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METHODS 38 

Chemicals 39 

4-nonylphenol (CAS No 104-40-5, PESTANAL
®

 analytical grade standard, 98.4% 40 

purity, Riedel-de-Haen, Germany); fluoxetine hydrochloride (CAS-No 56296-78-7; 41 

analytical standard, purity 100%) Sigma-Aldricht, USA), and fluvoxamine maleate 42 

(CAS-No 61718-82-9, analytical standard, purity 100%) were purchased from Sigma-43 

Aldrich (USA/Netherlands). All other chemicals were analytical grade and were 44 

obtained from Merck (Germany). 45 

Experimental animals. Individual or bulk cultures of 10 animals/L were maintained in 46 

ASTM hard synthetic water as described in Barata and Baird 
1
. Individual or bulk 47 

cultures were fed daily with Chorella vulgaris Beijerinck (5x10
5
 cells/mL, respectively, 48 

corresponding to 1.8 µg C/mL). C. vulgaris was grown axenically in Jaworski/Euglena 49 

gracilis 1: 1 medium (CCAP, 1989). The culture medium was changed every day, and 50 

neonates were removed within 24 h. Photoperiod was set to 14h light: 10h dark cycle 51 

and temperature at 20 ± 1
o
C. 52 

Experiment 2: Ten gravid females were separately exposed to the same concentrations 53 

of 4-nonylphenol (20, 60 µg/L), fluvoxamine (7 µg/L) and fluoxetine (40 µg/L) 54 

described in experiment 1 using a food ration of 5 x 10
5
 cells/mL of C. vulgaris. 55 

Likewise in experiment 1 all contaminants were dosed in the carrier acetone (0.1 mL/L) 56 

and a solvent control treatments of acetone (0.1 mL/L) was also included for baseline 57 

comparison of transcriptomic responses. Experiments started with 8-9 day old gravid 58 

females, which were exposed during three consecutive broods to the studied chemicals 59 

(10-14 days). Cultures of 100 to 150 individuals (< 24 h old neonates) were initiated 60 

and maintained in bulk cultures as described above. Within 24 h of deposition of the 61 

first clutch into the brood chamber, single females were removed and randomly 62 
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assigned to each treatment. The first batch of neonates (hatching within the first 48-72 63 

h) was always discarded and not evaluated, as these animals were not exposed to the 64 

tested chemicals during their entire developmental period. Thus, only neonates from the 65 

second, third and fourth broods were counted for assessing effects on total offspring 66 

production. Just after releasing their fourth clutch into the brood pouch, eggs were 67 

gently flushed from the brood pouch and females were immediately flash- frozen in 68 

liquid N2 and preserved at -80 oC until RNA extraction. This protocol, by using only 69 

de-brooded females excludes the contribution of developing embryos on transcriptomic 70 

responses. Furthermore, the use of de-brooded adults in the first hours of their intermolt 71 

instar ensured measurement of transcriptomic responses of all the studied females at the 72 

beggining of the intermolt cycle, thus minimizing undesirable variation of gene 73 

transcription patters within females across the molt cycle 
3
.  74 

Validation of Microarray results by qRT-PCR 75 

Quantities of 1µg were retrotranscribed to cDNA using First Strand cDNA Synthesis 76 

Kit Roche
®

 (Germany) and stored at -20ºC. Aliquotes of 10ng were used to quantify 77 

specific transcripts in Lightcycler
® 

480 Real Time PCR System (Roche, Germany) 78 

using Lightcycler 480 SYBR Green I Master
® 

(Roche, Germany). Relative abundance 79 

values of all genes were calculated from the second derivative of their respective 80 

amplification curve, Cp values calculated by technical triplicates. Cp values of target 81 

genes were compared to the corresponding reference gene 
4
.  82 

83 
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FIGURES AND FIGURE LEGENDS 84 
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Fig S1. Total offspring production (Mean SE, N=4)  of the four selected females 93 

exposed to the studied SSRI and 4-nonylphenol treatments. C, FV10, FX40, N20, N60 94 

are solvent control, fluovoxamine at  7 µ/L, fluoxetine at 40 µ/L, 4-nonylphenol at 20 95 

µ/L and 60 µ/L, respectively. Asterisks indicate significant differences from solvent 96 

controls following ANOVA and Dunnett’s comparison tests.  97 

98 
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 101 

Fig S2. Heat map and hierarchical clustering (Pearson correlation) base on log2-ratios  102 

of the differentially transcribed genes in Daphnia magna juveniles across the 103 

experimental replicates for the SSRIs (FV, FX) and  nonylphenol (N20, N60) 104 

treatments. The four replicates are identify as A,B,C,D.  Gene transcripts in red and 105 

green are up and down regulated and those in black unchanged. Colour scale spans from 106 

-2.5 to 2.5.  107 
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108 
Fig S3. Heat map and hierarchical clustering (Pearson correlation) base on log2-ratios  109 

of the differentially transcribed genes in Daphnia magna adults across the experimental 110 

replicates for the SSRIs (FV, FX) and  nonylphenol (N20, N60) treatments. The four 111 

replicates are identify as A,B,C,D.  Gene transcripts in red and green are up and down 112 

regulated and those in black unchanged. Colour scale spans from -2.5 to 2.5.  113 

114 
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Fig S4.  Self Organizing Maps (SOM) of gene transcription responses of juveniles and 118 

adults across the experimental replicates for SSRIs (fluvoxamine, FV; fluoxetine, FX) 119 

and 4-nonylphenol (N20, N60) treatments. Results are depicted as Mean ± SD of log2-120 

ratios. Number of de-regulated genes are depicted between parenthesis. 121 
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