx	0.49	0.02	0.16	0.00			
	U	recht					
Model	R2	β	α	р			
PM2.5	0.32	0.09	-0.44	0.03			
NO2	0.60	0.02	0.46	0.00			
NOx	0.55	0.01	0.61	0.00			
	Bar	celona					
Model	R2	β	α	р			
PM2.5	0.00	0.01	2.00	0.81			
NO2	0.16	0.01	1.42	0.15			
NOx	0.21	0.00	1.64	0.08			

Table S8 The coefficient of determination (R^2), the regression coefficient (β), the intercept (α) and the p-value (p) of the regression analysis of the ESCAPE measured soot concentrations versus the mean modeled PM2.5, NO2 and NOx concentrations.

Supporting Information 4: Site description

		Utrecht	Barcelona	Helsinki
Traffic intensity (veh.day ⁻¹)*	Traffic site	16805 (5066)	21722 (9840)	18675(13886)
	Urban background	1511 (1660)	10254 (7386)	1053 (747)
	Semi-urban background	542 (453)	1040 (721)	867 (1770)
Sampling height (m)*	Traffic site	3.3 (7.2)	5.2 (4.1)	15.4 (9.2)
	Urban background	4.3 (0.8)	6.4 (3.4)	10.8 (6.6)
	Semi-urban background	4.4 (3.3)	9.4 (4.9)	2.4 (1.4)
House type	Detached family home	0	0	2
	Attached family home	11	0	2
	Flat/apartment	4	15	11
Home volume	<100 m ³	0	3	3
	100-200 m ³	6	8	6
	200-300 m ³	5	2	4
	>300 m ³	4	2	2
Built	1800-1944	8	3	2
	1945-1979	5	10	8
	>1980	2	2	5
Type kitchen is op	oen (n (%))	9 (60)	0 (0)	6 (40)
Air conditioning (n)	1 (6.7)	8 (53)	0 (0)
Heating	Central in home	11	2	1
	District	1	0	11
	Separate gas/oil heaters	3	6	0
	Electric	0	4	3

Table S9 Distribution of home characteristics

	No heating	0	3	0
Cooking on gas (n %)		12 (80)	14 (93)	1 (6.7)
Living room on	Ground level	6	0	6
	First floor	6	8	3
	>2nd floor	3	7	6
Fume hood	No fume hood	5	5	3
	Exhaust air recirculated	2	0	3
	With external vent (<i>n</i> (%))	8	10	9
Pet in home	Cat	6	0	3
	Dog	4	1	3
	Other	5	1	1
Floor cover	Smooth	9	10	6
	Carpet	2	4	0
	Rug (larger than 1 m^3)	4	1	9

* Mean (standard deviation). Traffic counted manually (van Roosbroeck, 2007)

to the second

Figure S1 Maps of the VE3SPA sites in Helsinki (top left), Barcelona (top right) and Utrecht (bottom left).

Supporting Information 5: Quality assurance, quality control

Table S10 describes the results of the field blanks that were collected. Overall, the field blanks were low, although there were a few blank $PM_{2.5}$ measurements that had quite high negative values. It could be that while transporting the filters to the filter cassette, a small part of the support filter was shipped of. This was not noted by the field worker and thus the blank was still included in the analyses. The soot measurements were all above the detection limit (DL), most $PM_{2.5}$ and NO_2 as well (Table S11).

The measurements that were below the detection limit are nonetheless included in the analysis. Finland had the most measurements under the detection limit, because of the overall low concentrations in Finland (section 6.2.6).

The results of the duplicate measurements are described in Table S12. Most coefficients of variation are about 10% which is acceptable. The CV for $PM_{2.5}$ is larger for the Netherlands than for Finland and Spain. For some of the duplicate measurements a pump unit was used that had given some technical problems in the past. The best units were used for the actual measurements. The coefficient of variance (CV) for $PM_{2.5}$ of 21.63% in the Netherlands thus likely gives an upper estimate of the uncertainty. A CV value of 10% in individual measurements translates into a CV of the average (based upon six measurements) of about 4% (10% / $\sqrt{6}$). A CV value of 20% in individual measurements translates into a CV of the average (based upon six measurements) of about 4% (20% / $\sqrt{6}$). Because of the small number of personal duplicates for $PM_{2.5}$, soot and NO₂, these CV values are less interpretable.

