Supporting Information Modular Synthesis of \mathbf{N}-Vinyl Benzotriazoles

Govindra Singh, Rakesh Kumar, Jorge Swett, and Barbara Zajc*
Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031-9198

Table of Contents

Information	Page
General Experimental Considerations	5
5-[(Chloromethyl)thio]-1-phenyl-1H-tetrazole (1)	5
5-[(lodomethyl)thio]-1-phenyl-1H-tetrazole (2)	5
5-[(Azidomethyl)thio]-1-phenyl-1 H -tetrazole (3)	6
1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (4)	6
1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (5)	7
Oxidation of 4 with $\mathrm{H}_{5} \mathrm{I} \mathrm{O}_{6} / \mathrm{CrO}_{3}$	7
Oxidation of 4 with $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{2}$	8
Condensations of Sulfone 5 with Carbonyl Compounds	8
Method A. General Procedure.	8
Method B. General Procedure.	9
(E/Z)-1-(4-Methoxystyryl)-1H-benzo[d][1,2,3]triazole (E/Z-6)	9
(E/Z)-1-(2-Methoxystyryl)-1H-benzo[d][1,2,3]triazole (E/Z-7)	10
(E/Z)-1-(2-Fluorostyryl)-1H-benzo[d][1,2,3]triazole (E/Z-8)	10
(E/Z), (E)-, and (Z)-1-[(4-Trifluoromethyl)styryl]-1H-benzo[d][1,2,3]triazole (E/Z-9, E-9, Z-9)	11
(E)- and (Z)-1-[2-(Thiophen-2-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E-10 and Z-10)	12
(E/Z)-1-[2-(Benzofuran-5-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-11)	13
(E/Z), (E)-, and (Z)-1-[2-(1-Tosyl-1H-indol-3-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-12, E- 12, Z-12)	13
(E / Z), (E)-, and (Z)-1-[2-(1-Tosyl-1H-imidazol-4-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-13, E-13, Z-13)	14
(E/Z)-1-(Non-1-enyl)-1H-benzo[d][1,2,3]triazole (E/Z-14)	15
(E/Z)-1-(3-Ethylpent-1-enyl)-1H-benzo[d][1,2,3]triazole (E/Z-15)	15
(E/Z)-1-(2-Cyclohexylvinyl)-1H-benzo[d][1,2,3]triazole (E/Z-16)	16
(S,E/Z)-1-(4,8-Dimethylnona-1,7-dienyl)-1H-benzo[d][1,2,3]triazole (E/Z-17)	17
1-[(1-Benzylpiperidin-4-ylidene)methyl]-1H-benzo[d][1,2,3]triazole (18)	17
Cycloaddion Reactions of Azide 3 with Substituted Benzynes: General Procedure.	18
1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (19)	18
5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (20)	18
4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio)methyl]\}-1H-benzo[d][1,2,3]triazole (21)	19
5- and 6-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22a and 22b)	19
5- and 6-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (23a and 23b)	20
4- and 7-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (24a and 24b)	21
1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (25)	22

1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (26)	22
4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (27)	23
5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (28)	24
Condensations of Sulfone 28 with Carbonyl Compounds	25
Method A. General Procedure	25
(E/Z), (E)-, and (Z)-5,6-Dimethoxy-1-[2-(1-tosyl-1H-imidazol-5-yl)vinyl]-1Hbenzo[d][1,2,3]triazole (E/Z-29, E-29, Z-29)	25
(S,E/Z)-1-(4,8-Dimethylnona-1,7-dienyl)-5,6-dimethoxy-1H-benzo[d][1,2,3]triazole (E/Z-30)	26
Condensations of Sulfone 26 with Carbonyl Compounds	26
Method A. General Procedure	27
(E/Z)-1-(3,4,5-Trimethoxystyryl)-1H-naphtho[2,3-d][1,2,3]triazole (E/Z-31), Method A	27
(E/Z)-1-(3,4,5-Trimethoxystyryl)-1H-naphtho[2,3-d][1,2,3]triazole (E/Z-31), Method B	28
(E/Z), (E)-, and (Z)-1-(4-(Trifluoromethyl)styryl)-1H-naphtho[2,3-d][1,2,3]triazole (E/Z-32, E32, Z-32)	28
$\begin{aligned} & (E / Z),(E)-\text {, and }(Z)-1-(3-E t h y l p e n t-1-e n y l)-1 H \text {-naphtho[2,3-d][1,2,3]triazole (E/Z-33, E-33, Z- } \\ & 33) \end{aligned}$	29
Attempted Isomerizations of E/Z-6 (E/Z 23/77)	30
I_{2}-Catalyzed	30
Pd(II)-Catalyzed	30
Under Basic Conditions	31
Under Photochemical Conditions	31
References	31
${ }^{1} \mathrm{H}$ NMR of 5-[(Chloromethyl)thio]-1-phenyl-1H-tetrazole (1)	32
${ }^{13} \mathrm{C}$ NMR of 5-[(Chloromethyl)thio]-1-phenyl-1H-tetrazole (1)	33
${ }^{1} \mathrm{H}$ NMR of 5-[(lodomethyl)thio]-1-phenyl-1H-tetrazole (2)	34
${ }^{13} \mathrm{C}$ NMR of 5-[(lodomethyl)thio]-1-phenyl-1H-tetrazole (2)	35
${ }^{1} \mathrm{H}$ NMR of 5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole (3)	36
${ }^{13} \mathrm{C}$ NMR of 5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole (3)	37
${ }^{1} \mathrm{H}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (4)	38
${ }^{13} \mathrm{C}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (4)	39
${ }^{1} \mathrm{H}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (5)	40
${ }^{13} \mathrm{C}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (5)	41
${ }^{1} \mathrm{H}$ NMR of E/Z-6 (E/Z 79/21)	42
${ }^{13} \mathrm{C}$ NMR of E/Z-6 (E/Z 79/21)	43
${ }^{1} \mathrm{H}$ NMR of E/Z-6 (E/Z 26/74)	44
${ }^{1} \mathrm{H}$ NMR of E/Z-7	45
${ }^{13} \mathrm{C}$ NMR of E/Z-7	46
${ }^{1} \mathrm{H}$ NMR of $E / Z-8$	47
${ }^{13} \mathrm{C}$ NMR of E/Z-8	48
${ }^{1} \mathrm{H}$ NMR of E/Z-9	49
${ }^{1} \mathrm{H}$ NMR of Z-9	50
${ }^{13} \mathrm{C}$ NMR of Z-9	51
${ }^{1} \mathrm{H}$ NMR of E-9	52
${ }^{13} \mathrm{C}$ NMR of E-9	53
${ }^{1} \mathrm{H}$ NMR of E/Z-10 (E/Z 25/75)	54
${ }^{1} \mathrm{H}$ NMR of E-10	55
${ }^{13} \mathrm{C}$ NMR of E-10	56
${ }^{1} \mathrm{H}$ NMR of Z-10	57
${ }^{13} \mathrm{C}$ NMR of Z-10	58

${ }^{1} \mathrm{H}$ NMR of E/Z-11	59
${ }^{13} \mathrm{C}$ NMR of E/Z-11	60
${ }^{1} \mathrm{H}$ NMR of E/Z-12	61
${ }^{1} \mathrm{H}$ NMR of Z-12	62
${ }^{13} \mathrm{C}$ NMR of Z-12	63
${ }^{1} \mathrm{H}$ NMR of E -12	64
${ }^{13} \mathrm{C}$ NMR of E-12	65
${ }^{1} \mathrm{H}$ NMR of E/Z-13	66
${ }^{1} \mathrm{H}$ NMR of Z-13	67
${ }^{13} \mathrm{C}$ NMR of Z-13	68
${ }^{1} \mathrm{H}$ NMR of $E-13$	69
${ }^{13} \mathrm{C}$ NMR of E-13	70
${ }^{1} \mathrm{H}$ NMR of E/Z-14	71
${ }^{13} \mathrm{C}$ NMR of E/Z-14	72
${ }^{1} \mathrm{H}$ NMR of E/Z-15	73
${ }^{13} \mathrm{C}$ NMR of E/Z-15	74
${ }^{1} \mathrm{H}$ NMR of E/Z-16	75
${ }^{13} \mathrm{C}$ NMR of E/Z-16	76
${ }^{1} \mathrm{H}$ NMR of E/Z-17	77
${ }^{13} \mathrm{C}$ NMR of E/Z-17	78
${ }^{1} \mathrm{H}$ NMR of 18	79
${ }^{13} \mathrm{C}$ NMR of 18	80
${ }^{1} \mathrm{H}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (19)	81
${ }^{13} \mathrm{C}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3- d][1,2,3]triazole (19)	82
${ }^{1}$ H NMR of 5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (20)	83
${ }^{13} \mathrm{C}$ NMR of 5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (20)	84
${ }^{1} \mathrm{H}$ NMR of 4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio)methyl]\}-1H-benzo[d][1,2,3]triazole (21)	85
${ }^{13} \mathrm{C}$ NMR of 4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio)methyl]\}-1H-benzo[d][1,2,3]triazole (21)	86
${ }^{1} \mathrm{H}$ NMR of 5-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22a)	87
${ }^{13} \mathrm{C}$ NMR of 5-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22a)	88
${ }^{1} \mathrm{H}$ NMR of 6-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22b)	89
${ }^{13} \mathrm{C}$ NMR of 6-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22b)	90
${ }^{1} \mathrm{H}$ NMR of 5- and 6-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (23a and 23b)	91
${ }^{13} \mathrm{C}$ NMR of 5-and 6-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (23a and 23b)	92
${ }^{1} \mathrm{H}$ NMR of 4 - and 7-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (24a and 24b)	93
${ }^{13} \mathrm{C}$ NMR of 4- and 7-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (24a and 24b)	94
${ }^{1} \mathrm{H}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole-4,9-	95

dione (25)	
${ }^{13} \mathrm{C}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole-4,9dione (25)	96
${ }^{1} \mathrm{H}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (26)	97
${ }^{13} \mathrm{C}$ NMR of 1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (26)	98
${ }^{1} \mathrm{H}$ NMR of 4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1Hbenzo[d][1,2,3]triazole (27)	99
${ }^{13} \mathrm{C}$ NMR of 4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1Hbenzo[d][1,2,3]triazole (27)	100
${ }^{1} \mathrm{H}$ NMR of 5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1Hbenzo[d][1,2,3]triazole (28)	101
${ }^{13} \mathrm{C}$ NMR of 5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1Hbenzo[d][1,2,3]triazole (28)	102
H NMR of E/Z-29	103
${ }^{1} \mathrm{H}$ NMR of E-29	104
${ }^{13} \mathrm{C}$ NMR of E-29	105
${ }^{1} \mathrm{H}$ NMR of Z-29	106
${ }^{13} \mathrm{C}$ NMR of Z-29	107
${ }^{1} \mathrm{H}$ NMR of E/Z-30	108
${ }^{13} \mathrm{C}$ NMR of E/Z-30	109
${ }^{1} \mathrm{H}$ NMR of E/Z-31: $37 / 63$	110
${ }^{13} \mathrm{C}$ NMR of E/Z-31: $37 / 63$	111
${ }^{1} \mathrm{H}$ NMR of E/Z-32: 44/56	112
${ }^{1} \mathrm{H}$ NMR of E-32	113
${ }^{13} \mathrm{C}$ NMR of E-32	114
${ }^{1} \mathrm{H}$ NMR of Z-32	115
${ }^{13} \mathrm{C}$ NMR of Z-32	116
${ }^{1} \mathrm{H}$ NMR of E/Z-33	117
${ }^{1} \mathrm{H}$ NMR of E-33	118
${ }^{13} \mathrm{C}$ NMR of E-33	119
${ }^{1} \mathrm{H}$ NMR of Z-33	120
${ }^{13} \mathrm{C}$ NMR of Z-33	121

General Experimental Considerations

THF was distilled over LiAlH_{4} and then over sodium, and MeCN was distilled over CaH_{2}. All other solvents and reagents were obtained from commercial sources and used without further purification. For reactions performed under a nitrogen atmosphere, glassware was dried with heat gun under vacuum. LHMDS (1.0 M in THF), KHMDS (0.5 M in toluene), NaHMDS (1.0 M in THF), and $\mathrm{H}_{2} \mathrm{O}_{2}$ (50% aqueous solution) were obtained from commercial sources. Thin layer chromatography was performed on aluminum foil-backed silica gel plates ($200 \mu \mathrm{~m}$). Column chromatographic purifications were performed on 200-300 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 500 MHz and are referenced to residual solvent. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 125 MHz and are referenced to the carbon resonance of the deuterated solvent. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 282 MHz with CFCl_{3} as internal standard. Chemical shifts (δ) are reported in parts per million and coupling constants (J) are in hertz (Hz). HRMS data were gathered using a TOF analyzer, and the ionization modes are specified under each compound heading.

