New {RuNO} polyoxometalate [PW₁₁O₃₉Ru^{II}(NO)]⁴⁻ : synthesis and reactivity

Maxim N. Sokolov,* Sergey A. Adonin, Dmitry A. Mainichev, Pavel L. Sinkevich, Cristian Vicent, Nikolay B. Kompankov, Artem L. Gushchin Vladimir A. Nadolinnyi and Vladimir P. Fedin

Contents

Electrospray ionization mass spectrometry

Figure S1. Simulated and experimental peaks for the triply-charged $[2 + H]^{3-}$ and $[2 + H]^{3-}$

 TBA^{3-} (bottom) and doubly-charged $[2 + \text{H} + \text{TBA}]^{2-}$ and $[2 + 2\text{TBA}]^{2-}$ (top) anions.

NMR spectroscopy

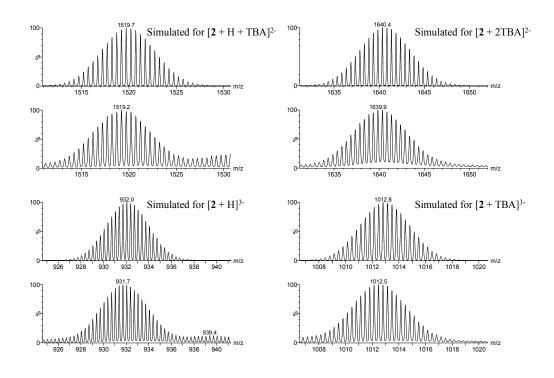
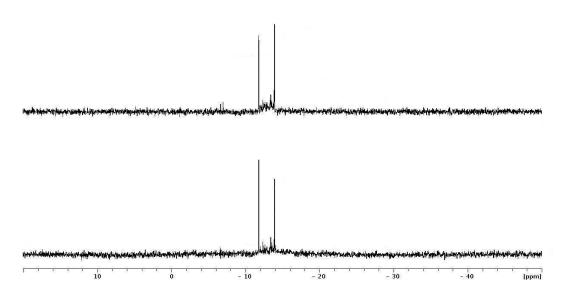
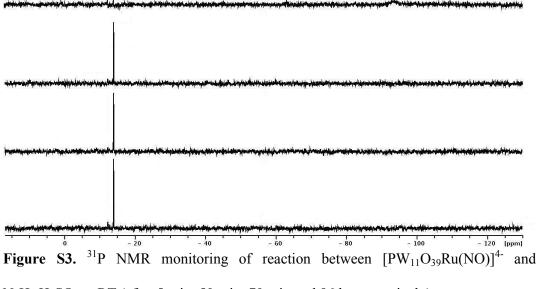

Figure S2. ³¹P NMR spectra of reaction solution ($[PW_{11}O_{39}]^{7-} + K_2[Ru(NO)Cl_5]$, reflux) after 16 and 31 h.

Figure S3. ${}^{31}P$ NMR monitoring of reaction between $[PW_{11}O_{39}Ru(NO)]^{4-}$ and $N_2H_4 \cdot H_2SO_4$ at RT


Figure S4. ³¹P NMR monitoring of reaction between $[PW_{11}O_{39}Ru(NO)]^{4-}$ and $N_2H_4 \cdot H_2SO_4$ at 60°C

Electrospray ionization mass spectrometry


A Q-TOF premier mass spectrometer with an orthogonal Z-spray electrospray source (Waters, Manchester, UK) was used. The temperature of the source block was set to 100 °C and the desolvation temperature to 120 °C. A capillary voltage of 3.3 kV was used in the negative scan mode and the cone voltage was set to 5 V to control the extent of fragmentation of the identified species. TOF mass spectra were acquired in the W-mode operating at a resolution of ca. 15000 (FWHM). Mass calibration was performed using a solution of sodium iodide in isopropanol:water (50:50) from m/z 50 to 3000. Sample solutions were infused via syringe pump directly connected to the ESI source at a flow rate of 10 μ L/min. The observed isotopic pattern of each compound perfectly matched the theoretical isotope pattern calculated from their elemental composition using the MassLynx 4.1 program. For ESI tandem MS/MS experiments, the anions of interest were mass-selected using the first quadrupole (Q1) and interacted with argon in the T-wave collision cell at variable collision energies (CE = 0–20 eV). The ionic products of fragmentation were analyzed with the time-of-flight analyzer. The isolation width was reduced to mass-select a single isotopomer in the first quadrupole analyser.

