Electronic Supporting Information

The Structure of Polydopamine – a Never Ending Story?

Jürgen Liebscher^{*},^{a,b} Radosław Mrówczyński,^{a,b} Holger A. Scheidt,†^c Claudiu Filip, †^a Niculina D. H□dade,^d Rodica Turcu,^a Attila Bende,^a Sebastian Beck^b

^a National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, RO-400293 Cluj-Napoca, Romania

Fax: +40 264 420042; E-mail: liebscher@chemie.hu-berlin.de

^b Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany

^c Universität Leipzig, Institut für Medizinische Physik und Biophysik, Härtelstraße 16-18, 04107 Leipzig, Germany

^d Babes-Bolyai University Cluj-Napoca, Faculty of Chemistry and Chemical Engineering, Arany Janos Str. 11, 400028 Cluj-Napoca, Romania

Polydopamine obtained from TRIS buffer

Elemental analysis (found): C 56.94%, H 3.92%, N 8.52%

Figure S1. FTIR-spectra of PDA obtained in TRIS buffer (red line) and in phosphate buffer (blue line).

No.	m/z peak of PD/ Phosphate buffer (Δ ppm)	A sample prepared in TRIS buffer (Δ ppm)	Calculated [M+H] ⁺ mass	Oligomer
1	438.0730 (2 ppm)	438.0740 (4 ppm)	438.0721	3Q
2	440.0891 (3 ppm)	440.0896 (4 ppm)	440.0877	3Q+2
3	442.1048 (3 ppm)	442.1052 (4 ppm)	442.1034	3Q+4
4	444.1204 (3 ppm)	444.1207 (4 ppm)	444.1190	3Q+6
5	446.1360 (3 ppm)	446.1363 (4 ppm)	446.1347	3Q+8
6	448.1516 (3 ppm)	448.1519 (4 ppm)	448.1503	3Q+10
7	450.1673 (3 ppm)	450.1676 (4 ppm)	450.1660	3Q+12
8	452.1830 (3 ppm)	452.1834 (4 ppm)	452.1818	3Q+16
9	454.1987 (3 ppm)	454.1990 (4 ppm)	454.1973	3Q+18
10	589.1372 (3 ppm)	589.1376 (4 ppm)	589.1354	4Q+6
11	591.1528 (3 ppm)	591.1534 (4 ppm)	591.1510	4Q+8
12	593.1685 (3 ppm)	593.1690 (4 ppm)	593.1667	4Q+10
13	595.1841 (3 ppm)	595.1845 (4 ppm)	595.1823	4Q+12
14	597.1998 (3 ppm)	597.2003 (4 ppm)	597.1980	4Q+14
15	599.2155 (3 ppm)	599.2159 (4 ppm)	599.2136	4Q+16
16	601.2311 (3 ppm)	601.2316 (4 ppm)	601.2293	4Q+18
17	736.1699 (3 ppm)	736.1710 (5 ppm)	736.1674	5Q+8
18	738.1856 (3 ppm)	738.1863 (4 ppm)	738.1831	5Q+10
19	740.2010 (3 ppm)	740.2019 (4 ppm)	740.1987	5Q+12
20	742.2168 (3 ppm)	742.2177 (4 ppm)	742.2144	5Q+14
21	744.2325 (3 ppm)	744.2333 (4 ppm)	744.2300	5Q+16
22	746.2481 (3 ppm)	746.2489 (4 ppm)	746.2457	5Q+18
23	748.2637 (3 ppm)	748.2646 (4 ppm)	748.2613	5Q+20
24	750.2794 (3 ppm)	750.2800 (4 ppm)	750.2770	5Q+22
25	1199.4348(1ppm)	-	1199.4362	8Q+36

Table S1. ES (+)-HRMS peaks of PDA samples prepared in TRIS or Phosphate buffer.

Figure S2. ES(+)-HRMS spectrum (oligomer peaks) of the PDA sample (0.1 mg/mL) in methanol/DMSO/TFA = 97/2/1 prepared in phosphate buffer.

Figure S3. ES(+)-HRMS spectrum (oligomer peaks) of the PDA sample (0.1 mg/mL) in methanol/DMSO/TFA = 97/2/1 prepared in TRIS buffer.

Figure S4. ES(+)-HRMS spectra (oligomer peaks) of the PDA samples (0.1 mg/mL) in methanol/DMSO/TFA = 97/2/1 prepared in phosphate (a) and TRIS (b) buffer. Comparison of the experimental spectra (top) and simulated isotopic patterns (bottom).

Figure S5. ES (+)-HRMS spectra (oligomer peaks) of the PDA samples (0.1 mg/mL) in methanol/DMSO/TFA = 97/2/1 prepared in phosphate (a) and TRIS (b) buffer. Comparison of the experimental spectra (top) and simulated isotopic patterns (bottom).

Figure S6. ES (+)-HRMS spectra (oligomer peaks) of the PDA samples (0.1 mg/mL) in methanol/DMSO/TFA = 97/2/1 prepared in phosphate (a) and TRIS (b) buffer. Comparison of the experimental spectra (top) and simulated isotopic patterns (bottom).

Figure S7. "Parallel-stacking" association pattern of the PDA octamer chains.

Figure S8. "Antiparallel-stacking" association pattern of the PDA octamer chains.

Figure S9. "Stacking and H-bonding" association pattern of the PDA octamer chains.

Figure S10. "Antiparallel-stacking and H-bonding" association pattern of the PDA octamer chains.

Figure S11. "T-shape" association pattern of the PDA octamer chains.

Figure S12. Equilibrium geometry structure of the M3-M2-M3-M2 four units PDA chain.

Figure S13. "Antiparallel-stacking" association pattern of the PDA chains.

Figure S14. "Stacking and H-bonding" association pattern of the PDA chains.

Figure S15. "T-shape" association pattern of the PDA chains.

Figure S16. High resolution XPS spectra of O1s and C1s core-levels of PDA.

Figure S17. 600.1 MHz liquid state ¹H NMR spectra of PDA (TRIS sample) in TFA at 303 K. A watergate W5 sequence was used for solvent suppression.

Figure S18. Zeta potential determination of PDA prepared in TRIS buffer.