5-[(Chloromethyl)thio]-1-phenyl-1 H-tetrazole (1)

Potassium carbonate ($19.4 \mathrm{~g}, 141 \mathrm{mmol}, 5.00$ molar equiv) was added to a solution of 1-phenyl1 H -tetrazole-5-thiol ($5.00 \mathrm{~g}, 28.1 \mathrm{mmol}, 1.00$ molar equiv) and bromochloromethane (4.36 g , $33.7 \mathrm{mmol}, 1.20$ molar equiv) in acetone (75.0 mL), and the reaction mixture was heated at reflux for 3 h , at which time TLC ($\mathrm{SiO}_{2}, 20 \%$ EtOAc in hexanes) showed complete consumption of the starting material. The solvent was concentrated under reduced pressure and water was added to the reaction mixture. The aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent evaporated under reduced pressure. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluted with 10% EtOAc in hexanes, with a stepwise increase to 20% EtOAc in hexanes) to yield $4.36 \mathrm{~g}(70 \%)$ of 1 as a white solid. $\mathrm{R}_{f}(20 \%$ EtOAc in hexanes $)=$ 0.44. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.5,133.0,130.6,130.0,123.9,45.7$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{CIN}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 227.0153$, found 227.0172 .

5-[(lodomethyl)thio]-1-phenyl-1H-tetrazole (2)

A solution of $5-[($ chloromethyl)thio]-1-phenyl-1H-tetrazole (1, $0.950 \mathrm{~g}, 4.19 \mathrm{mmol}, 1.00$ molar equiv) and sodium iodide ($2.51 \mathrm{~g}, 16.8 \mathrm{mmol}, 4.00$ molar equiv) in acetone (100 mL) was heated at reflux for 4 h , at which time $\mathrm{TLC}\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}\right.$ in hexanes) showed complete consumption of 1 . The solvent was concentrated under reduced pressure, and water was added to the reaction mixture. The aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and $1.08 \mathrm{~g}(82 \%$, yellow solid) of crude product 2 was isolated, that was used in the next step without further purification. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes) $=0.46 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60-7.53(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 152.9, 133.3, 130.7, 130.1, 124.0, -6.81. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{IN}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$318.9509, found 318.9512.

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole (3)

A solution of 5-[(iodomethyl)thio]-1-phenyl-1H-tetrazole (2, $2.60 \mathrm{~g}, 8.17 \mathrm{mmol}, 1.00$ molar equiv) and sodium azide ($1.06 \mathrm{~g}, 16.3 \mathrm{mmol}, 2.00$ molar equiv) in DMF (80.0 mL) was allowed to stir at $50{ }^{\circ} \mathrm{C}$ for 4 h , at which time $\mathrm{TLC}\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes) showed complete consumption of 2. The reaction mixture was cooled to rt, poured into water, and the aqueous layer was extracted with EtOAc (3x). The combined organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure to yield $1.70 \mathrm{~g}(89 \%)$ of 3 as a brown solid. No purification was required and crude azide 3 was used in the subsequent step. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.36 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62-$ 7.56 (m, 5H, Ar-H), 5.14 (s, 2H, CH ${ }_{2}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 152.4,133.2$, 130.5, 130.0, 123.8, 53.9. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$234.0556, found 234.0564.

1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (4)

To a mixture of 5-[(azidomethyl)thio]-1-phenyl-1H-tetrazole (3, $0.870 \mathrm{~g}, 3.73 \mathrm{mmol}, 1.00$ molar equiv), 2-(trimethylsilyl)phenyltrifluoromethanesulfonate ($1.67 \mathrm{~g}, 5.60 \mathrm{mmol}, 1.50$ molar equiv), 18-Cr-6 ($2.96 \mathrm{~g}, 11.2 \mathrm{mmol}, 3.00$ molar equiv) and KF ($0.867 \mathrm{~g}, 14.9 \mathrm{mmol}, 4.00$ molar equiv) under N_{2}, dry $\mathrm{CH}_{3} \mathrm{CN}(70.0 \mathrm{~mL})$ was added. The reaction mixture was allowed to stir at rt for 1 h, until TLC ($\mathrm{SiO}_{2}, 40 \%$ EtOAc in hexanes) showed complete consumption of 3, water was added, and the aqueous layer was extracted with EtOAc (3 x). The combined organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent evaporated under reduced pressure. Purification by column chromatography ($\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}$ in hexanes, with a stepwise increase to 30% EtOAc in hexanes) yielded 0.979 g (85%) of 4 as a white solid. R_{f} (40% EtOAc in hexanes) $=0.54 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06$ (d, 1H, Ar-H, J = 8.3 Hz), 7.93 (d, 1H, Ar-H, J = 8.3 Hz), 7.56 (t, 1H, Ar-H, J = 7.3 Hz), 7.53-7.51 (m, 3H, Ar-H), 7.42-7.39 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.2,146.3,133.1,132.7$, 130.8, 130.1, 128.7, 124.8, 124.0, 120.3, 110.8, 49.3. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 310.0869 , found 310.0880 .

1-\{[(1-Phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (5)

In our initial work, sulfide 4 was oxidized to sulfone 5 using $\mathrm{H}_{5} \mathrm{IO}_{6} / \mathrm{CrO}_{3}$. Subsequently we found that oxidation of 4 to 5 using $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}_{2}$ gave a superior yield, and the crude product did not require any additional purification. Both oxidation procedures are described below. Screening of olefination conditions (Table 1 in the manuscript) and synthesis of vinyl benzotriazoles (Table 2 in the manuscript) were performed with 5 , obtained via $\mathrm{H}_{5} \mathrm{IO}_{6} / \mathrm{CrO}_{3}$ oxidation.

Oxidation of 4 with $\mathrm{H}_{5} / \mathrm{O}_{6} / \mathrm{CrO}_{3}$

$\mathrm{H}_{5} \mathrm{IO}_{6}$ ($2.86 \mathrm{~g}, 12.5 \mathrm{mmol}, 4.00$ molar equiv) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(26.0 \mathrm{~mL}$) by vigorous stirring at rt for $30 \mathrm{~min} . \mathrm{CrO}_{3}(0.016 \mathrm{~g}, 0.159 \mathrm{mmol}, 0.050$ molar equiv) was added and the reaction mixture was stirred for an additional 5 min to give an orange colored solution. After 5 min, $\mathrm{H}_{5} \mathrm{IO}_{6} / \mathrm{CrO}_{3}$ mixture was added to a solution of 1 -\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}$1 H$-benzo[d][1,2,3]triazole ($4,0.970 \mathrm{~g}, 3.14 \mathrm{mmol}, 1.00$ molar equiv) in $\mathrm{CH}_{3} \mathrm{CN}(52.0 \mathrm{~mL})$ under a N_{2} balloon. The reaction mixture was stirred at rt for 10 h at which time $\mathrm{TLC}\left(\mathrm{SiO}_{2}, 30 \%\right.$ acetone in hexanes) showed a complete consumption of 4. The reaction mixture was cooled on
ice and sat aq NaHCO_{3} was added, followed by solid sodium bisulfite addition. The aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \%\right.$ acetone in hexanes) to yield $0.730 \mathrm{~g}(68 \%)$ of 5 as a yellow solid. $\mathrm{R}_{f}(40 \%$ acetone in hexanes $)=0.47 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 7.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.45(\mathrm{t}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.8$ Hz), $6.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.1,146.2,133.2,132.4,131.9,129.7$, 129.6, 125.4, 125.4, 120.8, 109.7, 67.6. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 342.0768$, found 342.0764 .

Oxidation of 4 with $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } / \mathrm { H } _ { 2 } \mathrm { O } _ { 2 }}$

1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1 H-benzo[d][1,2,3]triazole 4 ($0.400 \mathrm{~g}, 1.29 \mathrm{mmol}$, 1.00 molar equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(40.0 \mathrm{~mL})$. Separately, $\mathrm{H}_{2} \mathrm{O}_{2}\left(50 \% \mathrm{H}_{2} \mathrm{O}_{2}\right.$ in water, d $=1.2 \mathrm{~g} / \mathrm{mL}, 9.20 \mathrm{~mL}, 5.52 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}_{2}, 162 \mathrm{mmol}, 126$ molar equiv) was slowly added to $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.60 \mathrm{~g}, 1.29 \mathrm{mmol}, 1.00$ molar equiv), and the resulting solution was added to the solution of 4 in $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at rt for 20 h at which time TLC ($\mathrm{SiO}_{2}, 30 \%$ acetone in hexanes) showed a complete consumption of 4. Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc ($3 x$), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to yield 386 mg (88%) of 5 as a yellow solid. Sulfone 5 was of sufficient purity based on its ${ }^{1} \mathrm{H}$ NMR and was used in the synthesis of (E/Z)-6 without further purification.

Condensations of Sulfone 5 with Carbonyl Compounds.

Method A. General Procedure. A stirring solution of aldehyde or a ketone (1.20-1.50 molar equiv) and benzotriazole-derived sulfone 5 (1.00 molar equiv) in THF ($17.0 \mathrm{~mL} / \mathrm{mmol}$ of sulfone 5) was cooled to $0{ }^{\circ} \mathrm{C}$ and under N_{2}, LHMDS (1.0 M solution in THF, 2.40 molar equiv) was added to the reaction mixture. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ and monitored by TLC for disappearance of sulfone 5. Upon complete consumption of 5 , saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was poured into EtOAc. Organic layer was separated and the aqueous layer was extracted with EtOAc (3 x). The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the combined E / Z product mixture was isolated by column chromatography using silica gel (mesh 200-300). The product E/Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR, prior to purification by column chromatography. For each substrate, the quantities of reactants and solvent, reaction
time, product yield, eluting solvent for chromatography, R_{f} value, and spectroscopic data are provided under the individual compound headings.
Method B. General Procedure. A stirred solution of the aldehyde (1.5 molar equiv) and benzotriazole-derived sulfone 5 (1.00 molar equiv) in THF ($17.0 \mathrm{~mL} / \mathrm{mmol}$ of sulfone 5) was brought to reflux under N_{2}. DBU (2.00 molar equiv) was added and the reflux was continued while the reaction progress was monitored by TLC for disappearance of compound 5. Upon complete consumption of 5 , water was added and the mixture was poured into EtOAc. Organic layer was separated and the aqueous layer was extracted with EtOAc (3x). The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the combined E / Z product mixture was isolated by column chromatography using silica gel (mesh 200-300). The product E/Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR, prior to purification by column chromatography. The only exception was the reaction with 2-ethylbutanal, where the E / Z ratio of product 15 was determined after purification. This was due to the presence of an impurity that had proton resonances overlapping with those of product 15. For each substrate, reaction time, E / Z ratio, eluting solvent for chromatography, and the yield, are provided under the individual compound headings.