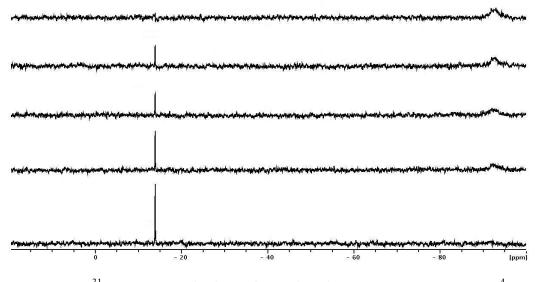

Figure S1. Simulated and experimental peaks for the triply-charged $[2 + H]^{3-}$ and $[2 + TBA]^{3-}$ (bottom) and doubly-charged $[2 + H + TBA]^{2-}$ and $[2 + 2TBA]^{2-}$ (top) anions.

Figure S2. ³¹P NMR spectra of reaction solution ($[PW_{11}O_{39}]^{7-} + K_2[Ru(NO)Cl_5]$, reflux) after 16 (bottom) and 31 (top) h. Left peak –starting POM, right peak – product.

 $N_2H_4{\cdot}H_2SO_4$ at RT (after 5 min, 50 min, 70 min and 96 h, respectively)

Figure S4. ³¹P NMR monitoring of reaction between $[PW_{11}O_{39}Ru(NO)]^{4-}$ and N_2H_4 ·H₂SO₄ at 60°C (after 2.5 h, 5 h, 6.5 h and 24 h)

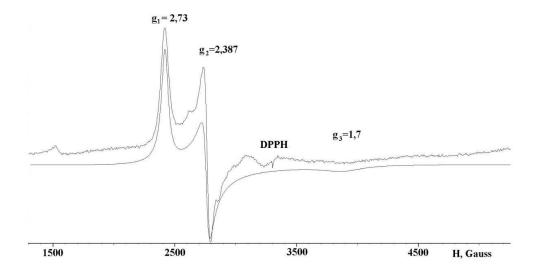
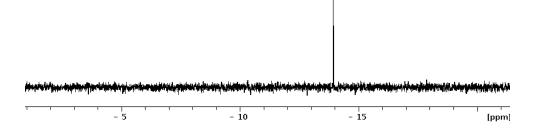



Figure S5. EPR spectrum of (Bu₄N)₄[PW₁₁O₃₉Ru^{III}(NH₃)]

Figure S7. ³¹P NMR spectra of $[PW_{11}O_{39}Ru(NO)]^{4-}$ (solution after hydrothermal reaction between $[PW_{11}O_{39}]^{7-}$ and $K_2[Ru(NO)Cl_5]$, $H_2O + D_2O$)

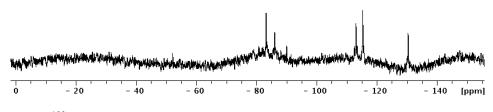
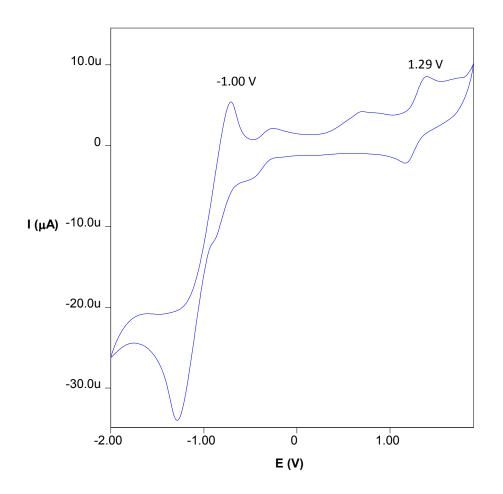



Figure S8. ¹⁸³W NMR spectra of (Bu₄N)₄[PW₁₁O₃₉Ru(NO)] (CD₃CN)

Figure S9. The cyclic voltammogram of 1 in CH₃CN in the potential route of $-2 \leftrightarrow 1.8$ V (scan rate of 0.1 V/s).