Supplemental Information for

Universal Microfluidic Automaton for Autonomous Sample Processing: Application to the Mars Organic Analyzer

Jungkyu Kim[#], Erik C. Jensen[†], Amanda M. Stockton[‡] and Richard A. Mathies*

Department of Chemistry, University of California, Berkeley, CA 94720

* Address correspondence to: Richard A. Mathies

Department of Chemistry
University of California
Berkeley, CA 94720

Phone: (510) 642-4192

Fax: (510) 642-3599

E-mail: ramathies@berkeley.edu

Current Address: Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409

† Current Address: HJ Science & Technology, 187 Saratoga Avenue, Santa Clara, CA 95050

‡ Current Address: Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109

Figure SI1. Detail of (A) buffer loading process and (B) washing process.

Figure SI2. Integrated peak area as a function of 4 different amino acid concentrations resulting from the automated sample processing program. There is a log-linear correlation between concentration and integrated area as expected.

Table SI1-1. Off-chip vs. on-chip labeling and separation of an amino acid standard.

	Labeling	Efficiency	Separation Efficiency (Peak Efficiency, Theoretical Plates)		
	(Peak Area, Rel. F	luorescence Units)			
	Off-Chip Manual	On-Chip	Off-Chip	On-Chip Autonomous	
	On-Chip Manual	Autonomous	Manual	On-Chip Autonomous	
Cit	0.44	0.53	2.9×10^{5}	2.5×10 ⁵	
Val	0.46	0.57	2.8×10^{5}	2.4×10^{5}	
Ser	0.55	0.74	2.7×10^{5}	2.2×10^{5}	
Ala	0.21	0.28	2.7×10^{5}	2.2×10^{5}	
Gly	0.70	0.95	2.4×10^{5}	2.2×10^{5}	
Glu	0.41	0.61	1.8×10^{5}	1.5×10^{5}	
Asp	0.23	0.31	1.8×10^{5}	1.7×10^{5}	
Average	0.43	0.57	2.5×10^{5}	2.1×10^{5}	
Normalized	1.0	1.3	1.0	0.9	

Table SI1-2. Off-chip vs. on-chip labeling and separation of an aldehyde and ketone standard.

	· · · · · · · · · · · · · · · · · · ·	g Efficiency Fluorescence Units)	Separation Efficiency (Peak Efficiency, Theoretical Plates)		
	Off-Chip	On-Chip	Off-Chip	On-Chip	
	Manual	Autonomous	Manual	Autonomous	
Methylethyl ketone	0.25	0.17	3.5×10^{5}	3.6×10 ⁵	
Propionaldehyde	1.9	1.3	3.1×10^{5}	3.3×10^{5}	
Acetaldehyde (1)	1.7	1.2	2.9×10^{5}	3.2×10^{5}	
Acetaldehyde (2)	0.21	0.14	2.5×10^{5}	2.8×10^{5}	
Formaldehyde	1.7	1.2	4.0×10^{5}	3.3×10^{5}	
Average	1.1	0.82	3.2×10^{5}	3.2×10^{5}	
Normalized	1.0	0.8	1.0	1.0	

Table SI1-3. Off-chip vs. on-chip labeling and separation of a carboxylic acid standard.

	Labelin	g Efficiency	Separation Efficiency			
	(Peak Area, Rel.	Fluorescence Units)	(Peak Efficiency, Theoretical Plates)			
	Off-Chip	On-Chip	Off-Chip	On-Chip		
	Manual	Autonomous	Manual	Autonomous		
Valeric acid	0.28	0.33	0.6×10^{5}	0.5×10^5		
Butanoic acid	0.32	0.42	1.0×10^{5}	0.8×10^{5}		
Propionic acid	0.66	0.87	2.1×10^{5}	1.2×10^{5}		
Acetic acid	0.37	0.54	1.0×10^{5}	0.8×10^{5}		
Formic acid	0.63	1.0	0.9×10^{5}	0.8×10^{5}		
Average	0.45	0.64	1.1×10^{5}	0.8×10^{5}		
Normalized	1.0	1.4	1.0	0.7		

Table SI02. Separation characteristics from figure 5E

	Total An	Total Analysis			Amino Acid Analysis		Aldehyde / Ketone Analysis		Carboxylic Acid Analysis	
Species	Conc.	Signal- to-Noise	N^a	Resolution ^b	N^a	Resolution ^b	N^a	Resolution ^b	N^a	Resolution ^b
Cit	400 nM	1200	3.6×10 ⁵		3.7×10^5					
Val	400 nM	1300	3.4×10^{5}	7.7	3.6×10^5	7.9				
Ser	400 nM	1200	3.2×10^{5}	6.0	3.3×10^5	6.1				
Gly	400 nM	1500	2.9×10^{5}	7.8	3.0×10^{5}	8.0				
Acetone	400 nM	4000	2.9×10^{5}	15			3.0×10^{5}			
PB (1)		900	2.8×10^{5}	0.66	2.6×10^{5}	16				
Acetic acid	400 nM	2800	1.3×10^{5}	3.3					1.3×10^5	
PB (2)		1200	2.8×10^{5}	0.96	3.2×10^{5}	5.4				
Formaldehyde	40 nM	4100	2.8×10^{5}	5.3			2.7×10^{5}	11		
СВ		NA^c	NA^c	4.2			NA^c	4.4^d	NA^c	9.6^{d}
Formic acid	40 nM	4100	1.0×10^{5}	4.2^{d}					1.1×10^5	5.2^{d}
^a Peak efficiency	(theoretica	al plates).			•		•		•	
^b Resolution bety			and the previ	ously eluting pea	ak in the sepa	ration.				
^c Cannot be quan										
^d Estimated.		1	S							