(E/Z)-1-(4-Methoxystyryl)-1H-benzo[d][1,2,3]triazole (E/Z-6)

Method A. 4-Methoxybenzaldehyde: 61.3 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 4 h . Column chromatography: eluting solvent 10\% EtOAc in hexanes. Yield: $57.1 \mathrm{mg}(76 \%)$ of $E / Z-6(E / Z 79 / 21)$ as a white solid. $\mathrm{R}_{f}(30 \% \mathrm{EtOAc}$ in hexanes $)=0.38$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15$ (d, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, E$-isomer), 8.09-8.07 (m, 1H, Z-isomer), 7.83 (d, 1H, J = 14.6 Hz, E-isomer) 7.76 (d, 1H, J = $8.3 \mathrm{~Hz}, E$-isomer), 7.58 (t, 1H, J = 7.8 Hz, Eisomer), 7.50 (d, 2H, J = 8.8 Hz, E-isomer), 7.45-7.42 (m, 2H, E-isomer), 7.35-7.33 (m, 2H, Zisomer), 7.17 (d, 1H, J = 9.3 Hz, Z-isomer), 7.11-7.09 (m, 1H, Z-isomer), 6.96 (d, 2H, J = 8.3 Hz , E-isomer), 6.91 (d, 2H, J = 8.8 Hz, Z-isomer), 6.72 (d, 1H, J = 9.3 Hz, Z-isomer), 6.67 (d, 2H, J $=8.8 \mathrm{~Hz}$, Z-isomer), 3.86 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$, E-isomer), 3.73 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$, Z-isomer). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.1,159.9,146.4,145.8,132.2,131.6,130.5,128.2,128.1,128.0$,
127.8, 127.0, 125.7, 124.7, 124.3, 121.3, 120.4, 120.1, 120.0, 119.3, 114.6, 114.1, 111.1, 110.2, 55.5, 55.3. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 252.1131$, found 252.1136.

Method B. Reaction time: 2h. E/Z-6 26/74. Column chromatography: eluting solvent 10% EtOAc in hexanes, 47% yield.

(E/Z)-1-(2-Methoxystyryl)-1H-benzo[d][1,2,3]triazole (E/Z-7)

Method A. 2-Methoxybenzaldehyde: 58.3 mg ($0.428 \mathrm{mmol}, 1.46$ molar equiv); sulfone 5: 100 mg ($0.293 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $703 \mu \mathrm{~L}$ ($0.703 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.0 mL . Reaction time: 30 min . Column chromatography: eluting solvent 20% EtOAc in hexanes. Yield: 63.5 mg (86%) of $E / Z-7$ ($E / Z 93 / 7$) as a yellow solid. $\mathrm{R}_{f}(30 \% \mathrm{EtOAc}$ in hexanes) $=0.42$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $1 \mathrm{H}, J=14.7 \mathrm{~Hz}, E$-isomer), $8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E-$ isomer), 8.03 (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, Z$-isomer), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 7.66 (d, 1H, $J=$ $15.1 \mathrm{~Hz}, E$-isomer), 7.58 (td, $1 \mathrm{H}, J=6.8 ; 1.0 \mathrm{~Hz}, E$-isomer), 7.53 (dd, $1 \mathrm{H}, J=7.8 ; 1.4 \mathrm{~Hz}, E-$ isomer), 7.44 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}, E$-isomer), 7.39 (d, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}, Z$-isomer), 7.33 (td, $1 \mathrm{H}, J=$ 8.3; $1.5 \mathrm{~Hz}, E$-isomer), $7.30-7.22$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Z}$-isomer, overlapping with CDCl_{3}), 7.18 (td, $1 \mathrm{H}, \mathrm{J}=$ $8.3 ; 1.0 \mathrm{~Hz}, Z$-isomer), 7.03 (td, $1 \mathrm{H}, J=7.3 ; 1.0 \mathrm{~Hz}, E$-isomer), 6.98 (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E-$ isomer), $6.94(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, Z$-isomer), $6.91(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}, Z$-isomer), $6.81(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.8 Hz, Z-isomer), 6.76 (d, 1H, J = 7.8 Hz, Z-isomer), 6.64 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}, Z$-isomer), 3.97 (s, $3 \mathrm{H}, \mathrm{OCH}_{3} \mathrm{E}$-isomer), 3.67 (s, 3H, OCH_{3}, Z-isomer). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, due to a small amount of the Z-isomer, some C resonances of this minor isomer may not have been detected): $\delta 157.5,146.5,131.7,130.2,129.6,128.4,128.2,127.5,124.7,124.1,123.3,123.1,122.3$, 121.8, 121.1, 120.6, 120.5, 119.9, 117.6, 111.2, 111.1, 110.8, 110.5, 55.7, 55.4. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$252.1131, found 252.1149.

Method B. Reaction time: 5h. E/Z-7 15/85. Column chromatography: eluting solvent 20\% EtOAc in hexanes, 57% yield.

(E/Z)-1-(2-Fluorostyryl)-1 H-benzo[d][1,2,3]triazole (E/Z-8)

Method A. 2-Fluorobenzaldehyde: 54.5 mg ($0.439 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 100 mg ($0.293 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $703 \mu \mathrm{~L}$ ($0.703 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.0 mL . Reaction time: 30 min. Column chromatography: eluting solvent 20\% EtOAc in hexanes, increase to 40% EtOAc in hexanes after elution of first component. Yield: 58.1 mg (83\%) of $E / Z-8$ (E/Z 41/59) as a white solid. $\mathrm{R}_{f}\left(30 \%\right.$ EtOAc in hexanes) $=0.58 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 8.14$ (d, 1H, J = $8.3 \mathrm{~Hz}, E$-isomer), 8.12 (d, $1 \mathrm{H}, J=15.1 \mathrm{~Hz}, E$-isomer), 8.08-8.04 (m, $1 \mathrm{H}, \mathrm{Z}$-isomer), 7.79 (d, 1H, $J=8.3 \mathrm{~Hz}, E$-isomer), 7.61 (td, $1 \mathrm{H}, J=7.8 ; 1.0 \mathrm{~Hz}, E$-isomer), 7.597.54 ($\mathrm{m}, 2 \mathrm{H}, E$-isomer), 7.46 (t, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 7.43 (d, $1 \mathrm{H}, J=9.3 \mathrm{~Hz}, Z$-isomer), 7.35-7.30 (m, 2H Z-isomer, 1H E-isomer), 7.23-7.10 (m, 2H E-isomer, 1H Z-isomer), 7.08-7.05 ($\mathrm{m}, 1 \mathrm{H}$ Z-isomer), 7.02 (t, 1H, J = 9.0 Hz, Z-isomer), 6.87-6.82 (m, 3H Z-isomer). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=250.4 \mathrm{~Hz}\right), 160.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=249.9 \mathrm{~Hz}\right), 146.5,145.8,132.0$, 131.7, $130.6\left(\mathrm{~d}, J_{\mathrm{CF}}=8.2 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{CF}}=2.3 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{CF}}=8.7 \mathrm{~Hz}\right)$, three resonances at 128.64, 128.61, and 128.60 account for 2 C -atoms, $128.0,124.9,124.8\left(\mathrm{~d}, J_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right.$), 124.4, three resonances at 124.31, 124.24, and 124.21 account for 2 C -atoms, 123.1 ($\mathrm{d}, \mathrm{J}_{\mathrm{CF}}=$ $1.4 \mathrm{~Hz}), 122.5\left(\mathrm{~d}, J_{\mathrm{CF}}=12.4 \mathrm{~Hz}\right), 121.7\left(\mathrm{~d}, J_{\mathrm{CF}}=13.7 \mathrm{~Hz}\right), 120.6,120.2,119.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right)$, $116.3\left(\mathrm{~d}, J_{\mathrm{CF}}=22.0 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{\mathrm{CF}}=21.5 \mathrm{~Hz}\right), 114.5\left(\mathrm{~d}, J_{\mathrm{CF}}=1.4 \mathrm{~Hz}\right), 110.6,110.3 .{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl ${ }_{3}$): $\delta-114.32$ (s, Z-isomer), -115.37 (s, E-isomer). HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 240.0932$, found 240.0935 .

Method B. Reaction time: 5h, E/Z-8 11/89. Column chromatography: eluting solvent 20\% EtOAc in hexanes, with stepwise increase to 30% EtOAc in hexanes, 57% yield.

$(E / Z),(E)$-, and (Z)-1-[(4-Trifluoromethyl)styryl]-1H-benzo[d][1,2,3]triazole (E/Z-9, E-9, Z-9)

Method A. 4-(Trifluoromethyl)benzaldehyde: 78.0 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 120 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 20% EtOAc in hexanes (isomers separate under these conditions, but were collected together). Yield: 54.0 mg (62\%) of E/Z-9 (E/Z 29/71) as a yellow solid. $\mathrm{R}_{f}\left(20 \% \mathrm{EtOAc}\right.$ in hexanes) $=0.28$ and 0.41 . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13$ (d, 1H, J $=8.3 \mathrm{~Hz}, E$-isomer), 8.10-8.06 (m, 1H, Z isomer), 8.02 (d, 1H, J = $14.7 \mathrm{~Hz}, E$-isomer), 7.78 (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 7.68-7.64 (m, 4H, E isomer), $7.61(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 7.51
(d, 1H, $J=15.1 \mathrm{~Hz}, E$-isomer), $7.46(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), $7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Z}$ isomer), 7.38-7.35 (m, 3H, Z isomer), 7.17 ($\mathrm{d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, Z$-isomer), 7.08-7.04 (m, $1 \mathrm{H}, \mathrm{Z}-$ isomer), 6.77 (d, 1H, J = 9.3 Hz, Z-isomer). ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-63.10$ (s, E-isomer), -63.39 (s, Z-isomer). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$290.0900, found 290.0913.
E/Z-9 mixture was separated by column chromatography ($\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}$ in hexanes) to yield $E-9$ as the early eluting and Z-9 as the late eluting isomer. E-9: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.69-7.65(\mathrm{~m}, 4 \mathrm{H})$, $7.62(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 7.47(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 146.7,138.3,131.7,130.4\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right), 128.8,126.9,126.2\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right)$, 125.1, $124.2\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 123.8,120.9,119.2,110.1 . \mathrm{Z}-9:{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 8.11-8.07 (m, 1H), $7.44(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.09-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9,137.1,132.0,130.5$ $\left(q,{ }^{2} J_{C F}=32.5 \mathrm{~Hz}\right), 129.3,128.3,125.6\left(q,{ }^{3} J_{\mathrm{CF}}=3.7 \mathrm{~Hz}\right), 125.5,124.7,124.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=271.9\right.$ $\mathrm{Hz}), 122.9,120.4,110.6$.

(E) and (Z)-1-[2-(Thiophen-2-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E-10 and Z-10)

Method A. 2-Thiophenecarboxaldehyde: $43.9 \mathrm{mg}(0.391 \mathrm{mmol}, 1.34$ molar equiv); sulfone 5 : 100 mg ($0.293 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $703 \mu \mathrm{~L}$ ($0.703 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.0 mL . Reaction time: 30 min . Column chromatography: eluting solvent 20% EtOAc in hexanes, E - and Z-isomer collected separately ($E-10$ first eluting, $Z-10$ second eluting). Yield: Z-10: 36.0 mg (54%, brown solid); E-10: 24.0 mg (36%, brown solid). Z-10: $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.50 ; E-10: \mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.60 . Z-10:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.14(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.47(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.41(\mathrm{td}, 1 \mathrm{H}, J=8.3 ; 1.0 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=4.9 \mathrm{~Hz}), 7.06-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{dd}, 1 \mathrm{H}, J=5.4 ; 3.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 146.0, 135.2, 132.7, 131.1, 128.7, 128.1, 127.0, 124.5, 124.0, 120.2, 117.8, 110.4. E-10: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}$), $7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.44(\mathrm{t}, 1 \mathrm{H}, J=7.3$ $\mathrm{Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, J=4.9 ; 3.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,138.5,131.6,128.5,128.1,127.8,125.5,124.9,120.8,120.6$, 115.1, 110.1. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 228.0590$, found 228.0588.

Method B. Reaction time: $5 \mathrm{~h}, \mathrm{E} / \mathrm{Z}-10$ 25/75. Column chromatography: eluting solvent 20\% EtOAc in hexanes, 47% yield.