	N field blanks		Average	e field bl	ank		Detection	on limit		
Study area	PM2.5	NOx	РМ2.5 (µg)	Soot*	NO2 (µg)	NOx (µg)	PM2.5 (μg/ m³)	Soot (10 ⁻⁵ m ⁻¹)	NO2 (µg/ m³)	NOx (µg/ m³)
Utrecht	15	13	0.00	102.7	01	- 0,99	1.22	0.12	2,1	12,0
Helsinki	16	17	0.00	101.9	0.51	1,24	2.35* *	0.11	5,8	5,8
Barcelona	15	13	0,01	102.3	0.54	1,75	5.17†	0.13	1,9	4,3

Table S10 Field blanks and detection limit for PM2.5 (μ g/m3), soot reflectance , NO2 and NO (μ g/m3)

*this is the R0 in the formula for the absorption coefficient that can be found on page 11.

** When the sample of S13 8-10-2010 (filter 10756) was excluded, the detection limit was 1.15 μ g/m³

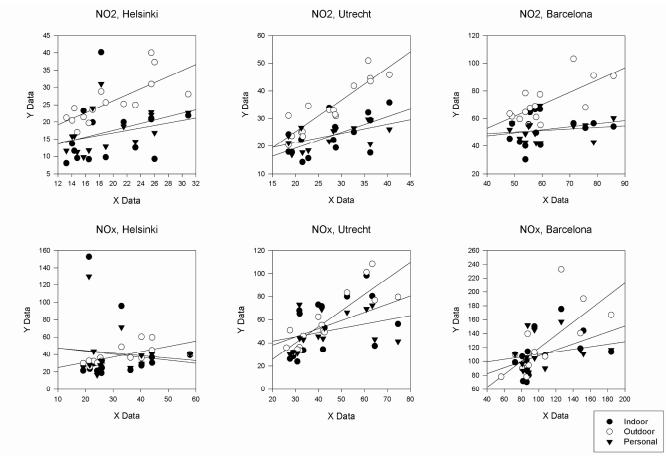
 $^+$ When the sample of F113 at 6-12-2010 (filter 10534) was excluded, the detection limit was 0.73 $\mu\text{g}/\text{m}^3$

Table S11 Number of included samples below the detection limit.

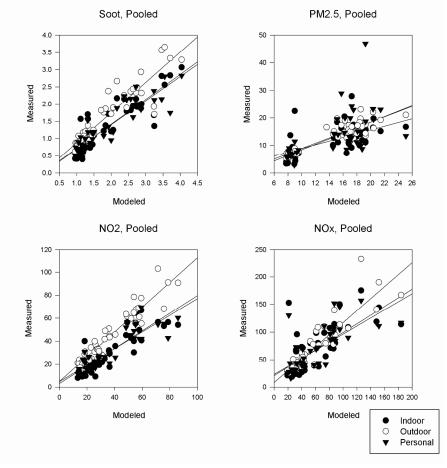
measurements (n)										
Study area	PM _{2.5}	Soot	NO ₂	NOx						
Utrecht	1	0	0	7						
Helsinki	16*	0	5	8						
Barcelona	8*	0	1	0						

* When the Blank filters 10756 and 10534 were excluded from the detection limit calculations, none of the filters were below detection limit.

Table S12 Duplicate measurements


	n dupl	icates	CV (%)						
		Outo	loor/Indoor Duplicates						
Study area	PM _{2.5} / soot	NO _x	PM _{2.5}	Soot	NO ₂	NO _x			
Utrecht	13	17	21,6%	11,1%	9,0%	10,2%			
Helsinki	15	14	11,5%	12,6%	9,0%	8,3%			
Barcelona	15	5	9,2%	6,8%	20,3%	5,7%			
		F	Personal Du	plicates					
Utrecht	4	5	7,7%*	21,8%*	4,7%	3,0%			
Helsinki	5	5	9,2%	7,5%	6,6%	26,7%†			
Barcelona	5	3	40,8%**	27,6%	4,4%	7,4%			

*if we don't include volunteer N16, the Dutch CV would be 2.31% for PM2.5 and 7.10% for Soot.


** If we don't include the personal duplicate measurement of volunteer S19 than the CV would be 23,65% for $PM_{2.5}$ +9.1% if not including volunteer F994

Supporting Information 6: Scatterplots modeled versus measured concentrations

Figure S2 Regression plots of the corrected measured average versus modeled concentration for NO2 and NOx in Utrecht, Helsinki and Barcelona

S17

Figure S3 Regression of the pooled data set of the three countries.

