
Supportive Information

Mathematical Modeling and Experimental Breakthrough Curves of

Carbon Dioxide Adsorption on Metal Organic Framework CPM-5

Rana Sabouni, Hossein Kazemian, Sohrab Rohani^{*}

Department of Chemical and Biochemical Engineering, Western University, London, Ontario,

Canada N6A5B9

Figure S1

Figure S1: Simplified schematic diagram of the system used for adsorption experiments

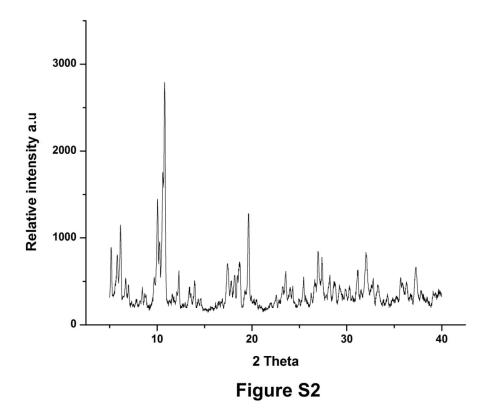


Figure S2: XRD pattern of the microwave-synthesized CPM-5

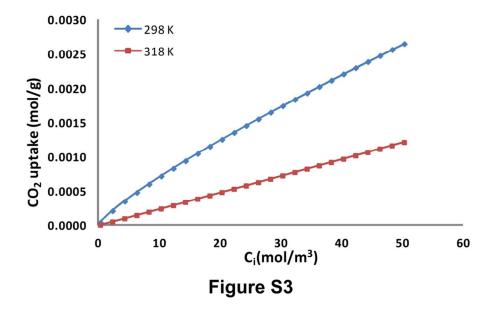


Figure S3: CO₂ adsorption equilibrium at different temperatures, 298 k and 318 K.

Parameters	Values	Unit
	0.406	
Co	5.9	mol/m ³
DL	1.85 x10 ⁻⁵	m²/s
C _o D _L R _c	1.25 x10 ⁻⁶	m
k _t	2.44 x10 ⁻⁵	m/s
0	1.34 x10 ⁻³	m/s
Lo	0.15	m
D _c K	7.92 x10 ⁻²	m
K	1.1e ⁻⁴	(mol/g).(mol/m ³) ^{-1/n}
n	1.2	-

Table S1: Input parameter for the model at 298 k

Coefficient form of Partial differential equation (PDE) model

The general PDE equation, as well and the initial and boundary conditions with the vector variable u are as follows:

$$e_{a}\frac{\partial^{2} y}{\partial t^{2}} + d_{a}\frac{\partial u}{\partial t} - \nabla (c \cdot \nabla u + \alpha \cdot u - \gamma) + \beta \cdot \nabla u + au = f \text{ in } \Omega$$

Boundary conditions

Dirichlet type:

$$hu = r \text{ on } \delta \Omega$$

Neumann type:

$$n \cdot (c \cdot \nabla u + \alpha \cdot u - \gamma) + au = g - h^T \mu \text{ on } \delta \Omega$$

 Ω is the computational domain—the union of all domains, $\partial \Omega$ is the domain boundary, and $\partial \Omega$ is the domain boundary.

The coefficient in COMSOL simulation package are as follows:

The diffusion coefficient:	$c = \begin{pmatrix} 1/Pe & 0\\ 0 & 0 \end{pmatrix}$
The adsorption coefficient:	$a = \begin{pmatrix} 0 & 0 \\ 0 & Sh_m \end{pmatrix}$
The mass coefficient:	$e_a = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
The damping coefficient:	$d_a = \begin{pmatrix} 1 & D_g \\ 0 & 1 \end{pmatrix}$
The conservative flux convection coefficient:	$\alpha = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$
The convection coefficient: $\beta = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	
The conservative flux source: $\gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	

The Drichlet coefficient as follows:

$$q = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad g = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad h = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad r = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

The Neumann coefficient as follows:

$$q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad g = \begin{pmatrix} 10 \\ 0 \end{pmatrix}$$