(E/Z)-1-[2-(Benzofuran-5-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-11)

Method A. Benzofuran-5-carbaldehyde: 65.7 g , ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 60 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 15% EtOAc in hexanes. Yield: 51.0 mg (65\%) of E/Z-11 (E/Z 64/36) as a white solid. $\mathrm{R}_{f}(20 \%$ EtOAc in hexanes $)=0.38 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, assignments based on COSY): $\delta 8.09$ (d, 1H, J = $8.3 \mathrm{~Hz}, E$-isomer), 8.04 (d, 1H, J = $7.8 \mathrm{~Hz}, Z$-isomer), 7.89 (d, 1H, J = $14.7 \mathrm{~Hz}, E$-isomer), 7.76-7.73 (m, 2H, E-isomer), 7.63 (d, 1H, J = $2.0 \mathrm{~Hz}, E$-isomer), 7.55 (d, 1H, J = 14.7 Hz, E-isomer), 7.55-7.47 (m, 3H E-isomer and 1H Z-isomer), 7.41 (t, 1H, J $=7.8 \mathrm{~Hz}$, E-isomer), 7.29-7.21 (m, 5 H Z-isomer, overlapping with CHCl_{3} in CDCl_{3}), $6.98(\mathrm{~d}, 1 \mathrm{H}$, $J=8.3 \mathrm{~Hz}, \mathrm{Z}$-isomer), 6.88-6.84 (m, 2H, Z-isomer), 6.78 (d, 1H, J = $2.0 \mathrm{~Hz}, ~ E$-isomer), 6.55 (d, $1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Z}$-isomer). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 155.2,154.9,146.5,146.1,145.9$, 132.2, 131.7, 129.5, 128.4, 128.2, 127.9, 127.8, 125.4, 124.8, 124.3, 123.1, 122.2, 122.0, 121.1, 120.6, 120.5, 120.1, 119.8, 112.2, 111.7, 111.1, 110.2, 106.9, 106.8. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$262.0975, found 262.0980.
Method B. Reaction time: 14h, E/Z-11 20/80. Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 15% EtOAc in hexanes, 60% yield.
$(E / Z),(E)$, and (Z)-1-[2-(1-Tosyl-1H-indol-3-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-12, E12, Z-12)

Method A. 1-Tosyl-1H-indole-3-carbaldehyde: 135 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 180 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 40% EtOAc in hexanes (isomers separate under these
conditions, but were collected together). Yield: 89.0 mg (72\%) of $E / Z-12$ ($E / Z 71 / 29$) as a pale pinkish colored solid. $\mathrm{R}_{f}(40 \%$ EtOAc in hexanes $)=0.41$ and $0.57 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.12$ (d, 2H, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$ E-isomer and $1 \mathrm{H} Z$-isomer), 8.05 (d, 1H, J = 8.3 Hz, E-isomer), 8.00 (d, 1H, J = 14.7 Hz, E-isomer), 7.94 (d, 1H, J = $8.3 \mathrm{~Hz}, Z$-isomer), 7.82-7.76 (m, 5H, Eisomer), 7.62-7.57 (m, both E and Z isomers), 7.55 (d, 1H, $J=14.7 \mathrm{~Hz}, E$-isomer), 7.49 (s, 1H, Z-isomer), 7.46-7.23 (m, both E and Z isomers), 7.20-7.16 (m, 3H, Z-isomer), 6.81 (d, 1H, J = $9.3 \mathrm{~Hz}, \mathrm{Z}$-isomer), 2.34 (s, 3H, CH,$~ E$-isomer), 2.32 (s, $3 \mathrm{H}, \mathrm{CH}_{3}, \mathrm{Z}$-isomer). HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 415.1223$, found 415.1224.
$E / Z-12$ mixture was separated by column chromatography $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{EtOAc}\right.$ in hexanes) to yield $E-12$ as the early eluting and $Z-12$ as the late eluting isomer. $E-12:{ }^{1} \mathrm{H} N M R(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 7.83-7.81$ $(\mathrm{m}, 4 \mathrm{H}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.60(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 7.46(\mathrm{t}, 1 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.25(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.35(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.4,145.5,135.7,135.0,131.6,130.2,128.6,128.5$, 127.1, 125.6, 124.9, 124.8, 124.0, 122.2, 120.6, 120.3, 117.6, 114.1, 112.5, 110.1, 21.7. Z-12: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.3 Hz), $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 2.34(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 145.7, 145.3, 135.0, 134.5, 132.1, 130.1, 129.8, 128.1, $127.1,126.7,125.3,124.6,123.8,121.1,120.5,119.2,116.5,114.9,113.8,110.5,21.8$.

$(E / Z),(E)$-, and (Z)-1-[2-(1-Tosyl-1H-imidazol-4-yl)vinyl]-1H-benzo[d][1,2,3]triazole (E/Z-13,

 E-13, Z-13)

Method A. 1-Tosyl-1H-imidazole-5-carbaldehyde: 90.0 mg ($0.360 \mathrm{mmol}, 1.20$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4 \mathrm{molar}$ equiv); THF: 5.1 mL . Reaction time: 120 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 40% EtOAc in hexanes). Yield: 78.0 mg (71%) of $E / Z-13$ ($E / Z 29 / 71$) as a pale pinkish colored solid. $\mathrm{R}_{f}(40 \%$ EtOAc in hexanes) $=0.37$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+} 366.1019\right.$, found 366.1005.
E/Z-13 mixture was separated by column chromatography (20% EtOAc in hexanes, with a stepwise increase to 40% EtOAc in hexanes) to yield E-13 as the early eluting and Z-13 as the late eluting isomer. $\mathrm{E}-13:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, 1 \mathrm{H}, J=14.2 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$
$=8.3 \mathrm{~Hz}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.56(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.8,146.4,140.0,137.4,134.9,131.9,130.8,128.6,127.7,124.9,122.7$, 120.6, 115.5, 110.9, 109.9, 22.0. Z-13: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 7.94-7.92 (m, 2H), 7.75 (d, 2H, J = 8.8 Hz), $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.45-7.32(\mathrm{~m}$, $3 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}), 6.66(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz}), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): δ 146.7, 145.6, 137.6, 136.3, 134.8, 132.4, 130.7, 128.3, 127.7, 124.8, 120.5, 119.6, 118.4, 118.1, 110.4, 22.0.

(E/Z)-1-(Non-1-enyl)-1 H-benzo[d][1,2,3]triazole (E/Z-14)

Method A. n-Octanal: 56.3 mg ($0.439 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 100 mg (0.293 mmol, 1.00 molar equiv); LHMDS: $703 \mu \mathrm{~L}$ ($0.703 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.0 mL . Reaction time: 30 min. Column chromatography: eluting solvent 20% EtOAc in hexanes. Yield: $48.0 \mathrm{mg}(67 \%)$ of $E / Z-14(E / Z 4 / 96)$ as a yellow solid. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.81$. Due to the presence of just 4% of $E-14$, only the resonance at $\delta 6.54 \mathrm{ppm}$ could be unequivocally assigned to $E-14$. Some proton assignments are based upon the NOESY spectrum of the product mixture. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ (d, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{4}, \mathrm{~J}=8.8 \mathrm{~Hz}$, Z-isomer), $7.53-$ 7.48 (m, 2H, Ar-H ${ }_{6}$, Ar-H7, Z-isomer), 7.40 (ddd, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{5}, J=8.0 ; 6.6 ; 1.5 \mathrm{~Hz}, Z$-isomer), 7.01 (td, 1H, H ${ }_{1}$, J = 8.8; 1.7 Hz, Z-isomer), 6.54 (dt, 1H, H ${ }_{1}$, $J=14.6 ; 7.3 \mathrm{~Hz}$, E-isomer), 5.87 (q, 1H, $\mathrm{H}_{2^{\prime}}, J_{\text {app }}=7.3 \mathrm{~Hz}, Z$-isomer), 2.42 (dq, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{H}_{3^{\prime}}, J=8.8 ; 1.7 \mathrm{~Hz}, Z$-isomer), 1.49 (quint, 2 H , $\mathrm{CH}_{2}, \mathrm{H}_{4}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{Z}$-isomer), 1.31-1.23 (m, 8H, Z-isomer), 0.85 (t, 3H, J = 7.0 Hz, Z-isomer). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, due to a small amount of the E -isomer, some C resonances of this minor isomer may not have been detected): $\delta 145.4,133.1,131.6,130.2,128.0,127.9,124.4$, $124.3,124.0,123.0,120.4,120.1,110.2,109.9,31.96,31.90,30.4,29.39,29.32,29.31,29.2$, 27.9, 22.82, 22.76, 14.2. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 244.1808$, found 244.1808.
(E/Z)-1-(3-Ethylpent-1-enyl)-1H-benzo[d][1,2,3]triazole (E/Z-15)

Method A. 2-Ethylbutanal: 44.0 mg ($0.439 \mathrm{mmol}, 1.50 \mathrm{molar}$ equiv); sulfone 5: 100 mg (0.293 mmol, 1.00 molar equiv); LHMDS: $703 \mu \mathrm{~L}$ ($0.703 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.0 mL . Reaction time: 30 min . Column chromatography: eluting solvent 20% EtOAc in hexanes. Yield: 46.0 mg (73%) of E/Z-15 (E/Z 22/78) as a yellow oily product. $\mathrm{R}_{f}(30 \% \mathrm{EtOAc}$ in hexanes) $=$ 0.62. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08$ (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}$ Z-isomer and $1 \mathrm{H} E$-isomer), 7.66 (d, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, E$-isomer), 7.55-7.49 (m, 2H Z-isomer and 1H E-isomer), 7.41-7.38 (m, 1H Zisomer and $1 \mathrm{H} E$-isomer), 7.28 (d, $1 \mathrm{H}, J=14.2 \mathrm{~Hz}, E$-isomer), 7.03 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z-$ isomer), 6.26 (dd, $1 \mathrm{H}, J=14.2$; $9.3 \mathrm{~Hz}, ~ E$-isomer), 5.62 (dd, $1 \mathrm{H}, J=10.3 ; 8.8 \mathrm{~Hz}, Z$-isomer), 2.78-2.70 (m, 1H, Z-isomer), 2.13-2.03 (m, 1H, E-isomer), 1.65-1.32 (m, $2 \mathrm{CH}_{2} E$-isomer and 2 CH_{2} Z-isomer), 0.97 (t, $2 \mathrm{CH}_{3}, J=7.5 \mathrm{~Hz}, E$-isomer), 0.86 (t, $2 \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}$, Z-isomer). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 146.3,145.4,135.3,133.2,131.6,128.0,127.8,127.7,124.4,124.2$, 123.0, 120.6, 120.3, 120.1, 110.3, 109.7, 44.7, 40.4, 27.8, 27.6, 12.0, 11.7. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$216.1495, found 216.1493.
Method B. Reaction time: 16 h, E/Z-15 3/97. Column chromatography: eluting solvent 10% EtOAc in hexanes, 50% yield.

(E/Z)-1-(2-Cyclohexylvinyl)-1H-benzo[d][1,2,3]triazole (E/Z-16)

Method A. Cyclohexanecarbaldehyde: 51.0 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 120 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 20% EtOAc in hexanes. Yield: 36.0 mg (53\%) of E/Z-16 (E/Z 20/80) as a white solid. $\mathrm{R}_{f}(20 \%$ EtOAc in hexanes $)=0.50 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, assignments based on COSY): $\delta 8.07$ (d, 1H, $J=8.3 \mathrm{~Hz}, Z$-isomer), 8.06 (d, 1H, $J=8.3 \mathrm{~Hz}$, E-isomer), 7.63 (d, 1H, J = 8.3 Hz, E-isomer), 7.52-7.49 (m, 1H E-isomer and 2H Z-isomer), 7.41-7.39 (m, 1H Eisomer and $1 \mathrm{H} Z$-isomer), 7.27 (dd, $1 \mathrm{H}, J=14.6 ; 1.8 \mathrm{~Hz}, E$-isomer), 6.86 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z-$ isomer), 6.47 (dd, $1 \mathrm{H}, J=14.6 ; 7.3 \mathrm{~Hz}$, E-isomer), 5.67 (dd, $1 \mathrm{H}, J=9.6 ; 8.8 \mathrm{~Hz}, Z$-isomer), 2.80-2.71 (m, 1H, Z-isomer), 2.32-2.23 (m, 1H, E-isomer), 1.93-1.78 (m, both E and Z isomers), 1.74-1.60 (m, both E and Z isomers), 1.41-1.12 (m , both E and Z isomers). ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 146.4,145.4,135.5,133.2,131.7,129.4,128.0,127.9,124.4,124.3,121.6,120.4$, 120.1, 118.4, 110.3, 109.7, 39.1, 36.5, 33.0, 32.9, 26.1, 26.0, 25.6. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 228.1495$, found 228.1495.