Supporting Information 7: Associations of modeled and measured concentrations using an alternative adjustment method for temporal variation

When the concentrations were corrected by including the measurements at the reference site in the model, the results were comparable with the absolute differences correction method (Table S13). The p-values for the modeled concentrations (pm) show the probability that adding the modeled concentrations in the regression model is significant. With this method, the outdoor NO_x in Finland is not significant anymore. Also with the reference site included in the model, we see that the models significantly predict the outdoor concentrations of soot, NO_2 and NO_x in the three countries. Table S13 shows that the indoor NO_x for the Netherlands and Spain was significant when including the reference site in the model. With the absolute differences method, these associations were borderline significant. No associations were found with personal exposure.

Table S13 The coefficient of determination (R ²), the regression coefficient of the reference site (βr) the regression coefficient of the
modeled concentrations (β m) and the intercept (α) of the regression analysis of the ESCAPE modeled concentrations versus the mean
measured VE3SPA concentrations, with the measurements at the reference site included in the model

PM2.5		Out	door			Ind	oor			Pers	onal	
	R2	βr	βm	a	R2	βr	βm	a	R2	βr	βm	a
Netherlands	0,66	0,86*	1,08*	-13,88	0,57	1,37*	0,32	-10,94	0,35	0,62*	-0,39	10,12
Finland	0,78	0,93*	0,61	-4,88	0,23	1,44	1,34	-14,08	0,21	0,46	1,14	-6,61
Spain	0,57	0,84*	0,23	-0,79	0,06	0,27	0,00	11,86	0,06	0,64	-0,34	18,43
Soot		Out	door			Ind	oor			Pers	onal	
	R2	βr	βm	a	R2	βr	βm	a	R2	βr	βm	a
Netherlands	0,83	1,60*	1,16*	-1,92	0,81	1,39*	0,65*	-1,24	0,68	1,03*	0,37*	-0,48
Finland	0,60	1,26*	0,94*	-1,22	0,41	1,84	1,93*	-2,99	0,47	1,13	1,45*	-1,86
Spain	0,67	-0,02	0,90*	0,01	0,61	-0,07	0,72*	0,16	0,49	0,53+	0,28	0,38
NO2		Out	door			Ind	oor			Pers	onal	
	R2	βr	βm	a	R2	βr	βm	a	R2	βr	βm	a
Netherlands	0,89	1,84*	1,08*	-39,08	0,57	1,38*	0,52*	-23,28	0,58	1,01*	0,30*	-8,45
Finland	0,51	0,87	0,80*	-14,60	0,09	0,59	0,31	-5,78	0,28	0,58	0,47	-7,81
Spain	0,67	-0,23	1,05*	20,27	0,11	0,45	0,19	16,85	0,10	-0,36	0,20	58,37
NOx		Out	door			Ind	oor			Pers	onal	
	R2	βr	βm	a	R2	βr	βm	α	R2	βr	βm	a
Netherlands	0,87	2,49*	1,36*	-89,87	0,76	3,67*	0,61*	-104,27	0,65	2,63*	0,30	-57,34
Finland	0,41	1,28†	0,49†	-28,28	0,11	2,54	-0,31	-48,15	0,13	2,09	-0,28	-30,44
	0,58	0,12	1,01*	9,67	0,31	0,22	0,48†	43,59	0,14	-0,22	0,25	104,39

Concentrations are corrected for weather differences using the inclusion of the reference site in the regression analysis method. β r reflects temporal variation. Bm the spatial component. The R² cannot be compared with Table 4 from the main paper. * Significant at the p<0.05 level † Significant at the p<0.10 level

PM2.	5	Out	door	Ind	oor	Pers	onal		
		pr pm		pr	pr pm		pr pm		
	Netherlands	0,002	•	-	0,589	-	-		
	Finland	0,000			•	•	0,315		
	Spain	0,002	-	-	-	-	0,707		
Soot		Out	door	Ind	oor	Pers	onal		
		pr	pm	pr	pm	pr	pm		
	Netherlands	0,004	0,000	0,001	0,000	0,004	0,008		
	Finland	0,011	0,007	0,120	0,026	0,136	0,012		
	Spain	0,946	0,001	0,799	0,002	0,060	0,136		
NO2		Out	door	Ind	oor	Pers	onal		
		pr	pm	pr	pm	pr	pm		
	Netherlands	0,001	0,000	0,030	0,017	0,015	0,026		
	Finland	0,153	0,018	0,510	0,500	0,333	0,132		
				0 474	0 501	0 40 4	0 210		
	Spain	0,646	0,000	0,474	0,501	0,424	0,310		
NOx	Spain	,	0,000 door	· · · · · ·	0,501	0,424 Perse	•		
NOx	Spain	,	-	· · · · · ·	•	Pers	•		
NOx	Spain Netherlands	Out	door pm	Ind pr	oor pm	Perso	onal pm		
NOx	•	Outo	door pm 0,000	Ind pr	oor pm 0,027	Perse pr 0,001	onal		

