Supporting Information

Ni-doped graphene/carbon cryogels and their applications as versatile candidates for water purification

Gao Wei † , Yue-E Miao † , Chao Zhang † , Zhe Yang † , Zhenyan Liu † , Weng Weei Tjiu ‡ , Tianxi Liu †,*

- [†] State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China.
- [‡] Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
- * Corresponding author. E-mail: txliu@fudan.edu.cn (T. X. Liu), Tel: +86-21-55664197; Fax: +86-21-65640293.

Figure S1. AFM image of graphene oxide monolayer (a), and the corresponding height profile (b).

Figure S2. Compressive stress-strain curves of CC, GCC and NGCC.

Figure S3. The nitrogen-sorption isotherm and the BJH (Barret-Joyner-Halenda) desorption pore size distribution curve of NGCC. The inset is the cumulative pore volume-pore diameter curve.

Figure S4. Adsorption isotherm of NGCC prepared with 6 mg/mL GO concentration. q_e (mg/g) is the amount of dyes adsorbed at equilibrium, and C_e (mg/mL) is the equilibrium solute concentration.

Figure S1

Figure S2

Figure S3

Figure S4

Table S1. Langmuir isotherm parameters for MB adsorption of NGCC

Adsorbent	$q_{\text{max}} (\text{mg g}^{-1})$	$b (\mathrm{L mg}^{-1})$	R ²
NGCC (6 mg/mL GO)	151	0.069	0.993