Method A. (S)-(-)-Citronellal: 69.4 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 60 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 15% EtOAc in hexanes. Yield: 65.0 mg (80%) of $E / Z-17$ ($E / Z 16 / 84$) as a yellow oily product. $\mathrm{R}_{f}(20 \% \mathrm{EtOAc}$ in hexanes $)=0.61 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}$, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z$-isomer) 7.64 ($\mathrm{d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 7.53-7.47 (m, both E and Z isomers), 7.39 (ddd, $1 \mathrm{H}, \mathrm{J}=8.1 ; 6.8 ; 1.0 \mathrm{~Hz}, Z$-isomer), 7.29 (d, $1 \mathrm{H}, J=14.6 \mathrm{~Hz}, ~ E$-isomer), 7.04 (d, 1H, J = $8.8 \mathrm{~Hz}, Z$-isomer), 6.49 (dt, $1 \mathrm{H}, J=14.6 ; 7.2 \mathrm{~Hz}$, E-isomer), 5.87 (app q, $1 \mathrm{H}, J$ ~ $7.2 \mathrm{~Hz}, Z$-isomer), 5.12-5.02 (m , both E and Z isomers), 2.40-1.80 (m , both E and Z isomers), 1.64-0.74 (m, both E and Z isomers). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, due to smaller amount of the E-isomer, some C resonances of this minor isomer may not have been detected): $\delta 145.4$, 133.1, 131.5, 128.9, 128.1, 127.9, 124.7, 124.6, 124.5, 124.3, 123.8, 122.4, 121.1, 120.4, 120.2, 110.2 , 109.9, 37.7, 36.79, 36.75, 34.8, 32.9, 25.90, 25.86, 25.74, 25.65, 19.6, 17.9, 17.8. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 270.1965$, found 270.1980.

1-[(1-Benzylpiperidin-4-ylidene)methyl]-1 H-benzo[d][1,2,3]triazole (18)

Method A. N-Benzylpiperidone: 85.0 mg ($0.450 \mathrm{mmol}, 1.50$ molar equiv); sulfone 5: 102 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv). LHMDS: $720 \mu \mathrm{~L}$ ($0.720 \mathrm{mmol}, 2.4$ molar equiv); THF: 5.1 mL . Reaction time: 180 min. Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 40% EtOAc in hexanes. Yield: 70.0 mg (77\%) of 18 as a brown solid. R_{f} $(20 \%$ EtOAc in hexanes $)=0.34 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.50$ (ddd, $1 \mathrm{H}, J=7.9 ; 6.8 ; 0.9 \mathrm{~Hz}$), $7.45(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}$), 7.38 (td, $1 \mathrm{H}, J=7.9 ; 6.9 ; 1.2 \mathrm{~Hz}$), $7.35-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.43(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $145.5,140.8,137.5,133.5,129.5,128.6,127.9,127.6,124.3,120.2,115.2,110.0,62.7,54.4$, 53.8, 32.8, 28.6. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{4}\left[\mathrm{M}+\mathrm{H}^{+} 305.1761\right.$, found 305.1773.

Cycloaddition Reactions of Azide 3 with Substituted Benzynes: General Procedure. To a mixture of 5-[(azidomethyl)thio]-1-phenyl-1H-tetrazole 3, 3-(trimethylsilyl)aryl trifluoromethanesulfonate (1.50-2.50 molar equiv, see individual compound headings), 18-Cr-6 (4.00 molar equiv) and KF (4.00 molar equiv) under N_{2}, dry $\mathrm{CH}_{3} \mathrm{CN}$ was added. The reaction mixture was allowed to stir at room temperature until TLC ($\mathrm{SiO}_{2}, 40 \%$ EtOAc in hexanes) showed complete consumption of 3 , water was added, and the aqueous layer was extracted with ethyl acetate $(3 x)$. The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the products were isolated by column chromatography using silica gel (mesh 200-300). For details, please see individual compound headings.

1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole (19)

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 300 mg ($1.28 \mathrm{mmol}, 1.00$ molar equiv); 3-(trimethylsilyl)-2-naphthyl trifluoromethanesulfonate: 1.12 g ($3.22 \mathrm{mmol}, 2.50$ molar equiv); 18-Cr-6: 1.37 g ($5.12 \mathrm{mmol}, 4.00$ molar equiv); KF: 300 mg ($5.12 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}$: 60.0 mL . Reaction time: 7 h . Column chromatography: eluting solvent 20% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 351 mg (76%) of 19 as a white solid. $\mathrm{R}_{f}(40 \%$ EtOAc in hexanes $)=0.33 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.28(\mathrm{~s}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.55(\mathrm{t}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}, \mathrm{J}=$ 6.8 Hz), 7.49-7.46 (m, 4H, Ar-H), 7.38-7.37 (m, 2H, Ar-H), $6.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.4,145.5,133.6,133.2,131.0,130.8,130.7,130.1,129.5,128.5,127.4$, 125.4, 124.0, 118.7, 106.7, 49.9. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 360.1026$, found 360.1025 .

5,6-Dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (20)

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 116 mg ($0.500 \mathrm{mmol}, 1.00$ molar equiv); 4,5-dimethoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate: 269 mg ($0.750 \mathrm{mmol}, 1.5$ molar equiv); 18-Cr-6: 528 mg ($2.00 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{KF}: 116 \mathrm{mg}$ ($2.00 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}: 24.0 \mathrm{~mL}$. Reaction time: 4 h . Column chromatography: eluting solvent 20% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 157 mg (85\%) of 20 as a white solid. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.15 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52-7.51$ (m, 3H, Ar-H), 7.42-7.39 (m, 3H, Ar-H), 7.32 (s, 1H, Ar-H), 6.59 (s, 2H, CH 2), 4.01 (s, 3H, OCH_{3}), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.6,152.4,149.2,140.8,133.1$, $130.8,130.1,128.1,124.0,99.0,91.5,56.8,56.5,49.5$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 370.1081$, found 370.1060 .

4-Methoxy-1-\{[(1-phenyl-1 H-tetrazol-5-yl)thio)methyl]\}-1H-benzo[d][1,2,3]triazole (21)

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 70.0 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv); 3-methoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate: 197 mg ($0.600 \mathrm{mmol}, 2.00$ molar equiv); 18-Cr-6: 317 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{KF}: 70.0 \mathrm{mg}$ ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}$: 14.0 mL . Reaction time: 2 h . Column chromatography: eluting solvent 20% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 69.0 mg (68\%) of 21 as a yellow oily product. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $)=0.24$. Structure assignment was based upon the NOESY spectrum, which showed a correlation between the CH_{2} and $\mathrm{Ar}-\mathrm{H}_{7}$, but no correlation was observed between the CH_{2} and the OCH_{3}. Proton assignments are based on the NOESY spectrum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.45-7.39 (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}_{5}, J=7.8 \mathrm{~Hz}\right), 6.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.0,151.8,138.0,134.5,133.0,130.6,130.0,129.9,123.9,104.3,102.5$, 56.5, 49.4. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 340.0975$, found 340.0979 .

5- and 6-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (22a and 22b)

and

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 70.0 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv); 4-methoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate: 197 mg ($0.600 \mathrm{mmol}, 2.00$ molar equiv); 18-Cr-6: 317 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); KF: 70.0 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}$: 14.0 mL . Reaction time: 2 h . Column chromatography: eluting solvent 20\% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 86.0 mg (85\%) of 22a and 22b (40:60, respectively) as a white solid. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes) $=0.18$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} 340.0975$, found 340.0973.

For the purpose of structure determination, small amounts of pure 22a and 22b were obtained by partial separation of a mixture by column chromatography (20% EtOAc in hexanes, with very slow increase to 30% EtOAc in hexanes), 22b eluted first, followed by the mixture, and then 22a. Structure assignment was based upon the NOESY spectrum of 22a, which showed a correlation between the CH_{2} and $\mathrm{Ar}-\mathrm{H}_{7}$ doublet at $\delta 7.81 \mathrm{ppm}$. Proton assignments in 22a are based on the NOESY spectrum. Proton assignments in 22b are based upon comparisons to the chemical shifts and splitting pattern of the protons in 22a. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22a: $\delta 7.81$ (d, 1H, Ar-H,$~ J=8.8 \mathrm{~Hz}$), 7.53-7.51 (m, 3H, Ar-H), 7.42-7.41 (m, 2H, Ar-H), 7.35 (d, 1H, Ar-H ${ }_{4}, J=2.0 \mathrm{~Hz}$), 7.20 (dd, 1H, Ar-H,$~ J=8.8 ; 2.0 \mathrm{~Hz}$), $6.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9,152.3,147.5,133.2,130.8,130.2,128.2,124.0,121.3$, 111.5, 99.2, 56.0, 49.5. 22b: $\delta 7.87$ (d, 1H, Ar-H,$~ J=9.3 \mathrm{~Hz}$), 7.52-7.51 (m, 3H, Ar-H), 7.417.39 (m, 2H, Ar-H), 7.33 (d, 1H, Ar-H,$~ J=2.0 \mathrm{~Hz}$), 7.00 (dd, 1H, Ar-H5, J = 9.3; 2.0 Hz), 6.60 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,152.5,141.6,134.0,133.2$, 130.8, 130.2, 124.0, 120.9, 117.5, 91.2, 56.2, 49.4.

5- and 6-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (23a and 23b)

and

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 70.0 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv); 4-methyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate: $187 \mathrm{mg}(0.600 \mathrm{mmol}, 2.00 \mathrm{molar}$
equiv); 18-Cr-6: 317 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{KF}: 70.0 \mathrm{mg}$ ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}$: 14.0 mL . Reaction time: 4 h . Column chromatography: eluting solvent 20% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 77.8 mg (80%) of 23a and 23b (45:55, respectively) as a brown solid. $\mathrm{R}_{f}(20 \%$ EtOAc in hexanes) $=0.09$. Structures were assigned based upon the NOESY spectrum of the product mixture. A correlation was observed between the CH_{2} at $\delta 6.58 \mathrm{ppm}$ and the $\mathrm{Ar}-\mathrm{H}$ singlet at $\delta 7.60 \mathrm{ppm}$ for the major isomer, indicating it to be 23b. For the minor isomer, a correlation was observed between the CH_{2} at $\delta 6.61 \mathrm{ppm}$ and the Ar-H doublet at $\delta 7.78 \mathrm{ppm}$, consistent with 23a. Proton assignments are based on the NOESY and COSY spectra. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (d, 1H, J = $8.8 \mathrm{~Hz}, \mathbf{2 3 b}$), 7.79 (s, 1H, Ar-H, 23a), 7.78 (d, 1H, J = $9.3 \mathrm{~Hz}, 23 \mathrm{a}$), 7.60 (s, 1H, 23b), 7.52-7.50 (m, 23a and 23b), 7.41-7.38 (m, 23a and 23b), 7.35 (s, 1H, Ar-H, 23a), 7.22 (d, 1H, J $=8.3 \mathrm{~Hz}, \mathbf{2 3 b}$), 6.61 (s, 2H, CH,$~ 23 a$), 6.58 (s, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{2 3 b}$), 2.53 (s, $3 \mathrm{H}, \mathrm{CH}_{3}, \mathbf{2 3 b}$), 2.50 (s, $3 \mathrm{H}, \mathrm{CH}_{3}, 2 \mathbf{2 3 a}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 152.24, 152.16, 147.0, 145.0, 139.6, 135.0, 133.2, 133.1, 131.2, 130.79, 130.76, 130.4, 130.12, 130.10, 127.1, 124.0, 123.98, 121.4, 119.8, 119.2, 110.2, 109.8, 49.4, 49.3, 22.3, 21.6. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 324.1026$, found 324.1029.