P values Table S13

			ETS	excluded	from ana	yses					
PM2.5			Indoor			-		Personal			
Country	Ν	R ²	β	α	р	Ν	R ²	β	a	р	
Netherlands	15	0,01	0,31	6,74	0,67	15	0,07	-0,39	18,18	0,35	
Finland	15	0,04	1,90	-8,36	0,45	15	0,03	0,85	-0,58	0,51	
Spain	13	0,00	0,08	14,96	0,86	13	0,01	-0,31	28,26	0,76	
Soot Indoor							Personal				
Country	Ν	R ²	β	a	р	Ν	R ²	β	a	р	
Netherlands	15	0,64	0,63	0,10	0,00	15	0,42	0,35	0,50	0,01	
Finland	15	0,30	1,83	-1,29	0,04	15	0,38	1,34	-0,75	0,01	
Spain	13	0,35	0,49	0,69	0,03	13	0,14	0,25	1,42	0,21	
NO2			Indoor			Personal					
Country	Ν	R ²	β	a	р	Ν	R ²	β	a	р	
Netherlands	15	0,34	0,56	8,22	0,02	15	0,27	0,27	16,09	0,05	
Finland	15	0,02	0,23	13,16	0,65	15	0,18	0,49	7,60	0,12	
Spain	15	0,11	0,32	31,27	0,23	15	0,03	0,14	42,81	0,54	
NOx			Indoor					Personal			
Country	Ν	R ²	β	a	р	Ν	R ²	β	a	р	
Netherlands	15	0,12	0,53	30,80	0,21	15	0,05	0,23	39,32	0,42	
Finland	15	0,01	-0,33	50,54	0,72	15	0,01	-0,25	48,74	0,72	
Spain	15	0,17	0,40	67,87	0,13	15	0,01	0,10	101,20	0,67	

Supporting Information 8: Environmental Tobacco Smoke

Table S14 Regression analyses of the modeled outdoor versus the measured indoor/personal concentrations, the measurements with environmental tobacco smoke (ETS) are excluded from analysis. Only participants with more than one measurement are included.

The number of participants included in the analysis (N), the coefficient of determination (R^2), the regression coefficient (β), the intercept (a) and the p-value (p) of the model.

	-	Outdoor Soot	Outdoor PM _{2.5}	Outdoor NO ₂	Outdoor NOx
Helsinki	MIN	0.50	0.12	0.50	0.36
	MAX	0.68	0.28	0.71	0.62
	MEAN	0.57	0.21	0.56	0.42
	STD	0.04	0.05	0.05	0.06
Utrecht	MIN	0.72	0.37	0.79	0.72
	MAX	0.80	0.54	0.87	0.83
	MEAN	0.75	0.43	0.82	0.75
	STD	0.02	0.05	0.02	0.03
Barcelona	MIN	0.26	0.02	0.41	0.42
	MAX	0.49	0.17	0.60	0.68
	MEAN	0.33	0.10	0.49	0.51
	STD	0.06	0.04	0.05	0.06
	-	Personal Soot	Personal PM _{2.5}	Personal NO ₂	Personal NOx
Utrecht	MIN	0.37	0.01	0.28	0.07
	MAX	0.61	0.28	0.50	0.30
	MEAN	0.44	0.07	0.35	0.14
	STD	0.06	0.06	0.06	0.07
Barcelona	MIN	0.05	0.00	0.00	0.04
	MAX	0.42	0.06	0.12	0.14
	MEAN	0.20	0.01	0.03	0.07
	STD	0.08	0.02	0.03	0.03
Helsinki	MIN	0.28	0.03	0.15	0.01
	MAX	0.45	0.17	0.40	0.08
	MEAN	0.39	0.08	0.21	0.02
			0.04	0.06	0.02

Supporting Information 9: Leave one out cross-validation

Table S15 The minimum (MIN), maximum(MAX) and standard deviation (STD) of the R squares derived from the leave one out cross validation. N=15, for the 15 models where N-1=14 participants.

References

1. Eeftens, M.; Tsai, M.; Ampe, C.; Anwander, B.; Beelen, R. Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. *Atmospheric Environment* **2012**, *62*, 303-317.

2. Eeftens, M.; Beelen, R.; de Hoogh, K., et al Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. *Environ. Sci. Technol.* **2012**, *46*, 11195-11205.