4- and 7-Methyl-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole (24a and 24b)

24a
and

24b

5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 70.0 mg ($0.300 \mathrm{mmol}, 1.00$ molar equiv); 2-methyl-6-(trimethylsilyl)phenyl trifluoromethanesulfonate: 187 mg ($0.600 \mathrm{mmol}, 2.00$ molar equiv); 18-Cr-6: 317 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); KF: 70.0 mg ($1.20 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}: 14.0 \mathrm{~mL}$. Reaction time: 2 h . Column chromatography: eluting solvent 20% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 86.0 mg (89\%) of 24a and 24b (49:51, respectively) as a brown solid. $\mathrm{R}_{f}(20 \%$ EtOAc in hexanes) $=0.10$. Structures were assigned based upon the NOESY spectrum of the product mixture. A correlation was observed between the CH_{2} at $\delta 6.61 \mathrm{ppm}$ and the $\mathrm{Ar}-\mathrm{H}$ doublet at $\delta 7.67 \mathrm{ppm}$, indicating it to be 24a. A correlation observed between the CH_{2} at $\delta 6.67 \mathrm{ppm}$ and the Me singlet at $\delta 2.80 \mathrm{ppm}$ is consistent with 24b. Assignments of some of the proton resonances are
based on the NOESY spectrum. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathbf{2 4 b}$), 7.67 (d, 1H, J = $8.3 \mathrm{~Hz}, \mathbf{2 4 a}$) 7.51-7.48 (m, 24a and 24b), 7.45-7.37 (m, 24a and 24b), 7.307.22 ($\mathrm{m}, \mathbf{2 4 a}$ and 24b overlapping with CDCl_{3}), 7.15 (d, 1H, J = $7.8 \mathrm{~Hz}, \mathbf{2 4 a}$), 6.67 (s, 2H, CH_{2}, 24b), 6.61 (s, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathbf{2 4 a}$), 2.80 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}, \mathbf{2 4 b}$), 2.77 (s, $3 \mathrm{H}, \mathrm{CH}_{3}, \mathbf{2 4 a}$). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.1,151.0,146.7,146.1,133.1,133.0,132.5,131.9,131.1,130.62,130.60$, 130.01, 129.97, 129.95, 128.5, 125.1, 124.6, 123.94, 123.88, 120.9, 118.3, 107.8, 50.8, 49.4, 18.3, 16.7. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 324.1026$, found 324.1032.

1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione (25)

$\mathrm{H}_{5} \mathrm{IO}_{6}$ ($126 \mathrm{mg}, 0.553 \mathrm{mmol}, 3.98$ molar equiv) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$ (2.50 mL) by vigorous stirring at rt for 30 min . A catalytic amount of CrO_{3} (ca 1.0 mg) was added and the reaction mixture was stirred for an additional 5 min to give an orange colored solution. After 5 $\mathrm{min}, \mathrm{H}_{5} \mathrm{IO}_{6} / \mathrm{CrO}_{3}$ mixture was added to a solution of 1 -\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}$1 H$-naphtho[2,3-d][1,2,3]triazole (19, $50.0 \mathrm{mg}, 0.139 \mathrm{mmol}, 1.00$ molar equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5.0$ $\mathrm{mL})$ under a N_{2} balloon. The reaction mixture was stirred at rt for 3 h at which time TLC $\left(\mathrm{SiO}_{2}\right.$, 40% EtOAc in hexanes) showed a complete consumption of 19. The reaction mixture was cooled on ice and sat aq NaHCO_{3} was added, followed by solid sodium bisulfite addition. The aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography ($\mathrm{SiO}_{2}, 10 \%$ EtOAc in hexanes with a stepwise increase to 40\% EtOAc in hexanes) to yield 36.0 mg (67\%) of 25 as a yellow solid. $\mathrm{R}_{f}(40 \%$ acetone in hexanes $)=0.35 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.35$ (d, 1H, Ar-H, J = 7.5 Hz), $8.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.89 (t, 1H, Ar-H, J = 7.5 Hz), 7.84 (t, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 7.52-7.47 (m, 5H, Ar-H), 6.58 (s, 2H, Ar-H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.5,175.7,150.6,145.6,135.8,134.7,133.7,133.6,133.2,132.7,130.9,130.2,128.3$, 127.7, 124.3, 50.7. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 412.0587$, found 412.0562.

1-\{[(1-Phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-naphtho[2,3- d][1,2,3]triazole 19 ($300 \mathrm{mg}, 0.831$ mmol, 1.00 molar equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30.0 \mathrm{~mL})$. Separately, $\mathrm{H}_{2} \mathrm{O}_{2}\left(50 \% \mathrm{H}_{2} \mathrm{O}_{2}\right.$ in water, $\mathrm{d}=1.2 \mathrm{~g} / \mathrm{mL}, 5.89 \mathrm{~mL}, 3.53 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}_{2}, 104 \mathrm{mmol}, 125$ molar equiv) was slowly added to $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.023 \mathrm{~g}, 0.831 \mathrm{mmol}, 1.00$ molar equiv), and the resulting solution was added to the solution of 19 in $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at rt for 24 h at which time TLC ($\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}$ in hexanes) showed a complete consumption of 19. Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}, 20 \% \mathrm{EtOAc}\right.$ in hexanes with a stepwise increase to $40 \% \mathrm{EtOAc}$ in hexanes) to yield 225 mg (69%) of 26 as a white solid. $\mathrm{R}_{f}\left(30 \% \mathrm{EtOAc}\right.$ in hexanes) $=0.49 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66$ (s, 1H, Ar-H), 8.09-8.08 (m, 2H, Ar-H), 7.99 (d, 1H, Ar-H, J = 8.3 $\mathrm{Hz}), 7.58(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, J=7.0 \mathrm{~Hz})$, 7.43-7.36 (m, 4H, Ar-H), 6.59 (s, 2H, CH $)_{2}$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 151.9, 144.1, 132.9, 132.4, 131.5, 131.1, 130.5, 129.3, 129.1, 128.0, 127.5, 126.2, 125.3, 118.1, 106.7, 67.5. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 392.0924$, found 392.0912 .

4-Methoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)sulfonyl]methyl\}-1H-benzo[d][1,2,3]triazole (27)

4-Methoxy1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1H-benzo[d][1,2,3]triazole 21 (15.0 mg, 0.044 mmol, 1.00 molar equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. Separately, $\mathrm{H}_{2} \mathrm{O}_{2}\left(50 \% \mathrm{H}_{2} \mathrm{O}_{2}\right.$ in water, $\mathrm{d}=1.2 \mathrm{~g} / \mathrm{mL}, 312 \mu \mathrm{~L}, 187 \mathrm{mg}$ of $\mathrm{H}_{2} \mathrm{O}_{2}, 5.50 \mathrm{mmol}, 125$ molar equiv) was slowly added to $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}(55.0 \mathrm{mg}, 0.044 \mathrm{mmol}, 1.00$ molar equiv), and the resulting solution was added to the solution of 21 in $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at rt for 24 h at which time TLC ($\mathrm{SiO}_{2}, 40 \%$ EtOAc in hexanes) showed a complete consumption of 21. Water was added to the reaction mixture and the aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by
column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{EtOAc}\right.$ in hexanes with a stepwise increase to $40 \% \mathrm{EtOAc}$ in hexanes) to yield $8.4 \mathrm{mg}(51 \%)$ of 27 as a white solid. $\mathrm{R}_{f}(30 \% \mathrm{EtOAc}$ in hexanes $)=0.26 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.40-7.38(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.16 (d, 1H, Ar-H, $J=8.3 \mathrm{~Hz}$), $6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, J=7.8 \mathrm{~Hz}), 6.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.11$ (s, 3H, OCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3,152.1,138.0,135.2,132.5,131.9,131.0$, 129.7, 125.5, 105.2, 101.5, 67.7, 56.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 372.0873$, found 372.0895 .

5,6-Dimethoxy-1-\{[(1-phenyl-1 H-tetrazol-5-yl)sulfonyl]methyl\}-1 H-benzo[d][1,2,3]triazole (28)

Due to poor solubility of purified 5,6-dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}-1Hbenzo[d][1,2,3]triazole (20) in CHCl_{3}, crude sulfide $\mathbf{2 0}$, obtained in a cycloaddition reaction of $\mathbf{3}$ and dimethoxy substituted benzyne, was subjected to oxidation to sulfone 28.

Step 1: 5-[(Azidomethyl)thio]-1-phenyl-1H-tetrazole 3: 116 mg ($0.500 \mathrm{mmol}, 1.00$ molar equiv); 4,5-dimethoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate: 269 mg ($0.750 \mathrm{mmol}, 1.5$ molar equiv); 18-Cr-6: 528 mg ($2.00 \mathrm{mmol}, 4.00$ molar equiv); KF: 116 mg ($2.00 \mathrm{mmol}, 4.00$ molar equiv); $\mathrm{CH}_{3} \mathrm{CN}$: 24.0 mL . Reaction time: 4 h . Upon complete consumption of 3, water was added, and the aqueous layer was extracted with ethyl acetate (3 x). The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product 20 was subjected to oxidation.
Step 2: To a stirred solution of crude 5,6-dimethoxy-1-\{[(1-phenyl-1H-tetrazol-5-yl)thio]methyl\}1Hbenzo[d][1,2,3] triazole 20 in $\mathrm{CHCl}_{3}(20.0 \mathrm{~mL})$ at $-10{ }^{\circ} \mathrm{C}$ (ice $/ \mathrm{NaCl}$ cooling bath), a solution of m-CPBA ($690 \mathrm{mg}, 4.00 \mathrm{mmol}, 8.00$ molar equiv) in $\mathrm{CHCl}_{3}(40.0 \mathrm{~mL}$) was added dropwise. After complete addition, the mixture was allowed to warm to rt . The reaction mixture was stirred at rt for 30 h at which time $\operatorname{TLC}\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc in hexanes) showed complete consumption of starting material 20. The reaction was quenched with aqueous solution of NaHCO_{3} and sodium bisulfite. The aqueous layer was extracted with EtOAc (3 x), the combined organic layer was washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, 20% EtOAc in hexanes with a stepwise increase to 50% EtOAc in hexanes) to yield 115 mg
(57\% over two steps) of $\mathbf{2 8}$ as a white solid. $\mathrm{R}_{f}\left(40 \%\right.$ EtOAc in hexanes) $=0.41 .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.47(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.38-7.36(\mathrm{~m}, 3 \mathrm{H}$, Ar-H), 7.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.38 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.99 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.97 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.0,152.3,149.5,140.6,132.5,131.9,129.8,128.6,125.5,99.5,90.3$, 67.8, 56.8, 56.6. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 402.0979$, found 402.0973 .

Condensations of Sulfone $\mathbf{2 8}$ with Carbonyl Compounds

Method A. General Procedure. A stirring solution of aldehyde (1.20 molar equiv) and benzotriazole-derived sulfone 28 (1.00 molar equiv) in THF ($40.0 \mathrm{~mL} / \mathrm{mmol}$ of sulfone 28) was cooled to $0{ }^{\circ} \mathrm{C}$ and under N_{2}, LHMDS (1.0 M solution in THF, 2.40 molar equiv) was added to the reaction mixture. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC for disappearance of sulfone 28. Upon complete consumption of $\mathbf{2 8}$, saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was poured into EtOAc. Organic layer was separated and the aqueous layer was extracted with EtOAc (3 x). The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the combined E / Z product mixture was isolated by column chromatography using silica gel (mesh 200-300). The product E/Z ratio was determined by ${ }^{1} \mathrm{H} N M R$, prior to purification by column chromatography. For each substrate, the quantities of reactants and solvent, reaction time, product yield, eluting solvent for chromatography, R_{f} value, and spectroscopic data are provided under the individual compound headings.
(E / Z), (E)-, and (Z)-5,6-Dimethoxy-1-[2-(1-tosyl-1H-imidazol-5-yl)vinyl]-1Hbenzo[0$][1,2,3]$ triazole (E/Z-29, E-29, Z-29)

1-Tosyl-1H-imidazole-5-carbaldehyde: 45.0 mg ($0.180 \mathrm{mmol}, 1.20$ molar equiv); sulfone $\mathbf{2 8}$: 60.0 mg ($0.150 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $360 \mu \mathrm{~L}(0.360 \mathrm{mmol}, 2.40$ molar equiv); THF: 6.0 mL . Reaction time: 25 min . Column chromatography: eluting solvent 10% EtOAc in hexanes, with a stepwise increase to 40% EtOAc in hexanes (isomers separate under these conditions, but were collected together). Yield: 51.0 mg of $E / Z-29$ ($80 \%, E / Z 60 / 40$, white solid). $\mathrm{R}_{f}\left(40 \%\right.$ EtOAc in hexanes): $\mathrm{E}-29=0.21 ; Z-29=0.13$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 426.1231$, found 426.1217.

E/Z-29 mixture was separated by column chromatography (60% EtOAc in hexanes, with a stepwise increase to $100 \% \mathrm{EtOAc}$) to yield $\mathrm{E}-29$ as the early eluting and $Z-29$ as the late eluting isomer. E-29: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.2 \mathrm{~Hz}), 7.87(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 6.98$ (s, 1 H), $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 152.4,149.2,146.8,140.6,140.0,137.4,134.8,130.8,127.6,127.3,122.4,115.4,110.5$, 99.4, 90.3, 56.7, 56.5, 22.0. Z-29: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.3 \mathrm{~Hz}), 7.43(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=9.8 \mathrm{~Hz})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3} : $\delta 152.1,149.2,146.8,140.0,137.6,136.2,134.6,130.7,127.6,127.5,120.3,118.3$, 118.2, 99.3, 90.8, 56.5, 56.4, 22.0.

(S,E/Z)-1-(4,8-DimethyInona-1,7-dienyl)-5,6-dimethoxy-1H-benzo[d][1,2,3]triazole (E/Z-30)

(S)-(-)-Citronellal: 28.0 mg ($0.182 \mathrm{mmol}, 1.21$ molar equiv); sulfone 28: 60.0 mg (0.150 mmol , 1.00 molar equiv); LHMDS: $360 \mu \mathrm{~L}$ ($0.360 \mathrm{mmol}, 2.40 \mathrm{molar}$ equiv); THF: 6.0 mL . Reaction time: 25 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 10% EtOAc in hexanes. Yield: 34.0 mg (69\%) of $E / Z-30(E / Z 41 / 59)$ as a yellow oily product. $\mathrm{R}_{f}(40 \%$ EtOAc in hexanes $)=0.65 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Z}-$ isomer), 7.38 (s, 1H, E-isomer), 7.18 (d, 1H, $J=14.2 \mathrm{~Hz}, E$-isomer), 6.97 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z-$ isomer), 6.92 (s, 1H, Z-isomer), 6.78 (s, $1 \mathrm{H}, E$-isomer), 6.45 (dt, $1 \mathrm{H}, J=14.2 ; 7.8 \mathrm{~Hz}, E$-isomer), 5.85 (app q, 1H, $J \sim 7.3 \mathrm{~Hz}, Z$-isomer), 5.11 (t, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}$, E-isomer), 5.04 (t, 1H, J=7.3 Hz, Z-isomer), 4.00 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}, E$-isomer), 3.98 (s, one OCH_{3} E-isomer and two OCH_{3} Zisomer), 2.46-1.87 (m, both E and Z-isomers), 1.69 (s, CH_{3}, E-isomer), 1.65 (s, CH_{3}, Z-isomer), 1.61 (s, CH_{3}, Z-isomer), 1.55 (s, CH_{3}, E-isomer), 1.00 (d, $\mathrm{CH}_{3}, \mathrm{~J}=6.4 \mathrm{~Hz}, E$-isomer), 0.95 (d, $\mathrm{CH}_{3}, J=6.8 \mathrm{~Hz}, Z$-isomer). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.0,151.9,148.94,148.93,140.7$, $139.8,131.7,131.6,129.0,128.4,126.9,124.7,124.6,123.6,122.2,121.3,99.3,99.2,90.5$, $90.2,56.54,56.52,56.48,56.45,37.7,36.83,36.78,34.8,33.0,32.9,25.92,25.89,25.80,25.7$, 19.6, 17.9, 17.8. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+} 330.2176\right.$, found 330.2169.

Condensations of Sulfone 26 with Carbonyl Compounds

Method A, General Procedure. A stirring solution of aldehyde (1.50-2.20 molar equiv) and benzotriazole-derived sulfone 26 (1.00 molar equiv) in THF or DMF (see individual compound headings) was cooled to $0{ }^{\circ} \mathrm{C}$ and under N_{2}, LHMDS (1.0 M solution in THF, 2.40 molar equiv) was added to the reaction mixture. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC for disappearance of sulfone 26. Upon complete consumption of 26, saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was poured into EtOAc. Organic layer was separated and the aqueous layer was extracted with EtOAc (3 x). The combined organic layer was washed with water and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the combined E / Z product mixture was isolated by column chromatography using silica gel (mesh 200-300). The product E/Z ratio was determined by ${ }^{1} \mathrm{H}$ NMR, prior to purification by column chromatography. For each substrate, the quantities of reactants and solvent, reaction time, product yield, eluting solvent for chromatography, R_{f} value, and spectroscopic data are provided under the individual compound headings. Due to poor solubility of sulfone $\mathbf{2 6}$ in THF at $0^{\circ} \mathrm{C}$, crude sulfone $\mathbf{2 6}$ was used ($\sim 70 \%$ purity) when THF was used as solvent.
(EIZ)-1-(3,4,5-Trimethoxystyryl)-1H-naphtho[2,3-d][1,2,3]triazole (EIZ-31)

Method A. In THF as solvent:
$3,4,5$-Trimethoxybenzaldehyde: 45.0 mg ($0.229 \mathrm{mmol}, 2.14$ molar equiv); sulfone 26: 60.0 mg (crude 26, $\sim 70 \%$ purity, $\sim 0.107 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $360 \mu \mathrm{~L}(0.360 \mathrm{mmol}, 3.36$ molar equiv); THF: 6.0 mL . Reaction time: 20 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: 31.0 mg (80%) of $E / Z-31(E / Z 65 / 35)$ as a yellow solid. $\mathrm{R}_{f}\left(30 \%\right.$ EtOAc in hexanes) $=0.30 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70$ (s, $1 \mathrm{H}, E$-isomer), 8.65 (s, $1 \mathrm{H}, Z$-isomer), 8.24 (s, $1 \mathrm{H}, E$-isomer), 8.10 (d, $1 \mathrm{H}, J=8.3 \mathrm{~Hz}, E$-isomer), 8.08-8.05 (m, both E and Z isomers), 7.76 (d, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, Z-$ isomer), 7.58 (t, 1H, $J=7.6 \mathrm{~Hz}, E$-isomer), $7.53(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$, E-isomer), 7.47-7.42 (m, both E and Z isomers), 7.38 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z$-isomer), 6.82 (s, $2 \mathrm{H}, E$-isomer), 6.74 (d, $1 \mathrm{H}, J=9.3$ Hz, Z-isomer), 6.28 (s, $2 \mathrm{H}, \mathrm{Z}$-isomer), 3.97 (s, $2 \mathrm{OCH}_{3}, E$-isomer), 3.91 (s, $1 \mathrm{OCH}_{3}, E$-isomer), 3.74 (s, $1 \mathrm{OCH}_{3}, Z$-isomer), 3.44 (s, $2 \mathrm{OCH}_{3}, Z$-isomer). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9$, 153.1, 145.8, 144.9, 138.71, 138.66, 133.6, 133.2, 131.1, 130.8, 130.5, 130.4, 129.9, 129.7,
129.5, 128.9, 128.3, 127.4, 127.1, 125.4, 125.2, 122.4, 121.0, 119.8, 118.9, 118.2, 107.4, 106.6, 106.5, 103.9, 61.2, 61.1, 56.5, 56.0. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 362.1499$, found 362.1490.

Method A. In DMF as solvent:

3,4,5- Trimethoxybenzaldehyde: 7.5 mg ($0.038 \mathrm{mmol}, 1.50$ molar equiv); sulfone 26: 10.0 mg (pure 26, $0.025 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $60 \mu \mathrm{~L}$ ($0.060 \mathrm{mmol}, 2.40$ molar equiv); DMF: 1.0 mL . Reaction time: 40 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes. Yield: $8.4 \mathrm{mg}(93 \%)$ of $E / Z-31$ (E/Z 37/63) as a yellow solid.
Method B. To a stirring solution of 3,4,5-trimethoxybenzaldehyde ($11.2 \mathrm{mg}, 0.057 \mathrm{mmol}, 1.50$ molar equiv) and pure sulfone $26(14.8 \mathrm{mg}, 0.038 \mathrm{mmol}, 1.00$ molar equiv) in refluxing THF (1.5 mL) under N_{2}, was added DBU ($11 \mu \mathrm{~L}, 0.076 \mathrm{mmol}, 2.0$ molar equiv). Heating was continued at reflux for 4 h , at which time TLC showed complete consumption of sulfone 26. The mixture was cooled, water was added, and the mixture was poured into EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc ($3 x$). The combined organic layer was washed with water, brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the E/Z ratio of the product was determined by ${ }^{1} \mathrm{H}$ NMR prior to purification. The combined E / Z product mixture was purified by column chromatography (silica gel, eluting solvent 5\% EtOAc in hexanes, with a stepwise increase to 30% EtOAc in hexanes) to yield 7.1 mg (52%) of $E / Z-31$ ($E / Z 25 / 75$) as a yellow solid.
Note: pure sulfone $\mathbf{2 6}$ was used in Method B because it dissolves in refluxing THF.
$(E / Z),(E)$-, and (Z)-1-(4-(Trifluoromethyl)styryl)-1H-naphtho[2,3-d][1,2,3]triazole (E/Z-32, E 32, Z-32)

Method A. In DMF as solvent:
4-(Trifluoromethyl)benzaldehyde: 20.0 mg ($0.115 \mathrm{mmol}, 1.51$ molar equiv); sulfone 26: 30.0 mg (pure 27, $0.076 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $180 \mu \mathrm{~L}$ ($0.180 \mathrm{mmol}, 2.40$ molar equiv); DMF: 3.0 mL . Reaction time: 40 min . Column chromatography: eluting solvent 5\% EtOAc in hexanes, with a stepwise increase to 20% EtOAc in hexanes (isomers separate under these conditions, but were collected together). Yield: 16.0 mg (62\%) of $E / Z-32$ ($E / Z 41 / 59$) as a yellow
solid. $\mathrm{R}_{f}(30 \%$ EtOAc in hexanes $): E-32=0.75$ and $Z-32=0.65 .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -63.02 (s, E-isomer), -63.29 (s, Z-isomer). HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 340.1056$, found 340.1050 .

E/Z-32 mixture was separated by column chromatography ($\mathrm{SiO}_{2}, 20 \%$ EtOAc in hexanes) to yield $E-32$ as the early eluting and $Z-32$ as the late eluting isomer. E-32: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 8.05(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$) 7.72-7.68 (m, 4H), $7.60(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.1 ; 6.3 ; 1.0 \mathrm{~Hz}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}$, partially buried under d at 7.53 ppm$), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $145.8,138.6,133.7,131.2,130.1$ (, $^{2}{ }^{2}{ }_{\text {CF }}=33.0 \mathrm{~Hz}$), 129.8, 129.7, 128.3, 127.7, 126.8, 126.2 $\left(q,{ }^{3} J_{C F}=3.8 \mathrm{~Hz}\right), 125.6,124.4,124.3\left(q,{ }^{1} J_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right), 119.2,117.6,106.4 . \quad Z-32:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.52-7.45$ $(\mathrm{m}, 5 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.27$ (d, overlapping with CHCl_{3} in $\mathrm{CDCl}_{3}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$), $6.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 9.3 Hz). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.1,137.6,133.4,131.0,130.5\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=32.5 \mathrm{~Hz}\right.$), $130.2,129.6,129.5,128.2,127.4,125.6$, (,$~{ }^{3} J_{\mathrm{CF}}=3.8 \mathrm{~Hz}$), $125.4,124.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=271.9 \mathrm{~Hz}\right)$, 123.7, 123.2, 118.8, 106.9.

Method A. In THF as solvent:
4-(Trifluoromethyl)benzaldehyde: 6.6 mg (0.038 mmol , 2.17 molar equiv); sulfone 26: 10.0 mg (crude 26, ~70\% purity, $\sim 0.0175 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $60 \mu \mathrm{~L}$ ($0.060 \mathrm{mmol}, 3.43$ molar equiv); THF: 1.0 mL . Reaction time: 20 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 20% EtOAc in hexanes. Yield: 3.4 mg (56\%) of $E / Z-32$ ($E / Z 44 / 56$) as a yellow solid.

(E/Z)-1-(3-Ethylpent-1-enyl)-1 H-naphtho[2,3-d][1,2,3]triazole (E/Z-33)

Method A. In DMF as solvent:
2-Ethylbutanal: 11.0 mg ($0.110 \mathrm{mmol}, 1.45$ molar equiv); sulfone 26: 30.0 mg (pure 26, 0.076 mmol, 1.00 molar equiv); LHMDS: $180 \mu \mathrm{~L}$ ($0.180 \mathrm{mmol}, 2.40$ molar equiv); DMF: 3.0 mL . Reaction time: 40 min . Column chromatography: eluting solvent 5\% EtOAc in hexanes, with a stepwise increase to 10% EtOAc in hexanes. Yield: 15.0 mg (74%) of $E / Z-33(E / Z 33 / 67)$ as a yellow oily product. $\mathrm{R}_{f}(30 \% \mathrm{EtOAc}$ in hexanes $)=0.74 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65$ (s, 1H, Z-isomer), 8.08 (d, 1H, $J=8.8 \mathrm{~Hz}, Z$-isomer), 8.02-7.96 (m, both E and Z isomers), 7.56-
7.42 (m , both E and Z isomers), 7.15 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}, Z$-isomer), 6.31 (dd, $1 \mathrm{H}, J=14.2 ; 9.5$ Hz, E-isomer), 5.63 (dd, 1H, J = 10.8; $8.8 \mathrm{~Hz}, Z$-isomer), 2.89-2.81 (m, 1H, Z-isomer), 2.17-2.12 ($\mathrm{m}, 1 \mathrm{H}, E$-isomer), 1.70-1.23 (m, both E and Z isomers), 1.01 (t, $3 \mathrm{H}, J=7.8 \mathrm{~Hz}, E$-isomer), 0.89 (t, 3H, J = 7.8 Hz, Z-isomer). HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 266.1652$, found 266.1664. E/Z-33 mixture was separated by column chromatography ($\mathrm{SiO}_{2}, 5 \% \mathrm{EtOAc}$ in hexanes) to yield Z-33 as the early eluting and E-33 as the late eluting isomer. Z-33: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{t}, 1 \mathrm{H}, J=7.3$ $\mathrm{Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.64(\mathrm{dd}, 1 \mathrm{H}, J=10.8 ; 8.8 \mathrm{~Hz}), 2.88-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 144.7,134.4,133.3,131.9,130.9,129.7,128.2,127.0,125.0,120.7,118.2,105.5$, 40.5, 27.8, 11.8. E-33: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.8 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.54(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.48(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J$ $=14.2 \mathrm{~Hz}$), $6.31(\mathrm{dd}, 1 \mathrm{H}, J=14.2 ; 9.5 \mathrm{~Hz}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, 6 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.7,133.5,131.0,130.2,129.7,128.3,127.1$, 126.2, 125.2, 123.5, 118.5, 106.4, 44.9, 28.1, 12.1.

Method A. In THF as solvent:
2-Ethylbutanal: 3.8 mg ($0.038 \mathrm{mmol}, 2.17$ molar equiv); sulfone 26: 10.0 mg (crude 26, $\sim 70 \%$ purity, $\sim 0.0175 \mathrm{mmol}, 1.00$ molar equiv); LHMDS: $60 \mu \mathrm{~L}$ ($0.060 \mathrm{mmol}, 3.43$ molar equiv); THF: 1.0 mL . Reaction time: 25 min . Column chromatography: eluting solvent 5% EtOAc in hexanes, with a stepwise increase to 10% EtOAc in hexanes. Yield: $2.5 \mathrm{mg}(54 \%)$ of $E / Z-33$ ($E / Z 22 / 78$) as a yellow oily product.

Attempted Isomerizations of $E / Z-6$ ($E / \mathbf{Z} 23 / 77$)

I_{2}-Catalyzed. ${ }^{1}$ A solution of E/Z-6 ($15.0 \mathrm{mg}, 0.0595 \mathrm{mmol}, 1$ molar equiv) and $\mathrm{I}_{2}(2.1 \mathrm{mg}, 5.95$ $\mu \mathrm{mol}, 0.1$ molar equiv) in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was stirred at room temperature for 24 h . The reaction mixture was diluted with CHCl_{3} and washed with aqueous sodium bisulfite, water, dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR showed no change in the E / Z ratio.
Pd(II)-Catalyzed. ${ }^{2}$ A solution of E/Z-6 ($15.0 \mathrm{mg}, 0.0595 \mathrm{mmol}, 1$ molar equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.120$ $\mathrm{mL})$ was added to $\left(\mathrm{CH}_{3} \mathrm{CN}_{2} \mathrm{PdCl}_{2}\left(1.5 \mathrm{mg}, 5.95 \mu \mathrm{~mol}, 0.1\right.\right.$ molar equiv) in a N_{2} atmosphere. The mixture was allowed to stir at room temperature for 24 h . The mixture was filtered through Celite, the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solvent was removed in vacuo. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR showed no change in the E / Z ratio.

Under Basic Conditions. To a solution of E/Z-6 ($15.0 \mathrm{mg}, 0.0595 \mathrm{mmol}, 1$ molar equiv) in dry THF (0.750 mL) under N_{2} at room temperature, was added LHMDS (1.0 M in THF, $90.0 \mu \mathrm{~L}$, $0.090 \mathrm{mmol}, 1.5$ molar equiv) dropwise. Upon complete addition, the reaction mixture was heated at reflux for 24 h and then aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with EtOAc, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed in vacuo. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR showed no change in the E / Z ratio.

Under Photochemical Conditions. A solution of E/Z-6 (50 mg, 0.198 mmol) in PhH (260 mL) was placed in a Hanovia photoreactor and flushed with N_{2}. This solution was irradiated with a 450 W medium-pressure Hg lamp for 3.5 h , using a quartz filter. The solvent was removed under reduced pressure, and analysis of the crude mixture by ${ }^{1} \mathrm{H}$ NMR showed decomposition.

References

(1) Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135-8138, and references therein.
(2) Yu, J.; Gaunt, M. J.; Spencer, J. B. J. Org. Chem. 2002, 67, 4627-4629.

GS-1231-01-51-PureTS
Pulse Sequence: s2pul
Solvent: CDC13
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: barbara
File: GS-1231-01-51-Purets
INOVA-500 "cape11a500"
Pulse 57.9 degrees
Acq. time 1.892 sec
Width 8000.0 Hz
100 repetitions
OBSERVE H1, 499.7707226 MHz
DATA PROCESSING
Line broadening 0.1 Hz
FT size 32768
Total time $3 \mathrm{~min}, 10 \mathrm{sec}$

Js-0ュ-75-pure

as-1231-04-pmetnoxy-C13-CDC13
Pulse Sequence: s2pul
Solvent: edel3
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: barbara
Filei Gs-1231-04-pMethoxy-C13-CDC13
TMOVA-500 "riga"
Relax, delay 2.500 s
Pulse 52.1 degrees
Acq. time 1.300 sec
Width $29996.3 \mathrm{E}_{\mathrm{x}}$
556 repetitions

gcouple 11,
Poner 42 dB
Power 42 di
on during aequisition
halizz-16 modulated
Dark processimg
DREK PROCESSING 1.5 Hz
rT sise 131072
Total time $1 \mathrm{hr}, 35 \mathrm{mis}, 29 \mathrm{sec}$

as-1231-cona-Incol-purers-belorecis
Pulse Sequence: s2pul
Solvent: cncl3
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
operator: barbara
Filel Gs-1231-cond-Indol-pureTs-beforeC13
TMOVA-500 "riga"
Pulae 57.9 degrees
Pulse
Acq. time 1.892 sec
Width 8000.0 gz
Width $8000.0 \mathrm{Ez}_{2}$
28 repetitions 28 repetitions
OBSERVE H1, 499.7707212 MBx

DARA processing
Line broadesing o.5 Hz
PT sise 32768
Total time $3 m i n, 10$ see

$$
\begin{aligned}
& \text { (2) } \\
& \begin{array}{l}
\text { GS-1231-02-147-pure } \\
\text { Pulse Sequence: s2pul } \\
\text { Solvent: cDC13 } \\
\text { Temp. } 25.0 \mathrm{c} / 298.1 \mathrm{~K} \\
\text { Operator: barbara } \\
\text { File: GS-1231-02-147-pure } \\
\text { INOVA-500 "riga" } \\
\text { Pulse } 57.9 \text { degrees } \\
\text { Acq. time } 1.892 \text { sec } \\
\text { Width } 8000.0 \mathrm{~Hz} \\
\text { 100 repetitions } \\
\text { OBSERVE H1, } 499.7707202 \mathrm{MHz} \\
\text { DRTA PROCESSING } \\
\text { Line broadening } 0.1 \mathrm{~Hz} \\
\text { FT size } 32768 \\
\text { Total time } 3 \mathrm{~min}, 10 \mathrm{sec}
\end{array}
\end{aligned}
$$

$$
\text { 125 MHz, } \mathrm{CDCl}_{3}^{21}
$$

> GS-1231-01-94-clickMethoxy-TS
Pulse Sequence: s2pul
Solvent: cDC13
Temp. $25.0 \mathrm{c} / 298.1 \mathrm{~K}$
Operator: barbara
File: GS-1231-01-94-clickMethoxy-TS
INOVA-500 "riga"
Pulse 57.9 degrees
Acq. time 1.892 sec
Width 8000.0 Hz
100 repetitions
OBSERVE H1, 499.7707222 MHz
DATA PROCESSING
Line broadening 0.1 Hz
FT size 32768
Total time $3 \mathrm{~min}, 10 \mathrm{sec}$

 500 MHz

GS-1231-cond-Dinethoxymialzole-purers

File, GS-1231-cond-DimethoxyYmidinole-pure?s
ryova-500 "riga" Pulse 57.9 degrees
Acq. time 1.892 see
Width $8000.0 \Xi_{z}$
100 repetitions
OBSERVE H1, 499.7707212 MKz Pulse 57.9 degrees
Acq. time 1.892 sec
Width 8000.0 Ez
100 repetitions
OBSERVE H1, 499.7707212 MBz OBSERVE H1, 499.7707212 MR
DAEA PROCESSIMG Line broadening 0.5 Hz
FT size 32768 Total time 3 mis, 10 sec

$$
\begin{aligned}
& \text { GS-1231-03-207-pureBs } \\
& \text { Pulse Sequence: s2pul } \\
& \text { Solvent: cDCl3 } \\
& \text { Temp. } 25.0 \mathrm{c} / 298.1 \mathrm{~K} \\
& \text { Operator: barbara } \\
& \text { File: GS-1231-03-207-pureBs } \\
& \text { INOVA-500 riga" } \\
& \text { Pulse } 57.9 \text { degrees } \\
& \text { Acq. time } 1.892 \text { sec } \\
& \text { Width } 8000.0 \mathrm{~Hz} \\
& 52 \text { repetitions } \\
& \text { OBSERVE H1, } 499.7707222 \mathrm{MHz} \\
& \text { DARA PROCESSING } \\
& \text { Line broadening } 0.1 \mathrm{~Hz} \\
& \text { FT size } 32768 \\
& \text { Total time } 3 \mathrm{~min}, 10 \mathrm{sec}
\end{aligned}
$$

